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1 Introduction 

We describe a new interactive verification environment called MOCHA for the modular verili- 
cation of heterogeneous systems. MOCItA differs from many existing model checkers in three 
significant ways: 

- For modeling, we replace unstructured state-transition graphs with the heterogeneous mod- 
eling framework of reactive modules [AH96]. The definition of reactive modules is inspired 
by formalisms such as Unity [CM881, I/O automata [Lyn96], and Esterel [BG88], and al- 
lows complex forms of interaction between components within a single transition. Reac- 
tive modules provide a semantic glue that allows the formal embedding and interaction of 
components with different characteristics. Some modules may be synchronous, others asyn- 
chronous, some may represent hardware, others software, some may be speed-independent, 
others time-critical. 

- For requirement specification, we replace the system-level specification languages of linear 
and branching temporal logics [Pnu77,CE81] with the module-level specification language 
of Alternating Temporal Logic (ATL) [AHK97]. In ATL, both cooperative and adversarial 
relationships between modules can be expressed. For example, it is possible to specify that 
a module can attain a goal regardless of how the environment of the module behaves. 

- For the verification of complex systems, MOCHA supports a range of compositional attd 
hierarchical verification methodologies. For this purpose, reactive modules provide assume- 
guarantee rules [HQR98] and abstraction operators [AHR98]; MOCHA provides algorithms 
for automatic relinemenl checking, and will provide a proof editor that manages the decom- 
position of verification tasks into subtasks. 

In this paper, we describe the toolkit MOCIIA in which the proposed approach is being imple- 
mented. The input language of MOCHA is a machine readable variant of reactive modules. The 
following functionalities are currently being supported: 

- Simulation, including games between the user and the simulator 
- Enumerative and symbolic invariant checking and error-trace generation 
- Compositional refinement checking 
- ATL model checking 
- Reaehability analysis of real-time systems 

* This research was supported in part by the ONR YIP award N00014-95-1-0520, by the NSF CAREER 
award CCR-9501708, by the NSF grant CCR-9504469, by the ARO MURI grant DAAH-04-96-1-0341, 
and by the SRC contract 97-DC-324.041. 
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MOCHA is intended as a vehicle for the development of new verification algorithms and ap- 
proaches. It adopts a software architecture similar to VIS [BHS+96], a symbolic model-checking 
tool from UC Berkeley. Written in C with Tcl/Tk and Tix [Exp971, MOCHA can be easily ex- 
tended in two ways: designers and application developers can customize their application or 
design their own graphical user interface by writing Tel scripts; algorithm developers and re- 
searchers can develop new verification algorithms by writing C code, or assembling any verifi- 
cation packages through C interfaces. For instance, MOCHA incorporates the VIS packages for 
image computation and multi-valued function manipulation, as well as various BDD packages, 
to provide state-of-the-art verification techniques. 

2 Reactive Modules 

A formal definition of reactive modules can be found in [AH96]; here we give only a brief 
introduction. Unlike simple state-transition graphs, reactive modules is a compositional model in 
which both states and transitions are structured. The state of a reactive module is determined by 
the values of three kinds of typed variables: the external variables are updated by the environment 
and can be read by the module; the hzterface variables are updated by the module and can be read 
by the environment; the private variables are updated by the module and cannot be read by the 
environment. The observable variables of a module are its external and interface variables. 

The state of a reactive module changes in a sequence of rounds. In the first round (the ini- 
tialization round), the initial values of the interface and private variables are determined. In each 
subsequent round (an update round), new values of the interface and private variables are de- 
termined, possibly dependent on the old values of some variables from the previous round, and 
possibly dependent on the new values of some variables from the current round. The external 
variables are initialized and updated nondeterministically. 

Value dependencies between variables within an update round are resolved statically. In each 
update round, some interface and private variables are updated simultaneously, and some sequen- 
tially. Variables that are updated simultaneously are grouped together and controlled by an atom. 
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During the execution of an atom (called subround), its variables are updated simultaneously. The 
new values of the atom variables may depend on the new values of variables that have been up- 
dated, by another atom, in an earlier subround. Hence, some atoms can be executed only after 
the execution of some other atoms. The initialization and update rules for executing an atom are 
specified via guarded commands. We require that there is a static order of the atoms in which 
they can be executed in every update rouml, and that always at least one guarded command is 
enabled. This ensures that the interaclion (11" an atom with the other atoms (and the environment) 
is nonblocking. 

New modules can be built from existing modules using three operations: parallel composi- 
tion, variable renaming, aad variable hiding. The composition of two modules produces a single 
module whose behavior captures the interaction between the two component modules. Variable 
renaming changes the name of a variable. Variable hiding changes a variable from interface to 
private, and therefore renders it unobservable. 

3 Simulation 

MOCHA provides an interactive simulator with a graphical user-interface for simulating modules. 
It operates in three different modes: random simulation, manual simulation, and game simula- 
tion. In random simulation, all atoms are executed by the simulator, which randomly resolves 
nondeterminism. In manual simulation, all atoms are executed according to the directions of the 
user. In game simulation, some of the atoms are executed by the simulator, while the remaining 
atoms are executed by the user. Each such simulation can be viewed as a game between the user 
and the simulator, hence the name game simulation. 

4 Invariant Checking 

MOCHA provides support for checking both state and transition invariants on finite-state mod- 
ules. For this purpose, we have implemented both symbolic and enumerative state-exploration 
algorithms: 

Symbolic. We represent the transition relation and the set of reached states of a reactive mod- 
ule as binary decision diagrams (BDDs) [Bry86]. We keep the transition relation of a re- 
active module in a conjunctively partitioned form. Each conjunct is the transition relation 
of an atom. The image computation routines have been leveraged off VIS, which provides 
a heuristic [RAP+95] for image computation based on early quantification that has been 
shown useful in practice. 

Emo,erative. The current implementation of the enumerative state-exploration routines is rather 
naive and does not perform any optimizations. It is used primarily by the simulator. 

Both the symbolic and enumerative invariant checkers have the capability to produce error traces. 
The error traces can be displayed graphically with a Tk widget. 

5 Compositional Refinement Checking 

We briefly describe what it means for one module to refine another. A trajectory of a module P 
is a finite sequence of states obtained by executing P for finitely many rounds. A trace of/9 is 
obtained by projecting each state of a trajectory of P onto the observable variables. The module 
P refines another module Q, denoted 19 ___< Q, if every trace of/9 is also a trace of Q (in addition 
to some technical side conditions). We have implemented a compositional methodology for re- 
finement checking. The details of the method are explained in an accompanying paper [HQR98]. 
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To illustrate the main aspects of our methodology that deal with the explosion of the imple- 
mentation state space, consider the refinement check P1 lIP2 '< Q, where II denotes the parallel 
composition operation. Suppose that the state space of P1 lIP2 is too large to be handled by ex- 
haustive state exploration. Typically, Q specifies the behavior of only those variables that are 
visible at the boundary of Pt I1~. "l'hereft)re, to obtain suitable constraining environments for Pt 
and P2, we ,~eed to construct abstraction modules A~ and A,, that specify the behavior of the 
boundary variables and the interface variables between/-'I and P2. We can then decompose the 
proof into lemmas using the following assume-guarantee rule: 

P~IIA2 -< A~IIQ 
At lIP2 _ QIIA2 
/'~IIP2 -< A~IIA2IIQ "< Q 

Even if the implementation state space becomes manageable as a result of decomposition, each 
lemma of the form P '  ~ Q' is still PSPACE-hard in the description of pr and EXPSPACE- 
hard in the description of Qr. However, for the special case that Q' is projection refinab/e by P '  
(i.e., all variables of Q'  are observable by both P '  and Q'), the relinement check reduces to a 
Iransition-invariant check on P ' - -namely,  checking whether every move of P~ can be nfimicked 
by a move of Q'. The complexity of this procedure is linear in the stale spaces of P '  and Qr. 
When Q' is not projection refinable by P', our methodology advocates the use of a witness 
module that, when composed with P ' ,  leads to projection refinability. 

An assume-guarantee rule very similar to the one described above has been proved sound 
also for fair refinement checking [AH96]. Hence, our methodology applies to fair modules as 
well. 

6 ATL Model Checking 

Alternating Temporal Logic (ATL) is a temporal logic designed for specifying requirements of 
open systems [AHK97]. Consider a set of agents that correspond to different components of a 
system and its environment. Then, the logic ATL admits formulas of the form ((A)}Op, where p 
is a state predicate and A is a subset of the agents. The formula ((A))<>p asserts that the agents in 
A can cooperate to reach a p-state no matter how the remaining agents behave. The semantics of 
KFL is formalized by defining gaines such that the satisfaction of an ATL formula corresponds 
to the existence of a winning strategy. 

The model checking problem for ATL is to determine whether a given module satisfies a 
given ATL formula. The symbolic model-checking procedure for CTL [BCM92] generalizes 
nicely to yield a symbolic model-checking procedure for ATL. For a set A of agents and a set 
U of slates, let PreA(U) be the set of states from which the agents in A can force the system 
into some state in U in one move. Then, the set of states satisfying the ATL formula ((A))Op is 
the least set that contains all states satisfying p and is closed under the operator Prey. This set 
can be easily computed by an iterative symbolic procedure. The time complexity of ATL model 
checking is, like CTL model checking, linear in the size of both the state space and the formula. 
Thus, the added expressiveness of ATL over CTL comes at no extra cost. 

We plan to integrate the game simulator described in Section 3 with the ATL model checker to 
provide counter-examples. When an ATL specification fails, the ATL model checker synthesizes 
and outputs a winning strategy as a counter-example, according to which the sinmlator will play a 
game with the user. The user tries to win the game by finding an execution sequence that satisfies 
the speciiication. We believe that by being tbrced into playing a losing game, the user can be 
convinced that the model is incorrect and can be led to the error. 
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7 Real-Time Modules 

MOCHA supports the reachability analysis of real-time systems that are described in the form 
of tinted too&des as defined in [AH97]. In addition to the discrete-valued variables of reactive 
modules, a timed module makes use (11" real-valued clock variables. All clock variables increase 
at the same rate, and keep track of the time elapsed since they have been assigned a value by a 
guarded conmmnd. The guards of later transitions can depend on the values of clocks. The reach- 
ability analysis of timed modules is performed by automatically synthesizing a monitor process 
that restricts the state exploration to only those trajectories that satisfy the timing constraints on 
the clock variables, as in the analysis of timed automata [AD94]. 
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