
MONA 1.X: N e w Techniques for W S i S and W S 2 S

Jacob Elgaard 1, Nils Klarlund 2, and Anders Moller 3

I BRICS, University of Aarhus (elgaard@brics.dk)
2 AT&T Labs-Research (klarlund@research.att .com)

3 BRICS, University of Aarhus (amoeller@brics.dk)

Abs t rac t . In this note, we present the first version of the MONA tool
to be released in its entirety. The tool now offers decision procedures
for both WS1S and WS2S and a completely rewritten front-end. Here,
we present some of our techniques, which make calculations couched
in WS1S run up to five times faster than with our pre-release tool
based on M2L(Str). This suggests that WS1S--with its better semantic
properties--is preferable to M2L(Str).

1 Introduct ion

It has been known for a couple of years that Monadic Second-order Logic inter-
preted relative to finite strings (M2L(Str)) is an attractive formal and practical
vehicle for a variety of verification problems. The formalism is generally easy
to use, since it provides Boolean connectives, first and second-order quantifiers
and no syntactic restrictions, say, to clausal forms. However, the semantics of
the formalism is the source of definitional and practical problems. For example,
the concept of a first-order term doesn't even make sense for the empty string
since such terms denote positions.

So, it is natural to investigate whether the related logic WS1S (Weak Second-
order theory of 1 Succesor) can be used instead. This logic is stronger in that it
captures a fragment of arithmetic, and its decision procedure is very similar to
tha t of M2L(Str). Similarly, we would like to explore the practical feasibility of
WS2S (Weak Second-order theory of 2 Successors).

In this note, we present some new techniques that we have incorporated into
the first full release of the MONA tool. The MONA tool consists of a front-end
and two back-ends, one for WS1S and one for WS2S. The front-end parses the
MONA program, which consists of predicates (subroutines that are compiled sep-
arately), macros, and a main formula. Each back-end implements the automata-
theoretic operations that are carried out to decide the formula corresponding to
the program.

Since our earlier presentation of the MONA tool [1], we have completely
rewritten the front-end, this t ime in C + ÷ (the earlier version was written in
ML). In the old version, the front-end produces a code tree, whose internal
nodes each describe an automata-theoret ic operat ion--such as a product or
subset construct ion--and whose leaves describe automata corresponding to ba-
sic formulas. We implemented optimization techniques (unpublished) based on

517

rewriting of formulas according to logical laws. In this note, we report on an
alternative optimization technique, based on building a code DAG instead of
a code tree. (A DAG is a directed, acyclic graph.) Experiments show that
this technique together with a more efficient handling of predicates yields up to
five-fold improvements in compilation t ime over the old tool.

We also briefly discuss how a M2L(Str) formula can be translated into an
essentially equivalent WS1S formula, and we discuss important problems to be
addressed.

2 M 2 L (S t r) a n d W S I S

M 2 L (S t r) A formula of the logic M2L(Str) is interpreted relative to a number
n >_ 0, which is best thought of as defining the set of positions {0 , . . . , n - 1}
in a string of length n. The core logic consists of first-order terms, second-order
terms, and formulas. A first-order term t is a variable p, a constant 0 (denoting
the position 0, which is the first position in w) or $ (denoting n - 1, which is the
last position in the string), or of the form tl@l (denoting i+1 mod n when t I is a
first-order term denoting i). A second-order term is either a variable P or of the
form T ~ U T ' . A formula ¢ is either a basic formula of the form t E T or T C T ~,
or of the form ¢ A X, -~¢, 3p : ~ (first-order quantification), or 3 P : ¢ (second-
order quantification). In addition, we allow formulas involving = (between first-
order or second-order terms); <, <, >, >_ (between first-order terms); Boolean
connectives ::~, ¢¢~ and V; set operations N, \ , and C; V quantifiers; etc.

The automaton-logic connection (see [5]) allows us to associate a regular
language over ~k, for some k >__ 0, to each formula ¢ as follows. We assume that
there are k variables that are ordered and that include the free variables in ¢.
Now, a string w of length n over the alphabet ~ can be viewed as consisting
of k tracks (or rows), each of length n. The kth track is a bit-pattern that
defines the interpretation of the kth variable, assumed to be second-order, as
the set of positions i for which the ith bit is 1. Note that a first-order variable
can be regarded as a second-order variable restricted to singleton values, so the
assumption just made that variables are second-order is not a serious one. The
language associated with formula ¢ is now the set of all strings that correspond
to a satisfying interpretation of the formula. As an example, the formula P C Q
is associated with the regular language

((0) + (0) + ('1))*

where the upper track of a string denotes the value of P and the lower track
denotes the value of Q. Any language corresponding to a formula is regular,
since the languages corresponding to basic formula can be represented by au-
tomata , and A, -1, and 3 correspond to the automata-theoret ic operations of
product, complementation, and projection. In the case of a closed formula with
no free variables, the regular language degenerates to a set of strings over a unit
alphabet. Thus a closed formula essentially denotes a set of numbers.

518

The proof of regularity just hinted at forms the basis for the decision pro-
cedure: each subformula is compiled into a minimum deterministic automaton,
see [5]. An automaton representation based on BDDs is at the core of the
MONA implementation as discussed in [5]. For each state p in the state space S,
a multi-terminal BDD whose leaves are states represents the transition function
a ~4 ~(p, a) :]]~k __+ S out of p. Each BDD variable corresponds to a first or
second-order WS1S variable, and the BBDs are shared among the states. Thus
the resulting data structure is a DAG with multiple sources.

The automaton-logic connection (see [5]) allows us to associate a regular
language over ~k to each formula ¢ that has k variables.

W S l S WS1S has the same syntax as M2L(Str) except that there is no ~ operator
and O1 is replaced with +1. This logic is interpreted in a simpler manner: first-
order terms denote natural numbers, and second-order terms denote finite sets
of numbers. The automata-theoretic calculations are similar to that of M2L(Str)
except for the existential quantifier (see [5]).

F r o m M 2 L (S t r) t o W S 1 S In principle, it is easy to translate a quantifier free
M2L(Str) formula ¢ to a formula ¢~ in WS1S with essentially the same meaning:
Ct is gotten from ¢ by the following steps.

- A conjunct p < $, where $ now is a variable, must be added to any subfor-
mula of ¢ containing a first-order variable p.

- Each second-order variable P is left untouched, so that the translated for-
mula will not depend on whether P has any elements greater than $. How-
ever, occurrences of 0 must be taken into account; for example, the formula
P = 0 is translated into Vp < $: --(p E P) so that the translated for-
mula does not depend on the membership status of numbers in P that are
greater than $. Any use of set complement operator C must also be carefully
replaced.

- Any occurrence of a subformula involving ® such as p = q @ 1 must be
replaced by something that captures the modulo semantics (here: q < $
p=q+ tAp=$:::~p=O).

With such a scheme it can be shown that :/: for length n > 0 satisfies ¢ if and
only if Z, augmented by interpreting $ as n - 1, satisfies ¢~. Unfortunately, in
order to preserve this property for all subformulas, we need to conjoin extraneous
conditions onto every original subformula. A simpler solution is to conjoin them
only for certain strategic places, such as for all basic formulas and all formulas
that are directly under a quantifier. We have implemented such heuristics in a
tool, S2N, that automatically translates M2L(Str) formulas to WSIS formulas.

3 D A G s for compi lat ion

Code trees can be of the form (among others) i n k - b a s i c - l e s s (i , j) , rak-producg
(C , C ~, op), or m k - p r o j e c t (i , C) , where i and j are BDD variable indices,

519

op is a Boolean function of two variables, and C and C ~ are code trees. For
example, consider the formula 2q : p < q A q < r. If variable p has index
1, i.e., if it is the 1st variable in the variable ordering, variable q has index
2, and variable r has index 3, then this formula is parsed into a code tree
m k - p r o j e c t (2 , r a k - p r o d u c t (r a k - l e s s (1 , 2) , i n k - l e s s (2 , 3) , A)) . This tree con-
tains a situation that we would like to avoid: essentially isomorphic subtrees are
calculated more than once. In fact, the automaton A for ink- less (1 , 2) is iden-
tical to the automaton A' for ink- less (2 , 3) modulo a renaming of variables. In
general, we would like to rename the indices in A whenever we need A', since
this is a linear operation (whereas building A or A' from the code tree is often
not a linear operation).

So, we say that a code tree C is equivalent to C' if there is an order-preserving
(i.e., increasing), renaming of variables in C' such that C' becomes C. Our goal
is produce the DAG that arises naturally from the code tree by collapsing equiv-
alent subtrees. Unfortunately, it takes linear time to calculate the equivalence
class of any subtree, and so the total running time becomes quadratic. There-
fore, the collapsing process is limited to subtrees for which the number of variable
occurrences is less than a user definable parameter £.

MONA offers both pre-compiled subroutines, called predicates, and typed
macros. A use name(X) of a predicate, where X is a sequence of actual pa-
rameters, is translated to a special node of the form rak-cal l (name, X) . The
predicate is then compiled separately given the signature of the call node. The
actual parameters are bound to the resulting automaton using a standard bind-
ing mechanism: introduction of temporary variables and projection. Additional
call nodes with the same signature can then reuse the separately compiled au-
tomaton. Call nodes act as leaves with respect to DAGification.

4 E x p e r i m e n t a l r e s u l t s

We have run a MONA formula, r e v e r s e , of size 50KB (an automatically gener-
ated formula from [3]) through our old MONA (using optimizations) and our new
WS1S version with and without DAGification (~ = 200). We also did the exper-
iment on r e v e r s e 2 , a version of the formula where all defined predicates were
replaced by macros. And, we have run a comparison on a formula representing
a parameterized hardware verification problem. The results are (in seconds):

Program Old MONA MONA 1.1 w. DAGs DAG Hits DAG Misses
r e v e r s e 17
r e v e r s e 2 51
hardware 6.6

8.5 3.0 20513 2725
90 45 327328 14320
5.4 4.7 3284 633

In some cases (like in r e v e r s e 2) , the old Mona tool is faster than the new one
run without DAGification, since the figures reported for the old apply to the
version that carries out formula simplification. The experiments support our
claim that WS1S can be as an efficient formalism as M2L(Str). (The underlying
BDD-package in the two tools is the same.) Moreover, our DAGs and predicate

520

uses offer substantial benefits, up to a factor five. The hardware example runs
only slightly faster, and the improvement is due to the new front-end being
quicker.

5 R e l a t e d and Future Work

There are at least three similar tools reported in the literature: [2] reports on
an implementation of WS1S that is not based on BDDs and that therefore is
likely not to be as efficient as our tool. The tool in [4] implements M2L(Str)
using a different BDD representation, and the tool in [6] implements a decision
procedure for WS2S (in Prolog and without BDDs).

There are still several problems and challenges not addressed in the current
MONA tool: 1) the semantics of formulas with first-order terms is not appealing,
for example, the MONA formula x l < x2 A . . . A Xn-1 < zn is translated in linear
time whereas its negation, x l > z2 V . . . V x n _ l _> xn, is translated in exponential
time; 2) there is no reuse of intermediate results from one automaton operation
to the next (a general solution to this problem seems to require identification
of isomorphic subgraphs, a problem that appears computationally expensive);
3) the automatic translation from M2L(Str) to WS1S by S2N sometimes makes
formulas unrunnable for reasons similar to 1), namely that the restrictions a
formula is translated under are wrapped into subformulas in unfortunate ways
unless the restrictions are reapplied for each intermediate result; 4) the use of
formula rewriting (as we did in the earlier MONA version) should be combined
with our DAG techniques.

The MONA tool, currently in version 1.2, can be retrieved from h t t p : / /
www. b r i c s , dk/ 'mona, along with further information.

R e f e r e n c e s

1. M. Biehl, N. Klarlund, and T. Rauhe. Mona: decidable arithmetic in practice (short
contribution). In Formal Techniques in Real-Time and Fault-Tolerant Systems, Jth
International Symposium, LNCS 1135. Springer Verlag, 1996.

2. J. Glenn and W. Gasarch. Implementing WS1S via finite automata. In Automata
Implementation, WIA '96, Proceedings, volume 1260 of LNCS, 1997.

3. J.L. Jensen, M.E. Jergensen, N. Klarlund, and M.I. Schwartzbach. Automatic ver-
ification of pointer programs using monadic second-order logic. In SIGPLAN '97
Conference on Programming Language Design and Implementation,, pages 226-234.
SIGPLAN, 1997.

4. P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. Moseh a flexible toolset for
Monadic Second-order Logic. In Computer Aided Verification, CAV '97, Proceed-
ings, LNCS 1217, 1997.

5. N. Klarlund. Mona & Fido: the logic-automaton connection in practice. In CSL
'97 Proceedings, 1998. To appear in LNCS.

6. F. Morawietz and T. Cornell. On the recognizability of relations over a tree definable
in a monadic second order tree description language. Technical Report SFB 340,
Seminar fiir Sprachwissenschaft Eberhard-Karls-Unlversit~t Tilbingen, 1997.

