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A b s t r a c t .  In existing simulation proof techniques, a single step in a low- 
level system may be simulated by an extended execution fragment in a 
high-level system. As a result, it is undecidable whether a given relation 
is a simulation, even if tautology checking is decidable for the underlying 
specification logic. This paper introduces various types of normed simu- 
lations. In a normed simulation, each step in a low-level system can be 
simulated by at most one step in the high level system, for any relat- 
ed pair of states. We show that it is decidable whether a given relation 
is a normed simulation relation, given that tautology checking is decid- 
able. We also prove that, at the semantic level, normed simulations form 
a complete proof method for establishing behavior inclusion, provided 
that the high-level system has finite invisible nondeterminism. As an il- 
lustration of our method we discuss the verification in PVS of a leader 
election algorithm that is used within the IEEE 1394 protocol. 

1 I n t r o d u c t i o n  

Simulat ion relations and refinement funct ions are widely used to  prove tha t  a 
low-level specification of  a reactive sys tem correctly implements  a higher-level 
one [1, 13]. Technically, a simulation (or refinement) is a relation (or function) 
R between the s tates  of  a low-level sys tem A and a high-level sys tem B, tha t  
satisfies condit ions such as 

(s, u) e R A s - %  s' 3u': ^ e R (1) 

(If a low-level s tate  s and a high-level s ta te  u are related, and A can make a 
t ransi t ion f rom s to  s t, then there exists a ma tch ing  t ransi t ion in B f rom u to  
a s ta te  u ~ tha t  is related to  # . )  The  existence of  a s imula t ion  implies tha t  any 
behavior  tha t  can be exhibited by A can also be exhibited by B. 

The  main  reason why simulat ions are useful is tha t  they  reduce global rea- 
soning abou t  behaviors  and executions to  local reasoning about  states and t ran-  
sitions. However, to  the best  of  our  knowledge, all complete  s imulat ion p roof  
me thods  tha t  appear  in the l i terature fall back on some form of global reasoning 
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in the case of systems that  perform internal (or stuttering) steps. The usual 
transfer condition for forward simulations [13], for instance, says 

(s, u) e R A s a)A s' =~ 3 execution fragment a :  f irst(a) = u (2) 

A trace(a) = trace(a) A (s', last(a)) C n 

(Each low-level transition can be simulated by a sequence of transitions which, 
apart from the action that  has to be matched, may also contain an arbitrary 
number of internal steps.) Thus the research program to reduce global reasoning 
to local reasoning has not been carried out to its completion. 

In manual proofs of simulation relations, the occurrence of executions in 
transfer condition (2) usually does not pose a real problem: often the matching 
execution fragments that  have to be constructed are short since internal step- 
s are rare in high-level specifications; moreover humans tend to be quite good 
in reasoning about sequences, and move effortlessly from transitions to execu- 
tions and back. In contrast, it turns out to be rather cumbersome to formalize 
arguments involving sequences using existing theorem provers (see [5] for a com- 
parative study). In fact, in several papers in which formalizations of simulation 
proofs are described, the authors only define a restricted type of simulation or 
refinement in which each transition of the low-level system is formalized by one 
or zero transitions of the high-level system [11, 15, 6]. In approaches such as [18], 
in which the full transfer condition (2) is formalized, the user has to supply 
the simulating execution fragment a to the prover explicitly in each case of the 
proof, which makes the verification process highly interactive. 

In this paper, we introduce a simulation proof method which remedies the 
above problems. The key idea is to define a function n that  assigns a norm 
n(s a ~ s', u), in some well-founded domain, to each pair of a transition in A and 
a state of B. If u has to simulate step s ~. ~ s ~ then it may either do nothing (if a 
is internal and s t is related to u), or it may do a corresponding a-step, or it may 
perform an internal action leading to a state u' such that  the norm n(s - ~  s t, u ~) 
decreases. We establish that  the normed forward simulations and normed back- 
ward simulations together constitute a complete proof method for establishing 
trace inclusion. In addition we show how history and prophecy relations (which 
are closely related to the history and prophecy variables of [1]) can be enriched 
with a norm function, to obtain another complete proof method in combination 
with a simple notion of refinement mapping. 

When proving invariance properties of programs, one is faced with two prob- 
lems. The first problem is related to the necessity of proving tautologies of the 
assertion logic, whereas the second manifests in the need of finding sufficiently 
strong invariants. In order to address the first problem, powerful decision proce- 
dures have been incorporated in theorem provers such as PVS [16]. If tautology 
checking is decidable then it is decidable whether a given state predicate is valid 
for the initial states and preserved by all transitions. The task of finding such a 
predicate, i.e. solving the second problem, is the responsibility of the user, even 
though some very powerful heuristics have been devised to automate this search 
[2]. Analogously, if systems A and B, and a conjectured simulation relation R 
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and norm function n can all be expressed within a decidable assertion logic, and 
if the transition relations of A and B can be specified using a finite number of 
deterministic transition predicates, then it is decidable whether the pair (R, n) 
is a normed simulation. This result, which does not hold for other methods such 
as [1, 13], is a distinct advantage of normed simulations. 

The preorders generated by normed forward simulations are strictly finer 
than the preorders induced by the simulations of [13]. In fact, it is easy to 
characterize normed forward simulations in terms of branching simulations [9]. 
We believe it will be possible to come up with a notion of normed simulation 
that  induces the same preorder as forward simulations, but  technically this will 
be much more involved. In [9] it is argued that  branching bisimulations have 
much nicer mathematical  properties than Milner's weak bisimulations. Similarly, 
the mathematical  theory of normed simulations appears to be nicer and more 
tractable than the theory of simulations developed in [13]. 

The idea of using norm functions to prove simulation relations also occurs 
in [10], where it is used to prove branching bisimilarity in the context of the 
process algebra #CRL. However, in [10] the norm function is defined on the 
states of B only, and does not involve the transitions of A. Furthermore the 
method of [10] only applies to divergence free processes. Norm functions very 
similar to ours were also studied by Namjoshi [14]. He uses them to obtain a 
characterization of the stuttering bisimulation of [3], which is the equivalent of 
branching bisimulation in a setting where states rather than actions are labelled 
(see [4]). Both [10] and [14] do not address effectiveness issues. Although we 
present normed simulations in a setting of labeled transition systems, it should 
not be difficult to transfer our results to a process algebraic setting such as [10] 
or a state based setting such as [14]. 

As a substantial example of the use of normed simulations, we discuss the 
formalization in PVS of the verification of a leader election algorithm that  plays 
a role in the tree identify phase of the physical layer of the IEEE 1394 protocol 
[12,6]. We establish a normed prophecy relation from a high-level specification 
of the protocol to an intermediate specification, and a normed history relation 
from the intermediate specification to a low-level specification. 

2 A T h e o r y  o f  N o r m e d  S i m u l a t i o n s  

In this section we build on some (standard) definitions and notations presented 
in [13]. In fact, our aim is to derive the same results as in [13], only for different 
types of simulations. 

2.1 Step Ref inements  

The simplest type of simulation we consider is a step refinement. A step refine- 
ment from automaton A to automaton B is a partial function r from states(A) 
to states(B) that  satisfies the following two conditions: 

1. If s E start(A) then s E domain(r) and r(s) E start(B). 
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2. If s---%A s' A s E domain(r) then s' E domain(r) and 
- r ( s )  = r ( s ' )  A a = v ,  or 
- r (s )  % r(s ' ) .  

Write A < a  B if there exists a step refinement from A to B. It is easy to check 
that  _<R is a preorder (i.e., is transitive and reflexive). If A <R B then we can 
construct, for each execution a of A, a corresponding execution of B with the 
same trace. This idea is formalized below. 

Suppose A and B are automata,  R C states(A) × states(B), and a = 
soalsla2s2..,  and a t = uoblulb2u2.., are executions of A and B, respective- 
ly. Let index(a) and index(a') denote the index sets of a and a ' .  We say that  
a and a '  are R-related, written (a, a ~) E R, if there exists an index mapping, 
i.e., a total, nondecreasing function rn : index(a) -4 index(a') such that ,  for all 
i E index(a) and j E index(a'), 

1. m(0) = O, 
2. (si, urn(O) E R, 
3. i > O  ~ ai=bm(i) V ( a i = 7 " A m ( i ) = m ( i - 1 ) ) ,  
4. re(i) < j A ( i + l E i n d e x ( a ) : : ~ j < m ( i + l ) )  ~ (s i ,uj)  E R A b j = r .  

Write (A, B) E R if for every execution a of A there is an execution c~ ~ of B such 
that  (a,  cd) E R, and write [A, B] E R if for every finite execution a of A there 
is a finite execution a I of B such that  (c~, c~ I) E R. 

An index mapping maps low-level states to corresponding high-level states 
such that  the start states correspond (Condition 1), corresponding states are 
related by R (Condition 2), each non-;- action in the low-level execution corre- 
sponds to an action in the high-level execution (Condition 3), and each non-r  
action in the high-level execution corresponds to an action in the low-level execu- 
tion (Condition 4). Our notion of correspondence is similar to the one presented 
in [8, 19]. Within the theory of I /O  automata ,  execution correspondence plays a 
crucial role in proofs of preservation of both safety and liveness properties. Our 
notion is more restrictive than the one of [8, 19], but has the advantage that  it 
also preserves until properties. 

T h e o r e m  1. (Execution correspondence) (I) If ((~, ~)  E R then trace(a) = 
trace(~'). (2) If  (A, B) E R then A <T B. (3) If [A, B] E R then A <.T  B. 

T h e o r e m  2. (Soundness of refinements) If r is a step refinement from A to B 
then (A, B) E r. 

Combining Theorems 1 and 2 gives that  A _<R B implies A <T B. In addition, 
Theorem 2 allows us to use refinement relations as a sound technique for proving 
implementation relations between live automata,  as in [8,19]. 

2.2 N o r m e d  F o r w a r d  S i m u l a t i o n s  

A normed forward simulation from A to B consists of a relation f over states(A) × 
states(B) and a function n : steps(A) × states(B) -4 S, for some welt-founded 
set S, such that  (here f[s] denotes the set {u I(s, u) e f}): 
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1. If s E start(A) then f[s] I"1 start(B) ~ O. 
2. If s--~A s ~ A u E f[s] then 

- u E f [ s ' ]  A a - - - - 7 - , o r  

- 3u' E f[s ' ]  : u  5 B  u', o r  

-- ::]U ! E f[8]  :U 5 B  U ! A n ( S - - ~ A  8 I ,u  l) < n(8----~A 8 I ,u ) .  

Write A <F B if there exists a normed forward simulation from A to B. 
The intuition behind this definition is that  when s--%A s ~ and (s, u) E f ,  

either the transition in A is a stuttering step (first clause), or there is a matching 
step in B (second clause), or B can do a stuttering step which decreases the norm 
(third clause). Since the norm decreases at each application of the third clause, 
it can only be applied a finite number of times. In general, the norm function 
may depend both on the transitions in A and on the states of B. However, if B 
is convergent, i.e., there are no infinite r-paths, then one can simplify the type 
of the norm function (though not necessarily the definition of the norm function 
itself!) to n : states(B) --+ S. In fact, in the approach of [10], which only applies 
to convergent processes, the norm function is required to be of this restricted 
type. It is not hard to see that  in the example of Figure 1, where B is divergent, 
the norm necessarily depends on the selected step in A. 

As each step refinement is a normed 
f°rward simulati°n (f°r an arbitrary a ~  <F ~ v  ~_ 
norm function) A <R B implies A <F r 
B. It is also not so difficult to prove • • 
that <F is a preorder. The following A B 
theorem states that  normed forward Fig.  1. Norm function must take steps 
simulations induce the same preorder of A into account. 
on automata  as "branching forward sim- 
ulations". Basically the same result has been obtained by Namjoshi [14] in the 
setting of stuttering bisimulations. 

T h e o r e m  3. A <F B iff there is a branching forward simulation from A to B, 
i.e., a relation f over states(A) × states(B) such that 

1. I f  s E start(A) then f[s] M start(B) • O. 
2. I f 8  a) A 8 t A u E f[s] then 

- u E f [ s ' ]  A a = 7 - ,  or 
- 3uo,..,Un E f [ 8 ]  3 u '  E f [ s ' ]  : uo  = u A  ( V i  < n : ui 

Un " - ~ B  z/t- 
T) B Uih-1 ) A 

An interesting implication of our proof of Theorem 3 is that  if there is a normed 
forward simulation from A to B, there is in fact a normed forward simulation 
with a norm function that  has the set of natural numbers as its range. 

The proofs of the following Theorems 4 and 5 are standard and similar to 
the proofs of the corresponding results in [13] and elsewhere. 

T h e o r e m  4. (Soundness of forward simulations) I f  f is a normed forward sim- 
ulation from A to B then (A, B) E f .  
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T h e o r e m  5. (Partial completeness of forward simulations) I f  B is determinis- 
tic and A < ,T  B, then A <F B. 

It is interesting to note that  there is only one result from [13] that  does not 
carry over to the setting of this paper. This result says that  if A is a forest, i.e., 
each state can be reached via exactly one execution, and A <F B then A <R B. 
The au tomata  A and B of Figure 1 constitute a counterexample. 

2.3 N o r m e d  Backward S imulat ions  

A normed backward simulation from A to B consists of a total relation b over 
states(A) × states(B) and a function n :  (steps(A) U start(A)) x states(B) ~ S, 
for some well-founded set S, such that  

1. If s e start(A) ^ u • b[s] then 
- u • start(B), or 
- 3~' • b[s]: ~' "~B ~ ^ n(s,  ~') < n(s,  ~). 

2. I f s '  %AS A u • b[s] then 
- u • b [ s ' ]  A a = r ,  or 
- 3 u ' • b [ s ' ] : u '  a ) B u ,  o r  

- 3~' • b[s]: ~' % u A . ( s '  °~a s, ~') < n(s' % s, ~). 

Relation b is image-finite if, for all s, the set his] is finite. Write A <B B if 
there is a normed backward simulation from A to B, and A <iB B if there is 
an image-finite normed backward simulation from A to B. It is routine to prove 
that  < s  and ~iB are preorders, and to characterize these relations in terms of 
"branching backward simulations" as in Theorem 3. 

The proofs of the following Proposition 1, Theorem 6 and Theorem 7 again 
closely follow the proofs of the corresponding results in [13]. 

P r o p o s i t i o n  1. (1) A <rt B ~ A <iB B. (2) If  all states of A are reachable, B 
is deterministic and A <B B, then A <rt B. (3) A <ir~ B =~ A <B B. (4) If  all 
states of A ave reachable, B has finite invisible nondeterminism and A <_s B, 
then A <_iB B. 

T h e o r e m  6. (Soundness of backward simulations) If  b is a normed backward 
simulation from A to B then [A, B] • b. If, moreover, b is image-finite then 
(A, B) • b. 

T h e o r e m  7. (Partial completeness of backward simulations) If  A is a forest 
and A < ,T  B, then A <]3 B. 

2.4 H i s t o r y  R e l a t i o n s  

A pair (h, n) is a normed history relation from A to B if (h, n) is a normed 
forward simulation from A to B and h -1 is a step refinement from B to A. 
Write A _<H B if there exists a normed history relation from A to B. 
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Thus A -<H B implies A -<F B and B < a  A. Through these implications, the 
preorder and soundness results for forward simulations and refinements carry 
over to history relations. In fact, if (h, n) is a normed history relation from A 
to B then h-1 is just a functional branching bisimulation between A and B in 
the sense of Van Glabbeek and Weijland [9]. Hence, history relations preserve 
behavior of automata  in a very strong sense. 

The following theorem is a variant of a result proved by Sistla [17]. 

T h e o r e m  8. (Completeness of history relations and backward simulations) If 
A <.W B then there exists a forest C such that A -<H C -<B B. 

T h e o r e m  9. A -<F B ¢~ (3C : A -<H C _<a B). 

2.5 P r o p h e c y  Relat ions  

A pair (p, n) is a normed prophecy relation from A to B if (p, n) is a normed 
backward simulation from A to B and p-1 is a step refinement from B to A. 
Write A -<p B if there exists a prophecy relation from A to B, and A <ie B if 
there is an image-finite prophecy relation from A to B. Thus A _<iP B implies 
A -<iB B and A -<p B, and A -<p B implies A -<B B and B < a  A. Moreover, if 
all states of A are reachable, B has finite invisible nondeterminism and A -<p B, 
then A _<iP B. Through these implications, the preorder and soundness results 
for backward simulations and refinements carry over to prophecy relations. 

T h e o r e m  10. (1) A ~_B B ~=~ (3C : A <p C -<~ B). (2) A -<iB B ~ (36 : 
A -<iP C -<R B). 

We can now state variants of the well-known completeness result of Abadi 
and Lamport  [1]. 

T h e o r e m  11. (Completeness of history+prophecy relations and refinements) 
Suppose A -<,W B. Then (1) 3C, D : A -<H C -<p D -<rt B. (2) I f  B has finite 
invisible nondeterminism then 3C, D : A <_H C --<iF D _<a B. 

2.6 D e c i d a b i l i t y  

Fix an assertion language/~ that  includes first-order predicate logic and inter- 
preted symbols for expressing the standard operations and relations. If automata  
A and B, and a conjectured simulation relation R and norm function n can all 
be expressed within a fragment of/2 for which tautology checking is decidable 
and if the transition relations of A and B can be specified using a finite number 
of deterministic transition predicates (as defined, for instance in, [7]), then it 
is decidable whether the pair (R, n) is a normed forward or normed backward 
simulation. It is not hard to prove that  this result does not hold for the refine- 
ments, forward and backward simulations presented in [13], nor for the prophecy 
variables of [1]. 



339 

2.7 R e a c h a b i l i t y  

When proving simulations one often restricts the automata  to the reachable sub- 
automata,  in order to be able to use invariants. In backward simulations this is 
not convenient, therefore a slightly adapted version of the backward simulation 
is presented below. The predicate Q on states of B can be used as induction 
hypothesis. 

The adapted normed backward simulation from A to B consists of a total 
relation b over states(A) x states(B) and a function n :  (steps(A) U start(A)) x 
states(B) --+ S, for some well-founded set S, such that  

1. If s E start(A) A u E b[s] A Q(u) then 
- u E start(B),  or 
- 3u '  E b[s] :  u'--5+/3 u A n(s, u') < n(s, u) A Q(u'). 

2. If s' a)A s A u E b[s] A reachable(s') A Q(u) then 
- uEb[s']  A a = r ,  or 

- 3u' ~ b[s'] : u' °~/3 u ^ Q(~') ,  or 
- 3~'  e b[s]: u ' - ~ / 3  u n n(s '  % s, u') < n(s'  % s, u) n Q(u') .  

3 E x a m p l e :  I E E E  1 3 9 4  

In this section we illustrate the notions of step refinements and normed (forward 
and backward) simulations through the verification of a fragment of IEEE 1394 
[12], a high performance serial multimedia bus protocol. The specific algorithm 
that  we analyze is an abstract version of the tree identify phase (TIP) of the 
IEEE 1394. We present the TIP  protocol at three levels of abstraction, and 
prove, via refinements and simulations, that  these three specifications are trace 
equivalent. The three au tomata  are described in the IOA language of [7], and 
the relations that  will be established between them are depicted below. 

<B _<F 

IOA contains the basic type Bool with its standard operators, such as A, V 
and --. In addition type constructors Array,  Seq (finite sequences) and Set  (finite 
sets) are part of the language. The notation _[__] is used for array subscripting, 
an array with a value e in all cells is denoted by c o n s t ( e ) .  The operation __ F _  
appends an element at the end of a sequence. 

The task of the TIP  is to check whether the finite and connected network 
topology is cycle free, and (if this is indeed the case) to elect a leader amongst 
the nodes. In Figure 2, a simple example network is displayed, with devices A, 
B and C, and ports p, % r and s. It is assumed that  each port is connected to 
exactly one other port,  which is called its peer. A network may contain a loop, 
and devices even can be connected to themselves. So, in the example port q also 
could have been connected to r ,  but  then q and r could not have been connected 
to p and s, respectively. 
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automaton  TIP1 
s lgna tu re  

o u t p u t  root(d  : Dev), 
loopdetec t (d  : Dev) 

s ta tes  
root, Ipd: Array[Dev,Bool] := const(false) 

transitions 
o u t p u t  root  (d) 

pre  -- 3 e : Dev (oncycle? (e) V root  [e]) 
ef t  root [d]  := t rue  

o u t p u t  loopdetec t  (d) 
pre  oncycle?(d) A -~lpd[d] 
etT lpd[d] := t rue  

Fig. 3. Automaton TIP1. 

In Figure 3, au tomaton  TIP1 is presented. This simple au tomaton  has two 
action schemas r o o t  (d:  Dev) and l o o p d e t o c t  (d : Dov). Specification TIP 1 says 
tha t  if the network is cycle free exactly one node will perform a r o o t  action. 
Otherwise, no r o o t  action will occur, but  instead each node tha t  lies on a cycle 
will perform a loopdetect action. 

Automaton  TIP2, presented in Figure 4, is an imple- 
mentat ion of TIP1. The states contain an extra variable 
c h i l d :  Se t  [ P o r t ] .  If  port  p is in c h i l d  then we say tha t  
its device dev (p )  has a child, namely d e v ( p e e r ( p ) ) .  
When all but  one neighbours of a device are its children 
it can become a child itself. Besides the l o o p d e t e c t  and 
r o o t  actions, TIP2 has an a d d c h i l d  action, which adds 
a port  to the child set. I f  we consider the connections 
with a port  in the c h i l d  set to be the branches of a tree, 

F ig .  2. A network then this tree grows with each a d d c h i l d  action from the 
leaves in the direction of the root. If  all the ports  of a 

device are in the c h i l d  set then this device will become the root. 
Au tomaton  TIP3, presented in Figure 6, is an implementat ion of TIP2. It  

extends TIP2 with a state variable mq, which gives a queue of outgoing messages 
per port .  Furthermore,  some status bits per device ( i n i t ,  rc )  are added. For 
a detailed description of the protocol we refer to [6] and the full version of this 
paper.  Next the relations between the au t om a t a  will be discussed. 

(TIP2 ~_R TIP1) The function b f rom states of  TIP2 to states of  TIP1 is 
defined as the projection on the s tate  variables of TIP1, in IOA notation: 
b ( [ c h i l d , r o o t , l p d ]  ) == [ r o o t ,  1pd].  It  is quite simple to prove tha t  b is a 
step refinement (see Section 2.1) f rom TIP2 to TIP1. 

The simulation from TIP1 to TIP2 illustrates the usefullness of backward 
simulations. A (traditional) forward simulation exists, but no normed forward 
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a u t o m a t o n  TIP2 
s igna tu re  

in te rna l  addchild(d : Dev,p : Port),  
o u t p u t  root(d  : Dev), 

loopdetec t (d  : Dev) 
s ta tes  

child: Set[Port] := {}, 
root,lpd: Array[Dev,Bool] :---- const (false) 

t r a n s i t i o n s  
in terna l  addchi ld(d,p)  where  d = dev(p) 

p re  p ~ ch i ld  A 
ports (dev(peer(p))) - child = {peer(p) } 

eiT child := insert(p,child) 

output root (d) 
pre -~root[d] A ports(d) _ child 
eft root[d] := true 

output loopdetect (d) 
pre oncycle?(d) A ~ ipd[d] 

eIT ipd[d] := true 

Fig. 4. Automaton TIP2. 

simulation. The reason for this can be seen in Figure 5. This figure depicts the 
transit ion systems of TIP1 and TIP2, for a network with only two devices (d and 
e) and a single link connecting these. The solid arrows represent the transitions 
of the systems, r is a shorthand for r o o t  and a for a d d c h i l d .  In this case TIP1 
only can do a r o o t ( d )  or a r o o t ( e )  action. Before a r o o t  action can be done 
in TIP2 an a d d c h i l d  action has to be done. 

TIP1 TIP2 

....... 

Fig .  5. Transit ion systems 

A possible simulation relation is depict- 
ed by the dotted lines. This is not a normed 
forward simulation because the s tar t  s ta te  
of T I P l  is related to a state where only 
a r o o t ( d )  action can happen and not a 
r o o t ( e )  action. 

However the dot ted lines depict a normed 
backwardsimnlationfrom TIP1 to TIP2. The 

norm is defined on the states of  TIP2 as the number  of ports  in the child set. 
Note tha t  the only internal action of TIP2 is a d d c h i l d ,  so the norm only needs 
to decrease when an a d d c h i l d  is simulated backwards (is 'undone') .  

In general, backward simulations can be useful when the implementat ion 
'makes  a decision' with internal steps. In TIP2 the decision who becomes root 
device is made  by the internal action a d d c h i l d .  

(TIP2 _~B TIP1) The inverse of function b is used as simulation relation. A 
predicate Q on the states of TIP2 is used to restrict the statespace. 
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q(u) ---- Vd.u.root[d] -+ ports(d) C u.child A 
Vd.u.Ipd[d] -+ oncycleT(d) A 
GDT(u.child) 

The first two conjucts are trivial consequences of the specification. GDT(S) is 
a predicate on ports  stat ing that  the net obtained by deleting all links without 
a port  in the set S is a Growing Directed Tree. This means tha t  it contains no 
cycles and each device has at most  one parent and when a device has a parent 
all its other neighbours are its children. The norm function only depends on the 
s tate  of TIP2, it is defined as the cardinalty of the set c h i l d .  

(TIP3 _<R TIP2) The function f from states of TIP3 to states of TIP2 is the 
projection on the state variables of TIP2. In IOA notat ion : 
f( [child,mq, init,rc,root,ipd] ) == [¢hild,root,ipd] 

In the routine proof  of TIP3 _<R TIP2 an invariant I is proved at the same 
time, where I == o n c y c l e ? ( d )  - - >  i n i Z ( d ) .  

(TIP2 _<F TIP3) The proof that  f - 1  is a normed forward simulation from 
TIP2 to TIP3 will be discussed in more detail. The condition for s tar t  states 
holds trivially. Next the three actions of TIP2 must  be simulated, they will be 
discussed each. The norm function is defined per action schema and the result 
type is the natural  numbers  with the usual ordering. For convenience actions of 
TIPx are subscripted with x. The  states s and t are states of TIP2 before and 
after a transition respectively, similarly u and v are states of TIP3. 

The l o o p d e t e c t 2  action of TIP2 has the same precondition as the action 
l o o p d e t e c t 3  of TIP3, and mentions only state variables that  the au toma ta  
have in common.  Thus if the precondition of l o o p d e t e c t 2  holds on a state 
s then the precondition of l o o p d e t e c t 3  also holds on states in f - l ( s ) .  Be- 
cause the l o o p d e t e c t 2  action can be simulated directly, the norm function for 
l o o p d e t e c t 2  is irrelevant. 

The precondition of the the roo t2  action is similar to the precondition of 
root3 ,  the lat ter  has only a single extra conjunct: ~ i n i t  [d].  The norm function 
for r o o t ( d ) 2  is defined to be 1 when i n i t  [d] holds and 0 otherwise. 

If  roo t (d )2  is enabled and f ( u )  = s then roo t (d )3  or ........... Tini  t 
ch i ld renknown(d)~  are enabled in u. A case distinction on <:.. , c J d  ~ 
u. i n i t  [d] is made.  Suppose u. i n i t  [d] holds then the action T .......... 
ch i ld renknown(d)3  is enabled. This action reduces the norm, r2(d~ ~-~ i n i t  
and the state after this action, is also related to s. Suppose ~ I r3 (d )  
-~u. i n i t  [d] then r o o t  (d)3 is enabled in, u and r o o t ( d ) 3  can 
be simulated directly. 

The proof tha t  addch i ld2  is simulated is similar to the proof  for roo t2  
but longer. Where the roo t2  simulation had two cases, we have seven cases for 
addchi ld2.  The case distinction is on whether init holds or not and whether the 
message queues of the port  that  is added and its peer are empty  or contain a 
parent request. 
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Notice that the relations used in the simulations are the inverses of the func- 
tions (b and f)  used in the step refinements, so in fact we have proved a stronger 
result, namely: TIP1 <_iP TIP2 and TIP2 __~H TIP3. 

A drawback of the use of normed simulations instead of ' traditional '  simula- 
tions could be that one has to find a suitable norm function. In our experience 
the norm functions were obvious. We expect this to be the case in general, be- 
cause the norm function is 'local', only for a specific transition in one automaton 
the internal step in the other should decrease this measure. 
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au toma ton  TIP3 
s ignature  

states 
child: Set[Port] := {} 
mq: Array[Port,Seq[Mes]] := const({}) 
init: Array[Dev,Bool] := const(true) 
rc, root, lpd: Array[Dev,Bool] :----- const(false) 

t ransi t ions 
internal  childrenknown(d) 

pre init[d] A size(ports(d) - child) _< 1 
eft" init[d] := false ; 

for p in ports[d] do if p 6 child 
then mq[p] :-- mq[p] F ack 
else mq[p] :---- mq[p] ~ parent fi od 

internal addchild(d,p) where  d = dev(p) 
pre init[d] A head(mq[peer(p)]) = parent 
eIT child := insert(p, child); mq[peer(p)] :----tail(mq[peer(p)]) 

internal receivemes(d,p,mes) where d = dev(p) 
pre-~init[d] A poris(d) - child = {p} A head(mq[peer(p)]) = mes 
eft if mes = parent then rc[d] :---- true fi; 

mq[peer(p)] := tail(mq[peer(p)]) 
internal solverootcontent(d,p) where d = dev(p) 

pre rc(d) A rc(dev(peer(p))) 
eli child := inser~(p,child) ; 

re(d) := false; rc(dev(peer(p))) :---- false 
ou tpu t  root(d) 

pre-~init[d] A -~root[d] A ports(d) _ child 
eli root[d] :----true 

ou tpu t  loopdetect (d) 
pre oncycle?(d) A -~ Ipd[d] 
eIT Ipd[d] :----true 

Fig.  6. Automaton  TIP3. 


