
A General Approach to Partial Order
Reductions in Symbolic Verification

(Extended Abstract)

Parosh Aziz Abdulla 1, Bengt Jonsson 1 , Mats Kindahl 1,2, and Doron Peled 3

1 Uppsala University, Dept. of Computer Systems,
P.O. Box 325, S-751 05 Uppsala, Sweden,

{parosh,bengt,matkin}@docs.uu. se
WWW: h t tp ://ww,. docs. uu. se/-{parosh ,bengt ,matkin}

2 IAR Systems AB
Box 23051, 750 23 Uppsala, Sweden

mats. kindahl@iar, se
3 Bell Laboratories, 700 Mountain Ave., Murray Hill, NJ 07974, USA

doron@research.bell- labs, com

Abs t rac t . The purpose of partial-order reduction techniques is to avoid
exploring several interleavings of independent transitions when model
checking the temporal properties of a concurrent system. The purpose of
symbolic verification techniques is to perform basic manipulations on sets
of states rather than on individual states. We present a general method
for applying partial order reductions to improve symbolic verification.
The method is equally applicable to the verification of finite-state and
infinite-state systems. It considers methods that check safety properties,
either by forward reachability analysis or by backward reachability anal-
ysis. We base the method on the concept of commutativity (in one direc-
tion) between predicate transformers. Since the commutativity relation
is not necessarily symmetric, this generalizes those existing approaches
to partial order verification which are based on a symmetric dependency
relation.
We show how our method can be applied to several models of infinite-
state systems: systems communicating over unbounded lossy FIFO chan-
nels, and unsafe (infinite-state) Petri Nets. We show by a simple example
how partial order reduction can significantly speed up symbolic backward
analysis of Petri Nets.

1 I n t r o d u c t i o n

This paper is concerned with applying partial-order techniques to improve sym-
bolic verification methods for state-space exploration.

- The purpose of partial-order techniques (e.g., [GP9_3,GW93,HP94,Pe196,Va190,Va193 D
is to avoid exploring several interleavings of independent transitions, i.e.,
transitions whose execution order is irrelevant, e.g., because they are per-
formed by different processes. When verifying temporal properties, partial
order methods often give substantial reductions of the search space.

380

- The purpose of symbolic techniques (e.g., [BCMD92,ACJYK96,BG96]) is to
perform the basic manipulations in verification on sets of states rather than
on individual states. A basis is some representation of (possibly infinite) sets
of states, which can be manipulated conveniently.

We use the term constraint to denote some representation of a set of states.
Common forms of constraints are BDDs [BCMD92], zones or regions represent-
ing infinite sets of clock values of of a t imed automaton [ACD90,LLPY97], up-
ward closed sets of states of an infinite state system [ACJYK96] such as a lossy
channel system [A J93] or a Petri Net [Fin90], an infinite set of queue contents
[BG96], etc. The effect of a program statement on constraints is represented
by a predicate transformer. The state-space of the system is explored by gener-
ating new constraints by applying predicate transformers to already generated
constraints. In this paper, we consider both forward and backward symbolic
state-space exploration. To represent forward symbolic state-space exploration,
we include for each statement t of the program the predicate transformer which
maps a constraint T to a constraint representing the set post(t)(T) of states
reachable from a state in ~ using statement t. To represent backward symbolic
state-space exploration (e.g., as in [ACJYK96]), we include the predicate trans-
former which maps a constraint !a to a constraint representing the set pre(t)(~)
of states from which a state in ~ can be reached using statement t. Different
exploration strategies can be used (depth-first, breadth-first, etc.). Note that
standard (non-symbolic) state-based exploration corresponds to the special case
where each constraint denotes a single state.

The idea in partial order techniques is to restrict the set of statements that
are explored from a given state. The basis for most existing work on partial-order
methods is a symmetric dependency relation on program statements, which is
used to determine a subset of statements to be explored from a given state. Differ-
ent criteria for reductions have been presented which are based on the concept
of a dependency relation, e.g., stubborn sets [Val90], persistent sets [GP93] or
ample sets [Pe196].

In symbolic verification, one should similarly try to reduce the set of predicate
transformers that need be applied to a given constraint. As a basis for such a
reduction, we have found it useful to employ the notion of commutativity (in
one direction) between predicate transformers, originally introduced by Lipton
[Lip75]. This is a weakening of the dependency relation, in that it need not be
symmetric. It is more succinct than the standard definition of the symmetric
dependency relation used in the literature on partial order methods.

We use commutat ivi ty to present a general definition of partial order reduc-
tion for constraint verification systems. We illustrate the applicability of our
definition by

- showing that it covers our earlier work on partial order methods for symbolic
verification of lossy channel systems, and

- presenting a partial order reduction on symbolic backward reachability anal-
ysis for checking the coverability problem in (unbounded) Petri Nets. To our
knowledge, this is the first partial-order reduction which applies equally well

381

to infinite-state Petri Nets as to finite-state Petri Nets. We present a test of
the reduction on a simple example.

Related Work Partial-order techniques have been employed in state-space explo-
ration, and the literature is continuously expanding (e.g., [GP93.GW93,HP94,Pe196,VaI93]).
Most of this work employs a symmetric dependency relation as a basis for defin-
ing reduction strategies. Asymmetric relations are present in a few works on au-
tomated verification, e.g., [Val90]. The dependency relation can be conditional
on the particular state where statements are executed [GP93,KP92]. In our for-
mulation, the commutat ivi ty relation can be defined to be dependent on the
constraint.

A combination of partial-order and symbolic techniques is also presented by
Alur et al [ABH+97]. These approaches differ from ours in that they first de-
fine a partial-order reduction of the state-space, similar to the earlier literature,
and thereafter explore this symbolically, using BDDs. The paper considers only
forward search from initial states. In contrast, our work defines partial order
reduction on top of symbolic verification, and is based on a more general assy-
metric commutat ivi ty relation. To our knowledge, no formulation has been given
of partial order reduction for algorithms based on backward teachability anal-
ysis. Techniques for Petri Nets which exploit partial order semantics [McM95]
or partial order reduction [Val90] are based on forward reachability analysis for
bounded nets.

This paper is a generalization and simplification of our earlier work, [AKP97],
where we considered partial-order reduction in symbolic verification of lossy
channel systems [AJ93]. In this paper, we have simplified the definition of par-
tial order reduction, and made it applicable to a range of symbolic verification
methods.

Commutat iv i ty between actions or predicate transformers was introduced
by Lipton [Lip75], and has been used in assertional reasoning by Back [Bac89],
Lamport [Lam90], Katz and Peled [KP92], and others.

Outline. In the next section, we introduce basic definitions and constraint verifi-
cation methods. In Section 3, we present our method of partial-order reductions.
In Section 4, we describe how the method can be applied to symbolic verification
of lossy channels and of Petri nets. We also show how partial order methods can
improve verification times on a simple Petri net.

2 Programs and Symbolic Verification

We assume a program which consists of a (possibly infinite) set Z of states, and a
finite set T of transitions. Each transition t E T is a binary relation oh t?. In this
paper we will consider the problem of checking reachability: given a program, a
set $I C Z of initial states and a set SF C Z, of final states, determine whether
there is a sequence aotlCht2 • • .t,~crn of states and transitions from some initial
state o'0 E $I to some final state tr,~ E SF such that gi-ltic~i for all i with

382

1 < i < n. The verification of most safety properties can be transformed to the
reachability problem by s tandard techniques.

We consider symbolic verification methods, which manipula te sets of states
rather than individual states, and where the effect of transitions is represented
by predicate transformers.

A predicate over S is a subset of S . We will often use the term constraint for
predicates. The set of constraints over S forms a lattice with ordering E_ taken
as set inclusion. We will say that a constraint 9 covers another constraint 9 ~, if
i# _E 9. Let _L be the empty constraint and let T be the set S .

A predicate transformer r is a function from 2 ~ to 2 ~ . We will consider only
predicate transformers which are monotone and strict (i.e., such that 7-(1) = 1) .
Given predicate transformers 7-1,...rn we let q ; . . . ;T ,~ denote the predicate
t ransformer ~-' such tha t r~(9) = rn (- - - (r l (9)) " ") for any constraint 9- Observe
the order of application of the predicate transformers. A predicate transformer
r is enabled at constraint 9 if r (9) ~ _L. We will consider symbolic verification
algorithms which check the reachability problem either by forward reachability
analysis or by backward teachability analysis. In forward analysis, we s tar t f rom
a set of constraints whose union is the set of initial states, and generate new con-
straints by applying the predicate t ransformer post(t)(9) = {a' : 3~ E 9 . cvtcr'}
for each transit ion t and already generated constraint 9. New constraints which
are included in already generated constraints need not be further explored. The
search terminates when a constraint containing a final s tate is generated, or
when no more constraints are generated. Backward analysis is analogous, but
starts from a set of constraints that represents the set of final states, and applies
the predicate t ransformer pre(t)(9) = {~ : 3~' E 9.~tcr'}, a t tempt ing to find a
constraint containing an initial state.

For a constraint 9, a set ¢ of states, and a sequence p = v l ; . . • ; ~-~ of predi-
cate t ransformers in T we say that p leads from 9 to ¢ if ¢ f3 rl ; . . . ; 7-~ (9) ~ _L.
We say tha t ¢ is reachable from 9 if there is a sequence p which leads from ~ to
¢. We say tha t V is reachable from a set q~ of constraints if ¢ is reachable f rom
some ~ C 4~. analysis to the symbolic case. A l g o r i t h m 1 in Figure 1 is a stan-
dard generalization of state-based reachability. The algori thm repeatedly selects
constraints from W to be explored. Line 4 checks if the constraint removed from
W is already covered by some previously visited constraint, in which case it is
redundant and can be discarded. Line 5 checks to see if we have reached a con-
straint that contains some final state. Line 6 computes the successor constraints
to investigate. For this, a function select determines the subset of T which is to
be explored from each constraint. Line 7 adds the newly processed constraint to
the list of already visited constraints.

Note that at line 6, the algorithms is parameterized by a function select which
determines the set of predicate t ransformers to explore f rom a given constraints.
In the next section, we will s tudy how the function select can be changed in
order to reduce the search space. In this section, we will take select(9) to be
the set T of all predicate transformers. Equivalently, we can let select(9) be the
set enabled(~) of all predicate transformers which are enabled at 9 (if r is not

383

Algorithm 1 (Reachability Algorithm)
I n p u t : A finite set T of predicate transformers, a finite set #0 of initial con-
straints, and a set ¢ of final states.
Output: true if ¢ is reachable from #0-
Local Variables: A set V of constraints representing visited constraints and
a working set W of constraints yet to be investigated.

1) Let W = # 0 and let V = O
2) While W is not empty, repeat steps 3-7
3) Select and remove a constraint ~ E W
4) If there is ~' E V such that qo E ~', goto 2
5) If ¢ A qo ~ _1_, then exit with the result true
6) Add the constraints {r(~) : r • select(~)} to W.
7) Add ~ to V
8) If W becomes empty, exit with the result false

Fig. 1. Algorithm 1 (Reachability)

enabled at p, then r (p) generates _1_ which is trivially discarded). In Section 3,
we will investigate how select can be made even smaller, without endangering
the correctness of the algorithm.

An obvious requirement on the selection of constraints in line 3 is that it is
fair in the following sense: Each constraint which is inserted into W at line 6 is
eventually removed at line 3 of the algorithm. We will f rom now on assume that
any reachability algori thm under consideration satisfies this fairness condition.
Breadth-first is an example of a fair exploration strategy. Depth-first need not
be fair if the state-space is infinite. For the class of well-structured infinite-state
systems considered in our earlier work using backward analysis [ACJYK96], any
strategy is fair, since the algori thm will always terminate with W empty.

We observe that , due to the above fairness requirement, the algori thm is
complete in the sense tha t it is guaranteed to return t r u e if the set ~b is reachable.
I f ¢ is not reachable, the algorithm may add an infinite sequence of constraints
to W, without terminat ing, since the set of states and the set of constraints may
both be infinite.

3 Improving the Reachability Algorithm

In this section we introduce strategies to improve the reachability algori thm
presented in Section 2. The idea is to only apply a subset of the predicate trans-
formers to a constraint, resulting in that we only explore a subset of all possible
sequences of predicate transformers. Our aim is to substantial ly reduce the num-
ber of different constraints generated during the verification. As a basis for such
a reduction, we have found it useful to employ the notion of commutativity,
originally introduced by Lipton [Lip75].

384

D e f i n i t i o n 1. Given predicate transformers v2, vi, and a constraint ~, we say
that Vl commutes left with r2 in ~, denoted vi <<~ r2, if r2; vi(~) E ri; v2(p).

Intuitively, if ri commutes left with r~ in p, then it seems plausible that
we need not apply the sequence r2; vi to the constraint ~, since the constraint
generated is a subset of the constraint generated by the sequence Vl; vs.

D e f i n i t i o n 2. Let ~ be a construint p a finite sequence of predicate transform-
ers, and r a predicate tronsformer. We say that v is contributory to p from
if, for any partition Pl; r ' ;p2 of p we have r <<pl(~) r ' .

It is easy to see, using the definition of commutativity, that if r is contributory
to p from p, then pr(p) E_ rp(~).

We will now present strategies for reducing the set of predicate transformers
that need be explored from a given constraint p. This is done in a similar spirit as
for state-based partial order techniques. In our setting there are some additional
differences: the search space may be infinite, and constraints are discarded if they
are covered by already explored constraints. The search will be affected by the
function select, and we are interested in requirements on select that guarantee
completeness of the algorithm. We will present two sets of requirements, both of
which guarantee completeness. The first is inspired by the definition of stubborn
sets [Val90], and the second by the ample set technique [Pel96].

Our first set of requirements on select consists of the following two conditions.

C1 Every predicate transformer in select(p) is contributory to every sequence
p E (T \ select(p))* of predicate transformers not in select(p) from ~.

C2 There is no sequence p E (T \ select(~))* of predicate transformers not in
select(p) which leads from ~ to ¢.

Condition C1 defines what is usually termed a persistent set [GP93]. It is the
reason for why we can exploit commutat ivi ty to defer exploration of the predicate
transformers outside select(p). Condition C2 is a simple way of ensuring that
this deferral does not sacrifice completeness.

T h e o r e m 1. I f the function select satisfies the conditions C1 and C2 for each
constraint p, then Algorithm 1 will return t r u e if ¢ is reachable from ~o.

Proof. We prove by induction on n the following property: For each constraint p
generated by the algorithm which is not discarded at line 4, if some sequence p E
T* of predicate transformers of length n leads from ~ to ¢, then the algorithm
will eventually generate a constraint p ' such that p ' N ¢ ~ _L. The case n --- 0 is
trivial. Let ~v be a constraint generated by the algorithm which is not discarded,
and let p = ri ; • • • ; r,~+i be a sequence in T* of length n + 1 which leads from

to ¢. By C2, there is an i with 1 < i < n + 1 such that ri E select(~).
Let i be the least such i. Let Pi = r i ; r i ; . . . ; r i - i ; r i + i ; . . . ; r n + i . By C1 and
monotonicity of predicate transformers, we have p(p) E pl (P)- Thus, if ri(~)
is not discarded by the algorithm, the induction hypothesis yields the desired
conclusion. If the result ri(p) of applying ri to p is discarded at line 4 because

385

it is covered by some constraint ~1 already in V, then by monotonicity there is
a sequence of predicate transformers of length at most n which leads from the
generated and not discarded constraint ~1 to ¢, which concludes the proof of
the property. Finally, letting ~ be any of the initial constraints in ~0 proves the
s tatement in the theorem.

We note that conditions C1 and C2 are both rather abstract, and that some
more concrete and restrictive versions must be used in a practical implementa-
tion. For instance, condition C2 could be enforced by finding some necessary
change that must present on any sequence from ~ to ¢ (such as changing a
particular state component), and checking that this change can only be effected
by the transformers in select(~).

A weaker but more complex version of Theorem 1 can be obtained by replac-
ing C2 by the following three conditions.

D2 If C2 does not hold, then there is a r C select(~) such that ~ Cl ¢ ~ _L
implies r(~,o') • ¢ ¢ _L for any constraint ~v'.

D3 If for some transformer r E select(~), the successor r (~) is discarded at line
4, then select(~) =- enabled(co) (or equivalently select(~) -= 7-).

D4 If the algorithm generates an infinite path of predicate transformers, none of
which is discarded, then each predicate transformer in T must be explored
infinitely often along this path.

An explanation of these conditions should be provided by the proof of the fol-
lowing theorem.

T h e o r e m 2. If the function select satisfies the conditions C1, D2, D3 and D 4
for each constraint ~, then Algorithm 1 will return t r u e if ¢ is reachable from
q~o.

Proof. Just as for Theorem 1, we prove by induction on n the following property:
For each generated and not discarded constraint ~, if some transformer sequence
p of length n leads from ~ to ~b, then the algorithm will eventually generate a
constraint ~o' such that ~'f3¢ # _L. The case n = 0 is trivial. Let ~ be a constraint
generated by the algorithm which is not discarded, and let p = v l ; . . . ;V=+l be a
sequence of length n + l which leads from ~ to ¢. If there is an i with 1 < i < n + l
such that vi E select(~), we proceed as in the proof of Theorem 1. Otherwise, by
condition D2 there is a r~ e select(~) such that r l ; . . . ;; rn+l; v~(~) N ¢ # _l_. It
follows by C1, falsity of C2, and monotonicity that r{; r l ; . . . ; ; r ,+ l (~) N¢ # _l_.
Let ~a = r~(~0). By condition D3, we infer that v~ is not discarded (remember
that rl is not explored from ~v). Just as for ~ we have that p leads from ~1 to ¢.
If there is an i with 1 < i < n + 1 such that ri E select(~l), we proceed as in the
proof of Theorem 1. Otherwise, we proceed as with ~v. In this way, we generate
a path ~ 1 ~ 2 • "" of generated and not discarded constraints. The path stops if
at some point condition C2 holds, in which case we are done. If not, the path
is infinite. By condition D4 there is a j such that rl E select(~j). Regardless
of whether rl(~oj) is discarded or not, we can use the induction hypothesis to
conclude the proof, just as in the previous theorem.

386

4 E x a m p l e s

In this section, we apply the results in the previous section to some models of
infinite s tate systems.

4.1 Lossy Channel Systems

A lossy channel system consists of a control part and a channel part. The con-
trol part is modeled as a number of finite-state processes communicat ing via the
channels, while the channel part consists of a finite set of channels. Each chan-
nel behaves as a FIFO buffer which is unbounded and unreliable in the sense
tha t it can lose messages. A channel is used to perform asynchronous commu-
nication between a pair of processes, so for each channel there is unique process
sending messages to the channel, and a unique process receiving messages from
the channel. A constraint defines the control s tate of each process, and defines
for each channel the contents of the channel as an upward closed set of strings.
Predicate transformers correspond to backward performing of send and receive
transitions. In [AKP97] we apply a part ial order technique for a symbolic back-
ward teachability analysis described in [AJ93]. An algori thm (satisfying C1 -
C2) for comput ing select at a particular configuration is given as follows. If.
there is a process where all its enabled transitions are either send transitions
to a non-empty channel, or receive transitions, then select exactly all enabled
transitions of the process. If no such process exist, then select the set of en-
abled transitions of all processes. In [AKP97] we apply the above algori thm to
a go back n protocol, obtaining t ime reductions of up to 25%, and to a mutua l
exclusion protocol, obtaining t ime reductions of up to 97%.

4.2 P e t r i N e t s

In this section we will apply the techniques to algori thms for checking the cover-
ability problem for Petri Nets. A Petri net is a tuple Af = (p, T, in, out}, where
P is a finite set of places, T a finite set of transitions, and in : T ~-~ (P ~-~ Af)
and out : T ~-~ (P ~+ N) are functions that for each transition t E T define
how many tokens are consumed and produced at each place when t is fired. A
marking m is a mapping from P to Af. A transit ion t can fire in a marking m if
in(t)(p) <_ re(p) for each place p E P. When t fires, the marking is changed f rom
m to the marking m' defined by m~(p) = re(p) - in(t)(p) + out(t)(p) for each
p E P . We define G (monus) by a O b = max(0, a - b). We define the operators
-}- and - on markings in the natural way, and the part ial order _ by point-wise
extension, i.e. rn 1 ~ m2 iff ml(p) ~ m~(p) for every place p E P.

A set !a of markings is upward closed if m E p implies m ~ E ~ for all m ~
with m < m ~. We will be interested in the coverability problem, which is defined
as follows: Given a set M1 of initial markings, and a set MR of final markings,
determine whether there is a set of transitions leading from a marking in Mr to
a marking m which covers some marking mE C ME in the sense that mE < m.
The coverability problem can be checked by backward search as follows. Let our

387

constraints be sets of the form Tin0 = {m : m0 < m} for some m0. Note
tha t pre(t)(~m) = TmQout(t)+in(t). In A l g o r i t h m 1, let ~0 be a finite set of
constraints, whose union is MF, and let the set T be the set {pre(t) : t E T}.
Let ¢ be MI. A l g o r i t h m 1 then represents a symbolic backward analysis for
solving the coverability problem in the case that select(T) = T for each T- It
can be shown (e.g., [ACJYK96]) that this analysis is guaranteed to terminate.

We can now present a partial order reduction strategy which is based on
sufficient (but in general not necessary) criteria for commutat ivi ty .

We say that the predicate transformers pre(tl) and pre(t2) are in conflict
if for some place p we have out(tl)(p) > 0 and out(t2)(p) > 0. We say that a
t ransformer pre(t) is deficient for p at Tm if re(p) < out(t)(p). We say that a
t ransformer pre(t) separates a marking rn from a set MI of markings if there is a
place p with out(t)(p) > 0 such tha t re(p) > mi(p) for each marking mir E Mx.
We observe tha t if pre(t) separates m from MI then any sequence of predicate
t ransformers tha t leads from ~,~ to some T-~r with mi E MI must contain a
predicate t ransformer pre(t') for a transition with out(t')(p) > 0, where p is the
place that makes t ~ separating. It follows that the sequence must contain either
pre(t) or a t ransformer which is in conflict with pre(t).

The following is a procedure to generate a set of predicate transformers
select(Tin) to be explored from a constraint Tin. We assume that the set MI
(corresponding to ¢ in Algori thm 1) is given.

- Start with some transformer pre(to) which separates rn from MI.
Let select(Tin) = {pre(to) } initially.
Repeatedly add to select(Tin) all t ransformers pre(t') for which there is a
t ransformer pre(t) E select(~m) such that either

(1) pre(t) and pre(t') are in conflict, or
(2) there is a place p such that pre(t) is deficient at p and in(t')(p) > 0

- If no t ransformer pre(to) can be found which separates rn from MI, let
select(Trn) = T, i.e., explore all transformers.

It can be checked tha t this procedure generates a subset of transitions (i.e.,
predicate transformers) which satisfies conditions C1 and C2. An intuitive ex-
planation is as follows. By the observation above, if pre(to) separates m from
M1 then any sequence of predicate t ransformers tha t leads from Tm to some
T-~, with ml E MI must contain a transit ion in select(T): either pre(to) or
a t ransformer which is in conflict with pre(to). Thus C2 is satisfied. To ver-
ify C1, first note that conditions (1) and (2) imply that pre(t) <<~,m pre(t')
for all pre(t) E select(Tin) and pre(t') ~ select(Tin). Suppose that after a se-
quence of t ransformers we reach a constraint Trn' where pre(t) ~ , ~ , pre(t') but
pre(t) ~ , .~ pre(t'). Then the sequence must remove tokens from a place p with
out(t)(p) > 0 and hence contain a transition which is in conflict with pre(t).

Measurements. we will describe the results from a small experiment with the
procedure for generating reduced sets of predicate t ransformers at the end of
Section 4.2 following heuristics to select ample sets.

388

Fig. 2. A Petri Net Buffer

The example we used consists of a Petri net that moves tokens from an initial
place (to the left) to a final place (to the right). We also added a loop to the
sequence to show that a Petri net which is not a simple directed graph can be
handled. The net can be seen in figure 2. The results from executing this Petri
net is shown in the following table. The column "Tokens" denotes the number
of tokens in the final place at the start of the backward analysis. The running
times are in seconds.

~ S t a n d a r d A l g o r i t h m ~ a r t i a l O r d e r Algor i thmll

01 / 00:0
1.5

0"2 I
13.3

0.3 78.8
0.6 346.3

I_
As can be seen, the standard method degenerates very fast, while the partial

order method is still well within acceptable running times. The good perfor-
mance comes from the fact that, using our method for selecting reduced sets
of transformers, the partial order method will move one token at a time from
the end place to the initial place. The standard algorithm will investigate every
interleaving of moving tokens from the end place closer to the start place.

R e f e r e n c e s

[ABH+97] R. Alur, R.K. Brayton, T.A. Henzinger, S. Qadeer, and S.K. Rajamani.
Partial-order reduction in symbolic state space exploration. In O. Grum-
berg, editor, Proc. 9 th Int . Conf. or* Computer Aided Vvrification, volume
1254, pages 340-351, Haifa, Israel, 1997. Springer Verlag.

389

[ACD90]

[A(~JYK96]

[AJ93]

[AKP97]

[Bac89]

[BCMD92]

[BG96]

[Fin90]

[GP93]

[GW93]

[HP94]

[JZ92]

[KP92]

[KLM+98]

[Lam90]

[Lip75]

[LLPY97]

R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time sys-
tems. In Proc. 5 th IEEE Int. Syrup. on Logic in Computer Science, pages
414-425, Philadelphia, 1990.
Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Tsay Yih-Kuen.

General decidability theorems for infinite-state systems. In Proc. 11 th
IEEE Int. Syrup. on Logic in Computer Science, pages 313-321, 1996.
Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with un-
reliable channels. In Proc. 8 th 1EEE Int. Symp. on Logic in Computer
Science, pages 160-170, 1993.
Parosh Aziz Abdulla, Mats Kindahl, and Doron Peled. An improved search
strategy for Lossy Channel Systems. In Tadanori Mizuno, Nori Shiratori,
Teruo Hegashino, and Atsushi Togashi, editors, FORTE X / P S T V XVI I
'97, pages 251-264. Chapman and Hall, 1997.
R.J.R. Back. A method for refining atomicity in parallel algorithms. In
Proc. PARLE 89, volume 366 of Lecture Notes in Computer Science, pages
199-216. Springer Verlag, 1989.
J.R. Butch, E.M. Clarke, K.L. McMillan, and D.L. Dill. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98:142-
170, 1992.
B. Boigelot and P. Godefroid. Symbolic verification of communication
protocols with infinite state spaces using QDDs. In Alur and Henzinger,
editors, Proc. 8 th Int. Conf. on Computer Aided Verification, volume 1102
of Lecture Notes in Computer Science, pages 1-12. Springer Verlag, 1996.
A. Finkel. Reduction and covering of infinite teachability trees. Informa-
tion and Computation, 89:144-179, 1990.
P. Godefroid, D. Pirottin. Refining Dependencies Improves Partial-Order
Verification Methods. Proc. 5th Conference on Computer Aided Verifica-
tion, Lecture Notes in Computer Science 697, Springer, 438-449. Elounda,
Greece, 1993.
P. Godefroid and P. Wolper. Using Partial Orders for the Efficient Verifi-
cation of Deadlock Freedom and Safety Properties. In Formal Methods in
System Design, Kluwer, 2 (1993), 149-164.
G.J. Holzmann and D. Peled. An improvement in formal verification. In
Proc. FORTE '94, pages 197-211, 1994.
W. Janssen and J. Zwiers. From sequential layers to distributed pro-
cesses. In Proc. 11 th ACM Symp. on Principles of Distributed Computing,
Canada, 1992.
Shmuet Katz and Doron Peled. Defining conditional independence using
collapses. Theoretical Computer Science, 101:337-359, 1992.
R.P. Kurshan, V. Levin, M. Minea and D. Peled, H. Yenigun,. Static
Partial Order Reduction. TACAS'98, Workshop on Tools and Algorithms
for the Construction and Analysis of Systems, Lisbon, Portugal.
L. Lamport. A theorem on atomicity in distributed algorithms. Distributed
Computing, 4(2):59-68, 1990.
Lipton. Reduction, a method of proving properties of parallel programs.
Communications of the ACM, 18(12):717-721, Dec. 1975.
K.G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of
real-time systems: Compact data structure and state-space reduction. In
Proc. 18 th IEEE Real-Time Systems Symposium, pages 14-24, San Fran-
cisco, California, Dec. 1997.

390

[McM95]

[Pe196]

[Val90]

[Val93]

K.L. McMillan. A technique of a state space search based on unfolding.
Formal Methods in System Design, 6(1):45-65, 1995.
D. Peled. Combining Partial Order Reductions with On-the-fly Model-
Checking. Journal of Formal Methods in Systems Design, 8 (1996), 39-64.
A. Valmari. Stubborn sets for reduced state space generation. In Advances
in Petri Nets, number 483 in Lecture Notes in Computer Science, pages
491-515. Springer-Verlag, 1990.
A. Valmari. On-the-fly verification with stubborn sets. In Courcoubetis,
editor, Proc. 5 th In t . COnf. on Computer Aided Verification, number 697
in Lecture Notes in Computer Science, pages 59-70, 1993.

