
MOCHA: Modularity in Model Checking*

R. Alur l, T.A. Henzinger 2, EY.C. Mang 2, S. Qadeer 2, S.K. Rajamani z, and S. Tasiran 2

! Computer & Information Science Department, University of Pennsylvania, Philadelphia, PA 19104.
Computing Science Research Center, Bell Laboratories, Murray trill. NJ 07974.

alurOcis, upenn, edu
2 Electrical Engineering & Computer Sciences Department, University of California, Berkeley, CA 94720.

{tah, fmang, shaz, sriramr, serdar}Oeees .berkeley. edu

1 Introduction

We describe a new interactive verification environment called MOCHA for the modular verili-
cation of heterogeneous systems. MOCItA differs from many existing model checkers in three
significant ways:

- For modeling, we replace unstructured state-transition graphs with the heterogeneous mod-
eling framework of reactive modules [AH96]. The definition of reactive modules is inspired
by formalisms such as Unity [CM881, I/O automata [Lyn96], and Esterel [BG88], and al-
lows complex forms of interaction between components within a single transition. Reac-
tive modules provide a semantic glue that allows the formal embedding and interaction of
components with different characteristics. Some modules may be synchronous, others asyn-
chronous, some may represent hardware, others software, some may be speed-independent,
others time-critical.

- For requirement specification, we replace the system-level specification languages of linear
and branching temporal logics [Pnu77,CE81] with the module-level specification language
of Alternating Temporal Logic (ATL) [AHK97]. In ATL, both cooperative and adversarial
relationships between modules can be expressed. For example, it is possible to specify that
a module can attain a goal regardless of how the environment of the module behaves.

- For the verification of complex systems, MOCHA supports a range of compositional attd
hierarchical verification methodologies. For this purpose, reactive modules provide assume-
guarantee rules [HQR98] and abstraction operators [AHR98]; MOCHA provides algorithms
for automatic relinemenl checking, and will provide a proof editor that manages the decom-
position of verification tasks into subtasks.

In this paper, we describe the toolkit MOCIIA in which the proposed approach is being imple-
mented. The input language of MOCHA is a machine readable variant of reactive modules. The
following functionalities are currently being supported:

- Simulation, including games between the user and the simulator
- Enumerative and symbolic invariant checking and error-trace generation
- Compositional refinement checking
- ATL model checking
- Reaehability analysis of real-time systems

* This research was supported in part by the ONR YIP award N00014-95-1-0520, by the NSF CAREER
award CCR-9501708, by the NSF grant CCR-9504469, by the ARO MURI grant DAAH-04-96-1-0341,
and by the SRC contract 97-DC-324.041.

522

MOCHA is intended as a vehicle for the development of new verification algorithms and ap-
proaches. It adopts a software architecture similar to VIS [BHS+96], a symbolic model-checking
tool from UC Berkeley. Written in C with Tcl/Tk and Tix [Exp971, MOCHA can be easily ex-
tended in two ways: designers and application developers can customize their application or
design their own graphical user interface by writing Tel scripts; algorithm developers and re-
searchers can develop new verification algorithms by writing C code, or assembling any verifi-
cation packages through C interfaces. For instance, MOCHA incorporates the VIS packages for
image computation and multi-valued function manipulation, as well as various BDD packages,
to provide state-of-the-art verification techniques.

2 Reactive Modules

A formal definition of reactive modules can be found in [AH96]; here we give only a brief
introduction. Unlike simple state-transition graphs, reactive modules is a compositional model in
which both states and transitions are structured. The state of a reactive module is determined by
the values of three kinds of typed variables: the external variables are updated by the environment
and can be read by the module; the hzterface variables are updated by the module and can be read
by the environment; the private variables are updated by the module and cannot be read by the
environment. The observable variables of a module are its external and interface variables.

The state of a reactive module changes in a sequence of rounds. In the first round (the ini-
tialization round), the initial values of the interface and private variables are determined. In each
subsequent round (an update round), new values of the interface and private variables are de-
termined, possibly dependent on the old values of some variables from the previous round, and
possibly dependent on the new values of some variables from the current round. The external
variables are initialized and updated nondeterministically.

Value dependencies between variables within an update round are resolved statically. In each
update round, some interface and private variables are updated simultaneously, and some sequen-
tially. Variables that are updated simultaneously are grouped together and controlled by an atom.

523

During the execution of an atom (called subround), its variables are updated simultaneously. The
new values of the atom variables may depend on the new values of variables that have been up-
dated, by another atom, in an earlier subround. Hence, some atoms can be executed only after
the execution of some other atoms. The initialization and update rules for executing an atom are
specified via guarded commands. We require that there is a static order of the atoms in which
they can be executed in every update rouml, and that always at least one guarded command is
enabled. This ensures that the interaclion (11" an atom with the other atoms (and the environment)
is nonblocking.

New modules can be built from existing modules using three operations: parallel composi-
tion, variable renaming, aad variable hiding. The composition of two modules produces a single
module whose behavior captures the interaction between the two component modules. Variable
renaming changes the name of a variable. Variable hiding changes a variable from interface to
private, and therefore renders it unobservable.

3 Simulation

MOCHA provides an interactive simulator with a graphical user-interface for simulating modules.
It operates in three different modes: random simulation, manual simulation, and game simula-
tion. In random simulation, all atoms are executed by the simulator, which randomly resolves
nondeterminism. In manual simulation, all atoms are executed according to the directions of the
user. In game simulation, some of the atoms are executed by the simulator, while the remaining
atoms are executed by the user. Each such simulation can be viewed as a game between the user
and the simulator, hence the name game simulation.

4 Invariant Checking

MOCHA provides support for checking both state and transition invariants on finite-state mod-
ules. For this purpose, we have implemented both symbolic and enumerative state-exploration
algorithms:

Symbolic. We represent the transition relation and the set of reached states of a reactive mod-
ule as binary decision diagrams (BDDs) [Bry86]. We keep the transition relation of a re-
active module in a conjunctively partitioned form. Each conjunct is the transition relation
of an atom. The image computation routines have been leveraged off VIS, which provides
a heuristic [RAP+95] for image computation based on early quantification that has been
shown useful in practice.

Emo,erative. The current implementation of the enumerative state-exploration routines is rather
naive and does not perform any optimizations. It is used primarily by the simulator.

Both the symbolic and enumerative invariant checkers have the capability to produce error traces.
The error traces can be displayed graphically with a Tk widget.

5 Compositional Refinement Checking

We briefly describe what it means for one module to refine another. A trajectory of a module P
is a finite sequence of states obtained by executing P for finitely many rounds. A trace of/9 is
obtained by projecting each state of a trajectory of P onto the observable variables. The module
P refines another module Q, denoted 19 ___< Q, if every trace of/9 is also a trace of Q (in addition
to some technical side conditions). We have implemented a compositional methodology for re-
finement checking. The details of the method are explained in an accompanying paper [HQR98].

524

To illustrate the main aspects of our methodology that deal with the explosion of the imple-
mentation state space, consider the refinement check P1 lIP2 '< Q, where II denotes the parallel
composition operation. Suppose that the state space of P1 lIP2 is too large to be handled by ex-
haustive state exploration. Typically, Q specifies the behavior of only those variables that are
visible at the boundary of Pt I1~. "l'hereft)re, to obtain suitable constraining environments for Pt
and P2, we ,~eed to construct abstraction modules A~ and A,, that specify the behavior of the
boundary variables and the interface variables between/-'I and P2. We can then decompose the
proof into lemmas using the following assume-guarantee rule:

P~IIA2 -< A~IIQ
At lIP2 _ QIIA2
/'~IIP2 -< A~IIA2IIQ "< Q

Even if the implementation state space becomes manageable as a result of decomposition, each
lemma of the form P ' ~ Q' is still PSPACE-hard in the description of pr and EXPSPACE-
hard in the description of Qr. However, for the special case that Q' is projection refinab/e by P '
(i.e., all variables of Q' are observable by both P ' and Q'), the relinement check reduces to a
Iransition-invariant check on P ' - -namely, checking whether every move of P~ can be nfimicked
by a move of Q'. The complexity of this procedure is linear in the stale spaces of P ' and Qr.
When Q' is not projection refinable by P', our methodology advocates the use of a witness
module that, when composed with P ' , leads to projection refinability.

An assume-guarantee rule very similar to the one described above has been proved sound
also for fair refinement checking [AH96]. Hence, our methodology applies to fair modules as
well.

6 ATL Model Checking

Alternating Temporal Logic (ATL) is a temporal logic designed for specifying requirements of
open systems [AHK97]. Consider a set of agents that correspond to different components of a
system and its environment. Then, the logic ATL admits formulas of the form ((A)}Op, where p
is a state predicate and A is a subset of the agents. The formula ((A))<>p asserts that the agents in
A can cooperate to reach a p-state no matter how the remaining agents behave. The semantics of
KFL is formalized by defining gaines such that the satisfaction of an ATL formula corresponds
to the existence of a winning strategy.

The model checking problem for ATL is to determine whether a given module satisfies a
given ATL formula. The symbolic model-checking procedure for CTL [BCM92] generalizes
nicely to yield a symbolic model-checking procedure for ATL. For a set A of agents and a set
U of slates, let PreA(U) be the set of states from which the agents in A can force the system
into some state in U in one move. Then, the set of states satisfying the ATL formula ((A))Op is
the least set that contains all states satisfying p and is closed under the operator Prey. This set
can be easily computed by an iterative symbolic procedure. The time complexity of ATL model
checking is, like CTL model checking, linear in the size of both the state space and the formula.
Thus, the added expressiveness of ATL over CTL comes at no extra cost.

We plan to integrate the game simulator described in Section 3 with the ATL model checker to
provide counter-examples. When an ATL specification fails, the ATL model checker synthesizes
and outputs a winning strategy as a counter-example, according to which the sinmlator will play a
game with the user. The user tries to win the game by finding an execution sequence that satisfies
the speciiication. We believe that by being tbrced into playing a losing game, the user can be
convinced that the model is incorrect and can be led to the error.

525

7 Real-Time Modules

MOCHA supports the reachability analysis of real-time systems that are described in the form
of tinted too&des as defined in [AH97]. In addition to the discrete-valued variables of reactive
modules, a timed module makes use (11" real-valued clock variables. All clock variables increase
at the same rate, and keep track of the time elapsed since they have been assigned a value by a
guarded conmmnd. The guards of later transitions can depend on the values of clocks. The reach-
ability analysis of timed modules is performed by automatically synthesizing a monitor process
that restricts the state exploration to only those trajectories that satisfy the timing constraints on
the clock variables, as in the analysis of timed automata [AD94].

References

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, vol. 126, pages
183-235, 1994.

[AH96] R. Alur and T.A. tlenzinger, Reactive m(y.Jules, in Proc. lhh IEEE Symposilm~ on Logic in
Comlmter Science, pages 207-218, 1996.

[Ait971 R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. In PIr~c. 8th h~ternational
Conference on Concurrency Theory, LNCS 1243, pages 74-88. Springer-Verlag, 1997.

[AHK97] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In Proc. 38th
IEEE Symposium on Foundations of Computer Science, pages 100-109, 1997.

[AHR98] R. Alur, "I:A. Henzinger, and S.K. Rajamani. Symbolic exploration of transition hierarchies, in
TA CAS 98: Tools and AIgorithms for Constrnction and Analysis of Systems, LNCS 1384, pages 330-344,
1998.

[BCM92] J.R. Butch and E.M. Clarke and K.L. McMillan and D.L. Dill and L.J. Hwang. Symbolic model
checking: 1020 states and beyond, lnforTnation and Computation, Vol 98, No 2, pages 142-170, 1992.

[BG88] G. Berry and G. Gonthier. The synchronous programming language ESTEREL: design, semantics,
implementation. Technical Report 842, INRIA, 1988.

[BHS+96] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, E Somenzi, A. Aziz, S. Cheng, S. Ed-
wards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. Ranjan, S. Sarwary, T. Shiple, G. Swamy, and
T. Villa. VIS: A system for verification and synthesis. In Proc. 8th h~ternational Coaference on Com-
puterAided Verification, LNCS 1102, pages 428-432. Springer-Verlag, 1996.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean-function manipulation. IEEE Trans. o, Com-
puters, C-35(8), 1986.

[CM88] K.M. Chandy and J. Misra. Parallel ptvgram design: A foundation. Addison-Wesley, 1988
[CE811 E.M. Clarke and E.A. Emerson. Design audsynthesisofsynchronizatio,1 skeletons using branching

time temporal logic. In Ptoc. Workshop on Logic of Programs, LNCS 131, pages 52-71. Springer-
Verlag, 198 I.

lEap97] Expert Interface Technologies. T/x ltome Page. ht:t:p : //www. x p i . cora/t= J .x / index . ht=rnl.
[t|QR98/ T.A. Henzinger, S. Qadeer, and S.K, Rajamani. You assume, we guarantee: Methodology and

case studies. In Proc. IOth haternatianal Conference on Computer Aided Verification. Springer-Verlag,
1998.

[Lyn96] N.A. Lynch. DistributedAIgorithms. Morgan Kaufmann, 1996.
[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symposium on Foundations of

Computer Science, pages 46-77, 1977.
[RAP+95] R.K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R.K. Brayton. Efficient formal design verifi-

cation: data structures + algorithms, in Proc. International Workshop on Logic Synthesis, 1995.

