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Abs t rac t .  The purpose of partial-order reduction techniques is to avoid 
exploring several interleavings of independent transitions when model 
checking the temporal properties of a concurrent system. The purpose of 
symbolic verification techniques is to perform basic manipulations on sets 
of states rather than on individual states. We present a general method 
for applying partial order reductions to improve symbolic verification. 
The method is equally applicable to the verification of finite-state and 
infinite-state systems. It considers methods that check safety properties, 
either by forward reachability analysis or by backward reachability anal- 
ysis. We base the method on the concept of commutativity (in one direc- 
tion) between predicate transformers. Since the commutativity relation 
is not necessarily symmetric, this generalizes those existing approaches 
to partial order verification which are based on a symmetric dependency 
relation. 
We show how our method can be applied to several models of infinite- 
state systems: systems communicating over unbounded lossy FIFO chan- 
nels, and unsafe (infinite-state) Petri Nets. We show by a simple example 
how partial order reduction can significantly speed up symbolic backward 
analysis of Petri Nets. 

1 I n t r o d u c t i o n  

This paper is concerned with applying partial-order techniques to improve sym- 
bolic verification methods for state-space exploration. 

- The purpose of partial-order techniques (e.g., [GP9_3,GW93,HP94,Pe196,Va190,Va193 D 
is to avoid exploring several interleavings of independent transitions, i.e., 
transitions whose execution order is irrelevant, e.g., because they are per- 
formed by different processes. When verifying temporal properties, partial 
order methods often give substantial reductions of the search space. 
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- The purpose of symbolic techniques (e.g., [BCMD92,ACJYK96,BG96]) is to 
perform the basic manipulations in verification on sets of states rather than 
on individual states. A basis is some representation of (possibly infinite) sets 
of states, which can be manipulated conveniently. 

We use the term constraint to denote some representation of a set of states. 
Common forms of constraints are BDDs [BCMD92], zones or regions represent- 
ing infinite sets of clock values of of a t imed automaton [ACD90,LLPY97], up- 
ward closed sets of states of an infinite state system [ACJYK96] such as a lossy 
channel system [A J93] or a Petri Net [Fin90], an infinite set of queue contents 
[BG96], etc. The effect of a program statement on constraints is represented 
by a predicate transformer. The state-space of the system is explored by gener- 
ating new constraints by applying predicate transformers to already generated 
constraints. In this paper, we consider both forward and backward symbolic 
state-space exploration. To represent forward symbolic state-space exploration, 
we include for each statement t of the program the predicate transformer which 
maps a constraint T to a constraint representing the set post(t)(T) of states 
reachable from a state in ~ using statement t. To represent backward symbolic 
state-space exploration (e.g., as in [ACJYK96]), we include the predicate trans- 
former which maps a constraint !a to a constraint representing the set pre(t)(~) 
of states from which a state in ~ can be reached using statement t. Different 
exploration strategies can be used (depth-first, breadth-first, etc.). Note that  
standard (non-symbolic) state-based exploration corresponds to the special case 
where each constraint denotes a single state. 

The idea in partial order techniques is to restrict the set of statements that  
are explored from a given state. The basis for most existing work on partial-order 
methods is a symmetric dependency relation on program statements, which is 
used to determine a subset of statements to be explored from a given state. Differ- 
ent criteria for reductions have been presented which are based on the concept 
of a dependency relation, e.g., stubborn sets [Val90], persistent sets [GP93] or 
ample sets [Pe196]. 

In symbolic verification, one should similarly try to reduce the set of predicate 
transformers that  need be applied to a given constraint. As a basis for such a 
reduction, we have found it useful to employ the notion of commutativity (in 
one direction) between predicate transformers, originally introduced by Lipton 
[Lip75]. This is a weakening of the dependency relation, in that  it need not be 
symmetric. It is more succinct than the standard definition of the symmetric 
dependency relation used in the literature on partial order methods. 

We use commutat ivi ty  to present a general definition of partial  order reduc- 
tion for constraint verification systems. We illustrate the applicability of our 
definition by 

- showing that  it covers our earlier work on partial order methods for symbolic 
verification of lossy channel systems, and 

- presenting a partial order reduction on symbolic backward reachability anal- 
ysis for checking the coverability problem in (unbounded) Petri Nets. To our 
knowledge, this is the first partial-order reduction which applies equally well 
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to infinite-state Petri Nets as to finite-state Petri Nets. We present a test of 
the reduction on a simple example. 

Related Work Partial-order techniques have been employed in state-space explo- 
ration, and the literature is continuously expanding (e.g., [GP93.GW93,HP94,Pe196,VaI93]). 
Most of this work employs a symmetric dependency relation as a basis for defin- 
ing reduction strategies. Asymmetric relations are present in a few works on au- 
tomated verification, e.g., [Val90]. The dependency relation can be conditional 
on the particular state where statements are executed [GP93,KP92]. In our for- 
mulation, the commutat ivi ty  relation can be defined to be dependent on the 
constraint. 

A combination of partial-order and symbolic techniques is also presented by 
Alur et al [ABH+97]. These approaches differ from ours in that  they first de- 
fine a partial-order reduction of the state-space, similar to the earlier literature, 
and thereafter explore this symbolically, using BDDs. The paper considers only 
forward search from initial states. In contrast, our work defines partial order 
reduction on top of symbolic verification, and is based on a more general assy- 
metric commutat ivi ty  relation. To our knowledge, no formulation has been given 
of partial order reduction for algorithms based on backward teachability anal- 
ysis. Techniques for Petri Nets which exploit partial order semantics [McM95] 
or partial order reduction [Val90] are based on forward reachability analysis for 
bounded nets. 

This paper is a generalization and simplification of our earlier work, [AKP97], 
where we considered partial-order reduction in symbolic verification of lossy 
channel systems [AJ93]. In this paper, we have simplified the definition of par- 
tial order reduction, and made it applicable to a range of symbolic verification 
methods. 

Commutat iv i ty  between actions or predicate transformers was introduced 
by Lipton [Lip75], and has been used in assertional reasoning by Back [Bac89], 
Lamport  [Lam90], Katz and Peled [KP92], and others. 

Outline. In the next section, we introduce basic definitions and constraint verifi- 
cation methods. In Section 3, we present our method of partial-order reductions. 
In Section 4, we describe how the method can be applied to symbolic verification 
of lossy channels and of Petri nets. We also show how partial order methods can 
improve verification times on a simple Petri  net. 

2 Programs and Symbolic Verification 

We assume a program which consists of a (possibly infinite) set Z of states, and a 
finite set T of transitions. Each transition t E T is a binary relation oh t?. In this 
paper we will consider the problem of checking reachability: given a program, a 
set $I C Z of initial states and a set SF C Z,  of final states, determine whether 
there is a sequence aotlCht2 • • .t,~crn of states and transitions from some initial 
state o'0 E $I to some final state tr,~ E SF such that  gi-ltic~i for all i with 
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1 < i < n. The  verification of most  safety properties can be transformed to the 
reachability problem by s tandard techniques. 

We consider symbolic verification methods,  which manipula te  sets of states 
rather  than individual states, and where the effect of transitions is represented 
by predicate transformers.  

A predicate over S is a subset of S .  We will often use the term constraint for 
predicates. The set of constraints over S forms a lattice with ordering E_ taken 
as set inclusion. We will say that  a constraint 9 covers another constraint 9 ~, if 
i# _E 9. Let _L be the empty  constraint and let T be the set S .  

A predicate transformer r is a function from 2 ~ to 2 ~ . We will consider only 
predicate transformers which are monotone and strict (i.e., such that  7-(1) = 1) .  
Given predicate transformers 7-1,...rn we let q ; . . . ;T ,~  denote the predicate 
t ransformer ~-' such tha t  r~(9) = rn ( - - - ( r l  ( 9 ) ) "  ") for any constraint 9- Observe 
the order of application of the predicate transformers.  A predicate transformer 
r is enabled at constraint 9 if r ( 9  ) ~ _L. We will consider symbolic verification 
algorithms which check the reachability problem either by forward reachability 
analysis or by backward teachability analysis. In forward analysis, we s tar t  f rom 
a set of constraints whose union is the set of initial states, and generate new con- 
straints by applying the predicate t ransformer post( t )(9)  = {a' : 3~ E 9 . cvtcr'} 
for each transit ion t and already generated constraint 9. New constraints which 
are included in already generated constraints need not be further explored. The 
search terminates  when a constraint containing a final s tate is generated, or 
when no more constraints are generated. Backward analysis is analogous, but 
starts from a set of constraints that  represents the set of final states, and applies 
the predicate t ransformer pre(t)(9)  = {~ : 3~'  E 9.~tcr'}, a t tempt ing  to find a 
constraint containing an initial state. 

For a constraint 9, a set ¢ of states, and a sequence p = v l ; . .  • ; ~-~ of predi- 
cate t ransformers in T we say that  p leads from 9 to ¢ if ¢ f3 rl ; . . .  ; 7-~ (9) ~ _L. 
We say tha t  ¢ is reachable from 9 if there is a sequence p which leads from ~ to 
¢. We say tha t  V is reachable from a set q~ of constraints if ¢ is reachable f rom 
some ~ C 4~. analysis to the symbolic case. A l g o r i t h m  1 in Figure 1 is a stan- 
dard generalization of state-based reachability. The algori thm repeatedly selects 
constraints from W to be explored. Line 4 checks if the constraint removed from 
W is already covered by some previously visited constraint,  in which case it is 
redundant  and can be discarded. Line 5 checks to see if we have reached a con- 
straint that  contains some final state. Line 6 computes  the successor constraints 
to investigate. For this, a function select determines the subset of T which is to 
be explored from each constraint. Line 7 adds the newly processed constraint to 
the list of already visited constraints. 

Note that  at line 6, the algorithms is parameterized by a function select which 
determines the set of predicate t ransformers to explore f rom a given constraints. 
In the next section, we will s tudy how the function select can be changed in 
order to reduce the search space. In this section, we will take select(9 ) to be 
the set T of all predicate transformers.  Equivalently, we can let select(9) be the 
set enabled(~) of all predicate transformers which are enabled at 9 (if r is not 
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Algorithm 1 (Reachability Algorithm) 
I n p u t :  A finite set T of predicate transformers, a finite set #0 of initial con- 
straints, and a set ¢ of final states. 
Output: true if ¢ is reachable from #0- 
Local  Variables: A set V of constraints representing visited constraints and 
a working set W of constraints yet to be investigated. 

1) Let W = # 0  and let V = O  
2) While W is not empty, repeat steps 3-7 
3) Select and remove a constraint ~ E W 
4) If there is ~'  E V such that qo E ~', goto 2 
5) If ¢ A qo ~ _1_, then exit with the result true 
6) Add the constraints {r(~) : r • select(~)} to W. 
7) Add ~ to V 
8) If W becomes empty, exit with the result false 

Fig. 1. Algorithm 1 (Reachability) 

enabled at p, then r (p )  generates _1_ which is trivially discarded). In Section 3, 
we will investigate how select can be made even smaller, without  endangering 
the correctness of the algorithm. 

An obvious requirement on the selection of constraints in line 3 is that  it is 
fair in the following sense: Each constraint which is inserted into W at line 6 is 
eventually removed at line 3 of the algorithm. We will f rom now on assume that  
any reachability algori thm under consideration satisfies this fairness condition. 
Breadth-first is an example of a fair exploration strategy. Depth-first need not 
be fair if the state-space is infinite. For the class of well-structured infinite-state 
systems considered in our earlier work using backward analysis [ACJYK96], any 
strategy is fair, since the algori thm will always terminate  with W empty.  

We observe that ,  due to the above fairness requirement, the algori thm is 
complete in the sense tha t  it is guaranteed to return t r u e  if the set ~b is reachable. 
I f  ¢ is not reachable, the algorithm may  add an infinite sequence of constraints 
to W, without  terminat ing,  since the set of states and the set of  constraints may  
both be infinite. 

3 Improving the Reachability Algorithm 

In this section we introduce strategies to improve the reachability algori thm 
presented in Section 2. The idea is to only apply a subset of the predicate trans- 
formers to a constraint,  resulting in that  we only explore a subset of all possible 
sequences of predicate transformers.  Our aim is to substantial ly reduce the num- 
ber of different constraints generated during the verification. As a basis for such 
a reduction, we have found it useful to employ the notion of commutativity, 
originally introduced by Lipton [Lip75]. 
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D e f i n i t i o n  1. Given predicate transformers v2, vi, and a constraint ~, we say 
that Vl commutes left with r2 in ~, denoted vi <<~ r2, if r2; vi(~) E ri;  v2(p). 

Intuitively, if ri commutes left with r~ in p, then it seems plausible that  
we need not apply the sequence r2; vi to the constraint ~, since the constraint 
generated is a subset of the constraint generated by the sequence Vl; vs. 

D e f i n i t i o n  2. Let ~ be a construint p a finite sequence of predicate transform- 
ers, and r a predicate tronsformer. We say that v is contributory to p from 
if, for any partition Pl; r ' ;p2 of p we have r <<pl(~) r ' .  

It is easy to see, using the definition of commutativity, that  if r is contributory 
to p from p, then pr(p)  E_ rp(~).  

We will now present strategies for reducing the set of predicate transformers 
that  need be explored from a given constraint p. This is done in a similar spirit as 
for state-based partial order techniques. In our setting there are some additional 
differences: the search space may be infinite, and constraints are discarded if they 
are covered by already explored constraints. The search will be affected by the 
function select, and we are interested in requirements on select that  guarantee 
completeness of the algorithm. We will present two sets of requirements, both of 
which guarantee completeness. The first is inspired by the definition of stubborn 
sets [Val90], and the second by the ample set technique [Pel96]. 

Our first set of requirements on select consists of the following two conditions. 

C1 Every predicate transformer in select(p) is contributory to every sequence 
p E ( T  \ select(p))* of predicate transformers not in select(p) from ~. 

C2 There is no sequence p E ( T  \ select(~))* of predicate transformers not in 
select(p) which leads from ~ to ¢. 

Condition C1 defines what is usually termed a persistent set [GP93]. It is the 
reason for why we can exploit commutat ivi ty to defer exploration of the predicate 
transformers outside select(p). Condition C2 is a simple way of ensuring that  
this deferral does not sacrifice completeness. 

T h e o r e m  1. I f  the function select satisfies the conditions C1 and C2 for each 
constraint p, then Algorithm 1 will return t r u e  if  ¢ is reachable from ~o. 

Proof. We prove by induction on n the following property: For each constraint p 
generated by the algorithm which is not discarded at line 4, if some sequence p E 
T* of predicate transformers of length n leads from ~ to ¢, then the algorithm 
will eventually generate a constraint p '  such that  p '  N ¢ ~ _L. The case n --- 0 is 
trivial. Let ~v be a constraint generated by the algorithm which is not discarded, 
and let p = ri ; • • • ; r,~+i be a sequence in T* of length n + 1 which leads from 

to ¢. By C2, there is an i with 1 < i < n + 1 such that  ri E select(~). 
Let i be the least such i. Let Pi = r i ; r i ; . . . ; r i - i ; r i + i ; . . . ; r n + i .  By C1 and 
monotonicity of predicate transformers, we have p(p) E pl (P)- Thus, if ri(~) 
is not discarded by the algorithm, the induction hypothesis yields the desired 
conclusion. If the result ri(p) of applying ri to p is discarded at line 4 because 
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it is covered by some constraint ~1 already in V, then by monotonicity there is 
a sequence of predicate transformers of length at most n which leads from the 
generated and not discarded constraint ~1 to ¢, which concludes the proof of 
the property. Finally, letting ~ be any of the initial constraints in ~0 proves the 
s tatement  in the theorem. 

We note that  conditions C1 and C2 are both rather abstract, and that  some 
more concrete and restrictive versions must be used in a practical implementa- 
tion. For instance, condition C2 could be enforced by finding some necessary 
change that  must present on any sequence from ~ to ¢ (such as changing a 
particular state component),  and checking that  this change can only be effected 
by the transformers in select(~). 

A weaker but more complex version of Theorem 1 can be obtained by replac- 
ing C2 by the following three conditions. 

D2  If C2 does not hold, then there is a r C select(~) such that  ~ Cl ¢ ~ _L 
implies r(~,o') • ¢ ¢ _L for any constraint ~v'. 

D3  If for some transformer r E select(~), the successor r (~)  is discarded at line 
4, then select(~) =- enabled(co) (or equivalently select(~) -= 7-). 

D4 If the algorithm generates an infinite path of predicate transformers, none of 
which is discarded, then each predicate transformer in T must be explored 
infinitely often along this path. 

An explanation of these conditions should be provided by the proof of the fol- 
lowing theorem. 

T h e o r e m  2. If the function select satisfies the conditions C1, D2,  D3  and D 4  
for each constraint ~, then Algorithm 1 will return t r u e  if ¢ is reachable from 
q~o. 

Proof. Just as for Theorem 1, we prove by induction on n the following property: 
For each generated and not discarded constraint ~, if some transformer sequence 
p of length n leads from ~ to ~b, then the algorithm will eventually generate a 
constraint ~o' such that  ~'f3¢ # _L. The case n = 0 is trivial. Let ~ be a constraint 
generated by the algorithm which is not discarded, and let p = v l ; . . .  ;V=+l be a 
sequence of length n + l  which leads from ~ to ¢. If there is an i with 1 < i < n + l  
such that vi E select(~), we proceed as in the proof of Theorem 1. Otherwise, by 
condition D2  there is a r~ e select(~) such that  r l ; . . .  ;; rn+l; v~(~) N ¢ # _l_. It 
follows by C1, falsity of C2, and monotonicity that  r{; r l ; . . .  ; ; r ,+ l  (~) N¢ # _l_. 
Let ~a = r~(~0). By condition D3,  we infer that  v~ is not discarded (remember 
that  rl  is not explored from ~v). Just as for ~ we have that  p leads from ~1 to ¢. 
If there is an i with 1 < i < n +  1 such that  ri E select(~l), we proceed as in the 
proof of Theorem 1. Otherwise, we proceed as with ~v. In this way, we generate 
a path ~ 1 ~ 2  • "" of generated and not discarded constraints. The path stops if 
at some point condition C2 holds, in which case we are done. If not, the path 
is infinite. By condition D4  there is a j such that  rl  E select(~j). Regardless 
of whether rl(~oj) is discarded or not, we can use the induction hypothesis to 
conclude the proof, just  as in the previous theorem. 
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4 E x a m p l e s  

In this section, we apply the results in the previous section to some models of 
infinite s tate  systems. 

4.1 Lossy Channel Systems 

A lossy channel system consists of a control part and a channel part. The con- 
trol part  is modeled as a number  of finite-state processes communicat ing via the 
channels, while the channel part  consists of  a finite set of channels. Each chan- 
nel behaves as a FIFO buffer which is unbounded and unreliable in the sense 
tha t  it can lose messages. A channel is used to perform asynchronous commu- 
nication between a pair of processes, so for each channel there is unique process 
sending messages to the channel, and a unique process receiving messages from 
the channel. A constraint defines the control s tate of each process, and defines 
for each channel the contents of the channel as an upward closed set of strings. 
Predicate transformers correspond to backward performing of send and receive 
transitions. In [AKP97] we apply a part ial  order technique for a symbolic back- 
ward teachability analysis described in [AJ93]. An algori thm (satisfying C1 - 
C2)  for comput ing select at a particular configuration is given as follows. If.  
there is a process where all its enabled transitions are either send transitions 
to a non-empty channel, or receive transitions, then select exactly all enabled 
transitions of the process. If  no such process exist, then select the set of en- 
abled transitions of all processes. In [AKP97] we apply the above algori thm to 
a go back n protocol, obtaining t ime reductions of up to 25%, and to a mutua l  
exclusion protocol, obtaining t ime reductions of up to 97%. 

4.2 P e t r i  N e t s  

In this section we will apply the techniques to algori thms for checking the cover- 
ability problem for Petri Nets. A Petri net is a tuple Af = (p, T, in, out}, where 
P is a finite set of places, T a finite set of transitions, and in : T ~-~ (P ~-~ Af) 
and out : T ~-~ (P  ~+ N )  are functions that  for each transition t E T define 
how many  tokens are consumed and produced at each place when t is fired. A 
marking m is a mapping  from P to Af. A transit ion t can fire in a marking m if 
in(t)(p) <_ re(p) for each place p E P.  When t fires, the marking is changed f rom 
m to the marking m' defined by m~(p) = re(p) - in(t)(p) + out(t)(p) for each 
p E P .  We define G (monus) by a O b = max(0, a - b). We define the operators 
-}- and - on markings in the natural  way, and the part ial  order _ by point-wise 
extension, i.e. rn 1 ~ m2 iff ml(p) ~ m~(p) for every place p E P.  

A set !a of markings is upward closed if m E p implies m ~ E ~ for all m ~ 
with m < m ~. We will be interested in the coverability problem, which is defined 
as follows: Given a set M1 of initial markings,  and a set MR of final markings,  
determine whether there is a set of transitions leading from a marking in Mr to 
a marking m which covers some marking mE C ME in the sense that  mE < m. 
The coverability problem can be checked by backward search as follows. Let our 
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constraints be sets of the form Tin0 = {m : m0 < m} for some m0. Note 
tha t  pre(t)(~m) = TmQout(t)+in(t). In A l g o r i t h m  1, let ~0 be a finite set of 
constraints, whose union is MF, and let the set T be the set {pre(t) : t E T}. 
Let ¢ be MI. A l g o r i t h m  1 then represents a symbolic backward analysis for 
solving the coverability problem in the case that  select(T ) = T for each T- It  
can be shown (e.g., [ACJYK96]) that  this analysis is guaranteed to terminate.  

We can now present a partial  order reduction strategy which is based on 
sufficient (but in general not necessary) criteria for commutat ivi ty .  

We say that  the predicate transformers pre(tl) and pre(t2) are in conflict 
if for some place p we have out(tl)(p) > 0 and out(t2)(p) > 0. We say that  a 
t ransformer pre(t) is deficient for p at Tm if re(p) < out(t)(p). We say that  a 
t ransformer pre(t) separates a marking rn from a set MI of markings if there is a 
place p with out(t)(p) > 0 such tha t  re(p) > mi(p) for each marking mir E Mx. 
We observe tha t  if pre(t) separates m from MI then any sequence of predicate 
t ransformers tha t  leads from ~,~ to some T-~r with mi E MI must  contain a 
predicate t ransformer pre(t') for a transition with out(t')(p) > 0, where p is the 
place that  makes t ~ separating. It follows that  the sequence must  contain either 
pre(t) or a t ransformer which is in conflict with pre(t). 

The following is a procedure to generate a set of predicate transformers 
select(Tin) to be explored from a constraint Tin. We assume that  the set MI 
(corresponding to ¢ in Algori thm 1) is given. 

- Start  with some transformer pre(to) which separates rn from MI. 
Let select(Tin ) = {pre(to) } initially. 
Repeatedly add to select(Tin ) all t ransformers pre(t') for which there is a 
t ransformer pre(t) E select(~m) such that  either 

(1) pre(t) and pre(t') are in conflict, or 
(2) there is a place p such that  pre(t) is deficient at p and in(t')(p) > 0 

- If  no t ransformer pre(to) can be found which separates rn from MI,  let 
select(Trn) = T, i.e., explore all transformers.  

It  can be checked tha t  this procedure generates a subset of transitions (i.e., 
predicate transformers) which satisfies conditions C1 and C2.  An intuitive ex- 
planation is as follows. By the observation above, if pre(to) separates m from 
M1 then any sequence of predicate t ransformers tha t  leads from Tm to some 
T-~, with ml E MI must  contain a transit ion in select(T): either pre(to) or 
a t ransformer which is in conflict with pre(to). Thus C2 is satisfied. To ver- 
ify C1,  first note that  conditions (1) and (2) imply that  pre(t) <<~,m pre(t') 
for all pre(t) E select(Tin) and pre(t') ~ select(Tin ). Suppose that  after a se- 
quence of t ransformers we reach a constraint Trn' where pre(t) ~ , ~ ,  pre(t') but 
pre(t) ~ , .~  pre(t'). Then the sequence must  remove tokens from a place p with 
out(t)(p) > 0 and hence contain a transition which is in conflict with pre(t). 

Measurements. we will describe the results from a small experiment with the 
procedure for generating reduced sets of  predicate t ransformers at  the end of 
Section 4.2 following heuristics to select ample sets. 
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Fig. 2. A Petri Net Buffer 

The example we used consists of a Petri net that  moves tokens from an initial 
place (to the left) to a final place (to the right). We also added a loop to the 
sequence to show that  a Petri net which is not a simple directed graph can be 
handled. The net can be seen in figure 2. The results from executing this Petri 
net is shown in the following table. The column "Tokens" denotes the number 
of tokens in the final place at the start of the backward analysis. The running 
times are in seconds. 

~ S t a n d a r d  A l g o r i t h m ~ a r t i a l  O r d e r  Algor i thmll  

01 / 00:0 
1.5 

0"2 I 
13.3 

0.3 78.8 
0.6 346.3 

I_ 
As can be seen, the standard method degenerates very fast, while the partial 

order method is still well within acceptable running times. The good perfor- 
mance comes from the fact that,  using our method for selecting reduced sets 
of transformers, the partial order method will move one token at a time from 
the end place to the initial place. The standard algorithm will investigate every 
interleaving of moving tokens from the end place closer to the start place. 
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