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Abs t rac t .  In this note, we present the first version of the MONA tool 
to be released in its entirety. The tool now offers decision procedures 
for both WS1S and WS2S and a completely rewritten front-end. Here, 
we present some of our techniques, which make calculations couched 
in WS1S run up to five times faster than with our pre-release tool 
based on M2L(Str). This suggests that WS1S--with its better semantic 
properties--is preferable to M2L(Str). 

1 Introduct ion 

It has been known for a couple of years that  Monadic Second-order Logic inter- 
preted relative to finite strings (M2L(Str)) is an attractive formal and practical 
vehicle for a variety of verification problems. The formalism is generally easy 
to use, since it provides Boolean connectives, first and second-order quantifiers 
and no syntactic restrictions, say, to clausal forms. However, the semantics of 
the formalism is the source of definitional and practical problems. For example, 
the concept of a first-order term doesn't  even make sense for the empty string 
since such terms denote positions. 

So, it is natural to investigate whether the related logic WS1S (Weak Second- 
order theory of 1 Succesor) can be used instead. This logic is stronger in that  it 
captures a fragment of arithmetic, and its decision procedure is very similar to 
tha t  of M2L(Str). Similarly, we would like to explore the practical feasibility of 
WS2S (Weak Second-order theory of 2 Successors). 

In this note, we present some new techniques that  we have incorporated into 
the first full release of the MONA tool. The MONA tool consists of a front-end 
and two back-ends, one for WS1S and one for WS2S. The front-end parses the 
MONA program, which consists of predicates (subroutines that  are compiled sep- 
arately), macros, and a main formula. Each back-end implements the automata-  
theoretic operations that  are carried out to decide the formula corresponding to 
the program. 

Since our earlier presentation of the MONA tool [1], we have completely 
rewritten the front-end, this t ime in C + ÷  (the earlier version was written in 
ML). In the old version, the front-end produces a code tree, whose internal 
nodes each describe an automata-theoret ic  operat ion--such as a product  or 
subset construct ion--and whose leaves describe automata  corresponding to ba- 
sic formulas. We implemented optimization techniques (unpublished) based on 
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rewriting of formulas according to logical laws. In this note, we report on an 
alternative optimization technique, based on building a code DAG instead of 
a code tree. (A DAG is a directed, acyclic graph.) Experiments show that  
this technique together with a more efficient handling of predicates yields up to 
five-fold improvements in compilation t ime over the old tool. 

We also briefly discuss how a M2L(Str) formula can be translated into an 
essentially equivalent WS1S formula, and we discuss important  problems to be 
addressed. 

2 M 2 L ( S t r )  a n d  W S I S  

M 2 L ( S t r )  A formula of the logic M2L(Str) is interpreted relative to a number 
n >_ 0, which is best thought of as defining the set of positions {0 , . . .  , n - 1} 
in a string of length n. The core logic consists of first-order terms, second-order 
terms, and formulas. A first-order term t is a variable p, a constant 0 (denoting 
the position 0, which is the first position in w) or $ (denoting n - 1, which is the 
last position in the string), or of the form tl@l (denoting i+1  mod n when t I is a 
first-order term denoting i). A second-order term is either a variable P or of the 
form T ~ U T ' .  A formula ¢ is either a basic formula of the form t E T or T C T ~, 
or of the form ¢ A X, -~¢, 3p : ~ (first-order quantification), or 3 P  : ¢ (second- 
order quantification). In addition, we allow formulas involving = (between first- 
order or second-order terms); <, <, >, >_ (between first-order terms); Boolean 
connectives ::~, ¢¢~ and V; set operations N, \ ,  and C; V quantifiers; etc. 

The automaton-logic connection (see [5]) allows us to associate a regular 
language over ~k, for some k >__ 0, to each formula ¢ as follows. We assume that  
there are k variables that  are ordered and that  include the free variables in ¢. 
Now, a string w of length n over the alphabet ~ can be viewed as consisting 
of k tracks (or rows), each of length n. The kth track is a bit-pattern that  
defines the interpretation of the kth variable, assumed to be second-order, as 
the set of positions i for which the ith bit is 1. Note that  a first-order variable 
can be regarded as a second-order variable restricted to singleton values, so the 
assumption just  made that  variables are second-order is not a serious one. The 
language associated with formula ¢ is now the set of all strings that  correspond 
to a satisfying interpretation of the formula. As an example, the formula P C Q 
is associated with the regular language 

((0) + (0) + ('1))* 

where the upper track of a string denotes the value of P and the lower track 
denotes the value of Q. Any language corresponding to a formula is regular, 
since the languages corresponding to basic formula can be represented by au- 
tomata ,  and A, -1, and 3 correspond to the automata-theoret ic  operations of 
product, complementation,  and projection. In the case of a closed formula with 
no free variables, the regular language degenerates to a set of strings over a unit 
alphabet. Thus a closed formula essentially denotes a set of numbers. 
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The proof of regularity just hinted at forms the basis for the decision pro- 
cedure: each subformula is compiled into a minimum deterministic automaton,  
see [5]. An automaton representation based on BDDs is at the core of the 
MONA implementation as discussed in [5]. For each state p in the state space S, 
a multi-terminal BDD whose leaves are states represents the transition function 
a ~4 ~(p, a) : ]]~k __+ S out of p. Each BDD variable corresponds to a first or 
second-order WS1S variable, and the BBDs are shared among the states. Thus 
the resulting data  structure is a DAG with multiple sources. 

The automaton-logic connection (see [5]) allows us to associate a regular 
language over ~k to each formula ¢ that  has k variables. 

W S l S  WS1S has the same syntax as M2L(Str) except that  there is no ~ operator 
and O1 is replaced with +1. This logic is interpreted in a simpler manner: first- 
order terms denote natural numbers, and second-order terms denote finite sets 
of numbers. The automata-theoretic calculations are similar to that  of M2L(Str) 
except for the existential quantifier (see [5]). 

F r o m  M 2 L ( S t r )  t o  W S 1 S  In principle, it is easy to translate a quantifier free 
M2L(Str) formula ¢ to a formula ¢~ in WS1S with essentially the same meaning: 
Ct is gotten from ¢ by the following steps. 

- A conjunct p < $, where $ now is a variable, must be added to any subfor- 
mula of ¢ containing a first-order variable p. 

- Each second-order variable P is left untouched, so that  the translated for- 
mula will not depend on whether P has any elements greater than $. How- 
ever, occurrences of 0 must be taken into account; for example, the formula 
P = 0 is translated into Vp < $ : --(p E P)  so that  the translated for- 
mula does not depend on the membership status of numbers in P that are 
greater than $. Any use of set complement operator C must also be carefully 
replaced. 

- Any occurrence of a subformula involving ® such as p = q @ 1 must be 
replaced by something that  captures the modulo semantics (here: q < $ 
p=q+ tAp=$:::~p=O). 

With such a scheme it can be shown that  :/: for length n > 0 satisfies ¢ if and 
only if Z, augmented by interpreting $ as n - 1, satisfies ¢~. Unfortunately, in 
order to preserve this property for all subformulas, we need to conjoin extraneous 
conditions onto every original subformula. A simpler solution is to conjoin them 
only for certain strategic places, such as for all basic formulas and all formulas 
that  are directly under a quantifier. We have implemented such heuristics in a 
tool, S2N, that  automatically translates M2L(Str) formulas to WSIS formulas. 

3 D A G s  for compi lat ion 

Code trees can be of the form (among others) i n k - b a s i c - l e s s  (i  , j ) ,  rak-producg 
( C , C  ~, op), or m k - p r o j e c t ( i , C ) ,  where i and j are BDD variable indices, 
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op is a Boolean function of two variables, and C and C ~ are code trees. For 
example, consider the formula 2q : p < q A q < r. If variable p has index 
1, i.e., if it is the 1st variable in the variable ordering, variable q has index 
2, and variable r has index 3, then this formula is parsed into a code tree 
m k - p r o j e c t ( 2 , r a k - p r o d u c t ( r a k - l e s s ( 1 , 2 ) ,  i n k - l e s s ( 2 , 3 ) ,  A)) .  This tree con- 
tains a situation that  we would like to avoid: essentially isomorphic subtrees are 
calculated more than once. In fact, the automaton A for ink- less  ( 1 , 2 )  is iden- 
tical to the automaton A' for ink- less  ( 2 , 3 )  modulo a renaming of variables. In 
general, we would like to rename the indices in A whenever we need A', since 
this is a linear operation (whereas building A or A' from the code tree is often 
not a linear operation). 

So, we say that  a code tree C is equivalent to C'  if there is an order-preserving 
(i.e., increasing), renaming of variables in C'  such that  C'  becomes C. Our goal 
is produce the DAG that  arises naturally from the code tree by collapsing equiv- 
alent subtrees. Unfortunately, it takes linear time to calculate the equivalence 
class of any subtree, and so the total running time becomes quadratic. There- 
fore, the collapsing process is limited to subtrees for which the number of variable 
occurrences is less than a user definable parameter  £. 

MONA offers both pre-compiled subroutines, called predicates, and typed 
macros. A use name(X) of a predicate, where X is a sequence of actual pa- 
rameters, is translated to a special node of the form rak-cal l (name,  X ) .  The 
predicate is then compiled separately given the signature of the call node. The 
actual parameters are bound to the resulting automaton using a standard bind- 
ing mechanism: introduction of temporary variables and projection. Additional 
call nodes with the same signature can then reuse the separately compiled au- 
tomaton.  Call nodes act as leaves with respect to DAGification. 

4 E x p e r i m e n t a l  r e s u l t s  

We have run a MONA formula, r e v e r s e ,  of size 50KB (an automatically gener- 
ated formula from [3]) through our old MONA (using optimizations) and our new 
WS1S version with and without DAGification (~ = 200). We also did the exper- 
iment on r e v e r s e 2 ,  a version of the formula where all defined predicates were 
replaced by macros. And, we have run a comparison on a formula representing 
a parameterized hardware verification problem. The results are (in seconds): 

Program Old MONA MONA 1.1 w. DAGs DAG Hits DAG Misses 
r e v e r s e  17 
r e v e r s e 2  51 
hardware  6.6 

8.5 3.0 20513 2725 
90 45 327328 14320 
5.4 4.7 3284 633 

In some cases (like in r e v e r s e 2 ) ,  the old Mona tool is faster than the new one 
run without DAGification, since the figures reported for the old apply to the 
version that  carries out formula simplification. The experiments support our 
claim that  WS1S can be as an efficient formalism as M2L(Str). (The underlying 
BDD-package in the two tools is the same.) Moreover, our DAGs and predicate 
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uses offer substantial benefits, up to a factor five. The hardware example runs 
only slightly faster, and the improvement is due to the new front-end being 
quicker. 

5 R e l a t e d  and Future  Work 

There are at least three similar tools reported in the literature: [2] reports on 
an implementation of WS1S that  is not based on BDDs and that  therefore is 
likely not to be as efficient as our tool. The tool in [4] implements M2L(Str) 
using a different BDD representation, and the tool in [6] implements a decision 
procedure for WS2S (in Prolog and without BDDs). 

There are still several problems and challenges not addressed in the current 
MONA tool: 1) the semantics of formulas with first-order terms is not appealing, 
for example, the MONA formula x l  < x2 A . . . A  Xn-1 < zn is translated in linear 
time whereas its negation, x l  > z2 V . . . V x n _ l  _> xn, is translated in exponential 
time; 2) there is no reuse of intermediate results from one automaton operation 
to the next (a general solution to this problem seems to require identification 
of isomorphic subgraphs, a problem that  appears computationally expensive); 
3) the automatic translation from M2L(Str) to WS1S by S2N sometimes makes 
formulas unrunnable for reasons similar to 1), namely that the restrictions a 
formula is translated under are wrapped into subformulas in unfortunate ways 
unless the restrictions are reapplied for each intermediate result; 4) the use of 
formula rewriting (as we did in the earlier MONA version) should be combined 
with our DAG techniques. 

The  MONA tool, currently in version 1.2, can be retrieved from h t t p : / /  
www. b r i c s ,  dk/ 'mona,  along with further information. 
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