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Abstrac t .  We consider symbolic on-the-fly verification methods for sys- 
tems of finite-state machines that communicate by exchanging messages 
via unbounded and lossy FIFO queues. We propose a novel representa- 
tion formalism, called simple regular expressions (SREs), for representing 
sets of states of protocols with lossy FIFO channels. We show that the 
class of languages representable by SREs is exactly the class of down- 
ward closed languages that arise in the analysis of such protocols. We 
give methods for (i) computing inclusion between SREs, (ii) an SRE rep- 
resenting the set of states reachable by executing a single transition in a 
system, and (iii) an SRE representing the set of states reachable by an 
arbitrary number of executions of a control loop of a program. All these 
operations are rather simple and can be carried out in polynomial time. 
With these techniques, one can construct a semi-algorithm which ex- 
plores the set of reachable states of a protocol, in order to check various 
safety properties. 

1 I n t r o d u c t i o n  

One of the most popular  models for specifying and verifying communication 
protocols is tha t  of Communicating Finite State Machines (CFSM) [10, 8]. This 
model consists of finite-state processes that  exchange messages via unbounded 
FIFO queues. Several verification methods have been developed for CFSMs [10, 
11, 15, 18-20]. However, since all interesting verification problems are undecid- 
able [10], there is in general no completely automatic verification method for 
this class of systems. 

A way to obtain a decidable verification problem is to consider lossy channel 
systems, where the unbounded FIFO channels are assumed to be iossy, in the 
sense that  they can at any time lose messages. This restricted model covers a 
large class of communication protocols, e.g., link protocols. In our earlier work 
[2], we showed the decidability and provided algorithms for verification of safety 
properties and some forms of liveness properties for lossy channel systems. Our 
algorithm for verifying safety properties is global, in the sense that  it performs 
a backward search, start ing from a set of "bad" states and trying to reach some 
initial state. In contrast,  many efficient verification methods are so-called on-the- 
fly algorithms [17, 13], in which the state-space is explored in a forward search, 



306 

starting from the initial states. In this paper, we therefore consider how forward 
verification can be carried out for lossy channel systems. 

For that we adopt a symbolic verification approach. One of the main chal- 
lenges in developing verification methods for a class of systems is to choose a 
symbolic representation of (possibly infinite) sets of states of a system. The 
symbolic representation should be expressive, yet allow efficient performance 
of certain operations which are often used in symbolic verification algorithms. 
Examples of such operations include checking for inclusion, and computing the 
states that can be reached by executing a transition of the system. In order to 
speed up the search through the state space, it is also desirable to be able to cal- 
culate, in one step, the set of states that can be reached by executing sequences 
of transitions. For instance, we can consider the set of sequences corresponding 
to an arbitrary number of executions of a control loop. This technique to speed 
up the reachability search has been applied e.g. for systems with counters[9] and 
per]ect channel systems [3, 5]. Once a symbolic representations has been obtained 
it can used for many types of verification and model checking problems. 

In this paper, we propose a novel representation formalism, called simple reg- 
ular expressions (SREs), for use in verifying protocols modelled as lossy channel 
systems. SREs constitute a simple subclass of regular expressions. To our knowl- 
edge, this class has not been studied before. Because of the lossiness, we need 
only to represent sets of channel contents that are closed with respect to the sub- 
sequence relation. For example, if a channel can contain the sequence abc, then 
it can also contain the sequences ab, ac, bc, a, b, c, and e. It is well-known that 
downward closed languages are always regular. We strengthen this result and 
show that in fact the class of downward closed languages corresponds exactly 
to those recognized by SREs. This implies that for any lossy channel system 
we represent the set of reachable states as an SRE. We suggest methods for 
computing: 

- inclusion between SREs, which can be done in quadratic time, 
- an SRE obtained by executing a single transition, and 
- an SRE obtained by an arbitrary number of executions of a control loop of 

a program. It turns out that this operation is not very complicated and can 
be carried out in polynomial time. 

With these techniques, one can straightforwardly construct an algorithm which 
explores the set of reachable states of a protocol, in order to check various prop- 
erties. This algorithm is parametrized by the set of control loops that are used to 
speed up the reachability set computation. We also show how one can perform 
model-checking of LTL properties, using a standard construction of taking the 
cross-product of the protocol and a Biichi automaton that recognizes the comple- 
ment of the LTL property in question. It should be noted that all these methods 
are incomplete, i.e., they may sometimes not terminate. The incompleteness of 
our methods is unavoidable despite the facts that reachability is decidable for 
lossy channel systems, and that the set of reachable states is representable by an 
SRE. This is due to a basic result [12] saying that there is no general algorithm 
for generating the set of reachable states. 
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As an illustration of the applicability of our methods and the SRE represen- 
tation, we look at a few communication protocols that have been verified earlier 
in the literature. It turns out that the sets of reachable states of these protocols 
can be conveniently represented as SREs. 

R e l a t ed  Work  There are several other results on symbolic verification of perfect 
channel systems. Pachl [18] proposed to represent the set of reachable states of 
a protocol as a recognizable set. A recognizable set is a finite union of Cartesian 
products of regular sets. Pachl gave no efficient algorithms for computing such a 
representation. In [14] a symbolic analysis procedure is proposed using a class of 
regular expressions which is not comparable with SRE's. However, the computed 
reachability set by this procedure is not always exact. 

Boigelot and Godefroid [3, 5] use finite automata (under the name QDDs) 
to represent recognizable sets of channel contents. In [5] it has been shown that 
the effect of every loop is recognizable for a system with a single fifo-channel. As 
soon as two channels are considered, the effect of a loop may be non-recognizable 
(i.e., not QDD representable). This is due to the fact that the repeated execution 
of a loop may create constraints between the number of occurrences of symbols 
in different channels. For instance, the iteration of a loop where a message is sent 
to two different channels generates pairs of sequences with the same length (as- 
suming the channel is initially empty). In [5] a complete characterization is given 
of the types of loops which preserve recognizability. To compute and represent 
the effect of any loop in a perfect fifo-channel, a representation structure, called 
CQDDs (constrained QDDs), combining finite automata with linear arithmeti- 
cal constraints is needed [7]. In the case of lossy channels, the links between the 
number of occurrences in different channels are broken due to lossiness, and this 
simplifies the computation of the effect of loops, conceptually and practically 
(i.e., from the complexity point of view). 

We argue that SREs offer several advantages when used as a symbolic rep- 
resentation in the context of lossy channel systems. First, the operations on 
QDD's and CQDD's are of exponential complexity and are performed by quite 
non-trivial algorithms (see e.g. [4, 6]), whereas all operations on SRE's can be 
performed by much simpler algorithms and in polynomial time. Moreover, we 
describe a normal form for SREs, and provide a polynomial procedure to trans- 
form an SRE to an equivalent normal SRE. While QDD's admit a canonical 
form via minimization, a corresponding result is not known for CQDD's. Also, 
SREs are closed under the performance of any loop, while QDDs are closed only 
under certain restricted types of loops. 

Finally, although the data structures (QDDs and CQDDs) used in [3, 5, 7] are 
more general than SREs, the algorithms in [3, 5, 7] are not able to simulate the 
ones we present in this paper. The reason is that the lossy transitions are implicit 
in our model, whereas all transitions are explicitly represented in the algorithms 
in [3, 5, 7]. Thus to simulate in [3, 5, 7] the effect of iteration of a loop in the lossy 
channel model, we have to add transitions explicitly to model the losses. These 
transitions add in general new loops to the system, implying that a loop in the 
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lossy channel system is simulated by a nested loop in the perfect channel system. 
However analysis of nested loops is not feasible in the approaches of [3, 5, 7]. 
O u t l i n e  In the next section we give some preliminaries. In Section 3 we intro- 
duce the class Simple Regular Expressions (SREs). In Section 4 we describe how 
to check entailment among SREs. In Section 5 we give a normal form for SREs. 
In Section 6 we define operations for computing post-images of sets of configu- 
rations, represented as SREs. In Section 7 we show how to use SREs to perform 
on-the-fly verification algorithms for lossy channel systems. In Section 8 we illus- 
t ra te  our method with an example. Finally, in Section 9 we present conclusions 
and directions for future work. 

2 P r e l i m i n a r i e s  

Assume a finite alphabet M. For x, y E M* we let x o y  denote the concatenation 
of x and y. We use x n to denote the concatenation of n copies of x. The empty 
string is denoted by c. We use x ~ y to denote that  x is a (not necessarily 
contiguous) substring of y. 

Consider a system modeled by a finite set of finite-state machines, that  com- 
municate through sending and receiving message via a finite set of unbounded 
FIFO channels. The channels are assumed to be lossy in the sense that  they can 
nondeterministically lose messages. We model such a system as a lossy channel 
system. 

Definit ion 1. A Lossy Channel System/2 is a tuple (S, sitar, C, M, ~), where 

S is a finite set of (control) states. The control states of a system with n finite- 
state machines is formed as the Cartesian product S = $1 × . . .  × Sn of the 
control states of each finite-state machine. 
E S is an initial state, The initial state of a system with n finite-state ma- 
chines is a tuple (s i~i t l , . . .  ,si,~itn) of initial states of the components. 

C is a finite set of channels, 
M is a finite set of messages, 

is a finite set of transitions, each of which is a triple of the form (sl, Op, s2), 
where Sl and s2 are states, and Op is a mapping from C to (channel) oper- 
ations. An operation is either a send operation !a, a receive operation ?a, or 
an empty operation nop, where a E M.  [:] 

A transition of form (sl, Op, s2) represents a change of the control state from s~ 
to s2 while performing all the operations in Op. The operations !a, ?a, hop rep- 
resent sending a to the channel, receiving a from the channel, and not changing 
the content of the channel, respectively. 

Global states of a lossy channel system are represented by configurations. A 
configuration 7 o f / :  is a pair (s,w),  where s E S is a control state and w is a 
mapping from C to M*. For two mappings w and w ~ from C to M*, we use 
w ~ w ~ to denote that  w(e) ~_ w~(c) for each c E C. We use ~ to denote the 
mapping where each channel is assigned ~. The initial configuration ~/imt of £: 
is the pair (sinit,e). For each transition (sl, Op, s2) E (f, we define a transition 

8init 
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relation (s,,op~,8=) on configurations, such that  (si, Wl) (81,_~s2) (s2,w2) if and 
only if for each channel c E C we have 

- if Op(e) =!a, then w2(c) = wi(c)  • a. 
- if Op(c) =?a,  then a • w2(e) = wi(c) .  
- if Op(c) = hop, then w2(c) = Wl(C). 

We define a weak transition relation on configurations: (si, wi) (~1 ,~2 )  (sz, w2) 
' and ' -< wi and w2 -~ w2 if and only if there are w~ and w~ such that w i _ 

(sl,wl) < 1'2W 2> w' (s2, 2)- Intuitively, (Sl,Wl) (sl,~s2) (82,W2) denotes that  
(s2, w~> can be obtained from (si,  Wl> by first losing messages from the channels, 
then performing the transition (el, Op, s2) and thereafter losing messages from 
channels. We let <el, Wl> ~ (s:, w2) denote that  there is a transition (si, Op, s2) 

such that  (el, wi) ( s l , ~ z )  (s2, w2). We let ~ denote the reflexive transitive 
closure of ~ .  A configuration "y~ is said to be reachable from a configuration 3' 
if -y ~ ~/'. A configuration 7 is said to be reachable if "y is reachable from the 

configuration ~/init. For a state s, we define U(s)  = {w [ 7init = ~  (s, w) }. initial 

In symbolic verification, we are interested in manipulating sets of configura- 
tions, e.g., in order to compute 7~(s). Let F be a set of configurations. We use 
F(s)  to denote the set {w I (s, w) E F}.  and post((s i ,  Op, s2),  F)  to denote the 

set {7 '  , ~7 E [_r~. 7 ~/,}. 

3 Simple Regular Expressions (SREs) 
We define a class of languages which can be used to describe the set of reachable 
configurations of a lossy channel system. Let M be a finite alphabet. We define 
the set of regular expressions (REs),  and the languages generated by them in the 
standard manner. For a regular expression r, we use [r] to denote the language 
defined by r. For regular expressions ri  and r2, we use ri  = r2 (ri _E r2) to 
denote that  [ri]  :- [r2] ([rl~ C_ [r2]). By rl  F- r2 we mean that  rl  _E r2 and 
rl ~ r2. In case ri  E r2 we say that ri entails re. We use A(r) to denote the set 
of elements of M appearing in r. 

We define a subset of the set of regular expressions, which we call the set of 
simple regular expressions, as follows. 

D e f i n i t i o n  2. Let M be a finite alphabet. A n  atomic expression over M is a 
regular expression of the form 

- (a + e), where a E M ,  or of the form 
- (al + . . .  +am)* ,  where a l , . . .  ,am E M .  

A product p over M is a (possibly empty) concatenation ei * e2 * . "  * e~ of 
atomic expressions e l , . . .  ,an over M .  We use e to denote the empty product, 
and assume that [e] = {e}. 

A simple regular expression (SRE) r over M is of the form Pi + . . .  + Pn, 
where P i , . . .  ,P~ are products over M .  We use 0 to denote the empty SRE, and 
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assume that ~0] is the empty language ~. A language L is said to be simply 
regular if it is representable by an SRE. 

Let C and M be finite alphabets. A C-indexed language over M is a mapping 
from C to languages over M.  A C-indexed RE (SRE) R over M is a mapping 
from C to the set of REs (SREs) over M.  The expression R defines a C-indexed 
language K over M where w E K if and only if w(c) E ~R(c)] for each c E 
C. The entailment relation is extended to indexed REs in the obvious manner. 
An indexed language is said to be simply recognizable if it is a finite union of 
languages recognized by indexed SREs. [] 

D e f i n i t i o n  3. Let M and C be finite alphabets. For a language L C M*, we 
say that L is downward closed if x E L and y -4 x imply y E L. The definition 
is generalized in the natural way to C-indexed languages over M.  [] 

T h e o r e m  1. For a finite alphabets M and C and a C-indexed language L over 
M,  if L is downward-closed then L is simply recognizable. 

Proof. It is well-known that  each downward-closed language is regular. The re- 
sult follows from Higman's theorem [16] which states the following: for any finite 
alphabet M, and for any infinite sequence xl ,  x2 , . . ,  of strings over M, there 
are i < j such that  xi ___ xj.  

Using induction on the set of REs, we can show that  for each RE r, if [r] is 
downward-closed, then there is an SRE r ~ such that  r ~ _= r. The result follows 
immediately. [] 

Since the set of reachable configurations of a lossy channel system is downward- 
closed, we get the following. 

C o r o l l a r y  1. For a lossy channel system L and a state s in £,  the set 7~(s) is 
simply recognizable. 

However, it is shown in [12] that  we cannot in general compute a represen- 
tat ion of T~(s). The uncomputabil i ty of 7~(s) is shown through a reduction to 
an undecidable problem reported in [1]. More precisely, in [1] we show the un- 
decidability of the recurrent state problem: given a lossy channel system £ and 
a state s in £, is there a computation o f / :  visiting s infinitely often? In [12] the 
uncomputabili ty of a representation of ~ ( s )  is reduced to the recurrent state 
problem as follows. We add a new channel c to the lossy channel system. When- 
ever a computation reaches s, an arbi t rary message is sent to c. Suppose that  we 
can compute an indexed SRE R such that  [R] = T~(s). It is clear that  the ex- 
istence of a computation visiting s infinitely often is equivalent to the finiteness 
of [R(c)l. 

T h e o r e m  2. [12] For a lossy channel system ~ and a state s in L, there is, in 
general, no algorithm for computing a representation of T~(s). 

Although we can compute a representation of the set of configurations from 
which a given configuration is reachable ([2]), we cannot in general compute 
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a representation of the set of  configuration which are reachable from a given 
configuration (Theorem 2). This means tha t  we can have a complete algorithm 
for performing backward reachability analysis in lossy channel systems, while 
any procedure for performing forward reachability analysis will necessarily be 
incomplete. 

4 E n t a i l m e n t  a m o n g  S R E s  

In this section, we consider how to check entailment between SREs. First, we 
show a preliminary lemma about  entailment.  

Lemma 1. For products P, p l , . . .  , pn,  i f  p E_ Pl + . . .  -k pn then p U Pi f o r  some  
i • { 1 . . . n } .  

Proof. Given any natural  number  k, we define a sequence x such tha t  x E [p] 
and x ¢ ~o'], for any product  p ' ,  where p [2: p '  and where p '  contains at  most  
k atomic expressions. The result follows immediately. Let p = el • .- .  • era. We 
define x -- Yl • " "  • Ym, where Yi is defined as follows. If  ei = (a + e) then Yi = a. 
If  ei = (al + . . .  + at)* then yi = (al . - . -  • at)  k+l. [] 

Let us identify atomic expressions of form (al q- . . .  -k am)* which have the 
same set al , . . .  , am of symbols. Then _ is a partial  order on atomic expressions. 
I t  is the least part ial  order which satisfies 

(a + e) U (al + . . .  + am)* if a • { a l , . . . , a m }  
(al E (51 --[-...-[- bn)* if { a l , . . .  ,am} C_ {b l , . . .  ,bn} 

Lemma 2. E n t a i l m e n t  among products  can be checked in  l inear t ime.  

Proof. The result follows from the fact tha t  e ___ p, p [Z e if p ¢ e, and e l  • Pl __ 
e2 • io2 if and only if one of the following holds: 

- -  e l  [~ e 2  and el • pl _ p2. 
- el = e2 -- (a q- e) and Pl E p2. 
- e2 = (al + . . .  + an)*, el E e2, and pl _ e2 •p2- [] 

Lemma 3. E n t a i l m e n t  among S R E s  can be checked in quadratic t ime.  

Proof. The  proof  follows from L e m m a  1 and Lemma  2. [] 

Corollary 2. E n t a i l m e n t  among indexed S R E s  can be checked in quadratic t ime.  

5 N o r m a l  F o r m s  f o r  S R E s  

In this section, we show how to compute  normal  forms for SREs. First we define 
a normal  form for products.  

D e f i n i t i o n  4. A product  e l  e .  . . e e n  is said to be normal i f  f o r  each i : 1 < i < n 

we have ei • ei+l [Z ei+l and ei • ei+l iZ ei. [] 
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L e m m a  4. For each product p, there is a unique normal product, which we 
denote ~, such that ~ = p. Furthermore, ~ can be derived from p in linear time. 

Proof. We can define ~ from p by simply deleting atomic expressions which are 
redundant  according to Definition 4. [] 

Similarly, we can define a normal form for SREs. 

Definit ion 5. An S R E  r = pl + . . .  q-Pn is said to be normal if each pi is normal 
for i : l < i < n, and pi ~'= pj ,  for i , j  : l <_ i # j < n. [] 

In the following, we shall identify SREs if they have the same sets of products.  

L e m m a  5. For each SI tE  r, there is a unique (up to commutativity of products) 
normal SITE, which we denote by ~, such that ~ =_ r. Furthermore, ~ can be 
derived from r in quadratic time. 

Proof. The proof follows from Lemma 2, Lemma 1 and Lemma 4. [] 

6 O p e r a t i o n s  o n  S R E s  

In this section, we will define operations for computing post-images of sets of 
configurations, represented as SREs, with respect to transitions of a lossy chan- 
nel system. We will also define operations for computing post-images of sets of 
configurations with respect to an arbi t rary number of repetitions of an arbi t rary 
control loop in a lossy channel system. 

Throughout  this section, we' assume a fixed finite set C of channels and a 
finite alphabet M. We will first consider operations on SREs corresponding to 
single transitions, and thereafter consider loops. 

6.1 C o m p u t i n g  t h e  Effect o f  Single T r a n s i t i o n s  

Consider a language L and an operation op E {!a, ?a, hop}. We define L ® op to 
be the smallest downward closed language such that  y E (L @ op) if there is an 
x E L satisfying one of the following three conditions: (i) op =!a, and y = x • a; 
or (ii) op =?a ,  and a • y = x; or (iii) op = hop, and y = x. 

For an indexed language K,  and a mapping Op from C to operations, we 
define K ® Op to be the indexed language where (K ® Op)(c) = K(c )® Op(c), for 
each c E C. Notice that ,  for a lossy channel sys tem/ : ,  a transition (Sl, Op, s2), 
and a set F of configurations in £:, the set post((sl ,  Op, s2 ) ,F )  is given by 
{(s2 ,~)  I ~ e (F(s~) ® Op)}. 

The following propositions show how to compute the effect of single opera- 
tions on SREs. 

L e m m a  6. For an S R E  r and an operation op, there is an SRE, which we 
denote r®op,  such that Jr® op] = [r]® op. Furthermore, r® op can be computed 
in linear time. 
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Proof. For a product  p and an operation op, we have p ® (Ia) = p e  (a + e), 
p ®(nop)  = p. Furthermore,  e ® (?a) = 0. and if p = e • Pl, then 

p if® = (al + . . .  +an )*  and a E {al + . . . + a n }  
p ® ( ? a ) =  pl i f e = ( a + e )  

Pl ® (?a) otherwise 

For an SRE Pl + . . .  +Pm we. have 

(pl + . . .  + ® op = (px ® op) + . . .  + ® op) 

Lemma 6 can be generalized in the obvious manner to indexed SREs. 

and 

6.2 C o m p u t i n g  the Effect of  Loops 

We study methods to accelerate reachability analysis of lossy channels systems. 
The basic idea is that ,  ra ther  than generating successor configurations with 
respect to single q - t r a n s i t i o n s ,  we shall consider the effect of performing sets 
of sequences of transitions in each step. We consider control loops, i.e., sequences 
of transitions starting and ending in the same control state. If ops is the sequence 
of channel operations associated with a control loop, then we shall calculate the 
effect on an SRE of performing an arbitrary number of iterations of ops. In 
Lemma 7, we show that  for each SRE and sequence ops, there is an n such 
that  the set of all strings which can be obtained through performing n or more 
iterations of ops on the SRE can be characterized by a (rather simple) SRE. 
In other words, the effect of the loop "stabilizes" after at most n iterations, in 
the sense it only generates strings belonging to a single SRE. This implies that  
the effect of performing an arbitrary number of iterations of the loop can be 
represented as the union of n SREs: one of them represents all iterations after n, 
while the remaining SREs each represents the effect of iterating the loop exactly 
j times for j : 1 < j < n - 1. In Corollary 3 we generalize the result to indexed 
SREs. 

For strings x and y, we use x ~c Y to denote tha t  there are xl and x2 such 
that  x = xl  • x2 and x2 • X l  ___ y. The relation -% can be decided in quadratic 
time. We use x ~+  y to denote that  there is a natural  number m > 1 such 
that  x m+l -~ ym. It can be shown that  if m exists then m can be found in the 
interval 1 < m < lYl. It  follows that  the relation + can be checked in quadratic 
time. For a sequence ops = opl op2 . . .  OPn of operations, we define L ® ops to 
be L ®  opl ® oP2 ® . . .  ® Opn. We use ops m ( Ops m) to denote the concatenation 
of m copies of ops (Ops). By ops! (ops?) we mean the subsequence of ops 
which contains only send (receive) operations. For a product  p, let IPl denote the 
number of atomic expressions in p. 

L e m m a  7. For a product p and a sequence ops of operations, the following 
holds. There is a natural number n and a product p' such that either p® ops n = 
or p' = Uj>_n ~p ® opsJ]. Furthermore, the value of n is linear in the size of p, 
and p' can be computed in quadratic time. 



314 

Proof. Let ,k(ops!) = { b l , . . .  , bk}. There are four cases. In the first two cases the 
loop can be i terated an infinite number  of times and the channel contents will be 
unbounded. In case 3 the loop can be i terated an infinite number  of times but 
the channel contents will be bounded. In case 4 deadlock occurs after at  most  n 
iterations. 

1. If (ops?)* C [p]. This means tha t  either ops? is empty  or there is an atomic 
expression in p of the form (al + . . .  + am)* where/~(ops?) C_ { a l , . . .  , am}. 

In case ops? is empty, we let n = 0 and p~ = p • (bl + . . .  + bk)*. Otherwise, 
let e be the first expression in p (starting from the left) which satisfies the 
above property, and let p = Pl • e • p~. We define n = IPll and p~ = e • P2 • 
(bl + " .  + bk)*. 
Intuitively, after consuming the words in Pl,  the loop can be i terated an 
arbi t rary  number  of times producing and adding to the right a corresponding 
number  of ops!. Hence, due to lossiness, the global effect is obtained by 
concatenating to the right of e .  P2 the downward closure of (ops!)*, which 
is precisely (bl + . . .  + bk)*. 

2. If  (ops?)* 9£ ~P], ops? ~+ ops!, and p ® ops 7£ 0, then we define n = IPl and 
p' = (51 + . . .  + bk)*. 
Intuitively, since (ops?)* ~= [p], the original contents of the channel will be 
consumed after at most  n iterations. Furthermore,  ops? ~+ ops! implies tha t  
there is an m such that  (ops?) m+l -~ (ops!) m. Hence tha t  contents of the 
channel will grow by at least ops! after each m + 1 iterations. By iterating 
the loop sufficiently many  times we can concatenate any number  of copies of 
ops! to the end of the channel. Again, by lossiness, the total  effect amounts  to 
(bl + - . - +  bk)*. The condition p ®  ops 7 ~ 0 guarantees tha t  the first i teration 
of the loop can be performed. This is to cover cases where e.g. the channel 
is initially empty  and the receive operations are performed first in the loop. 

3. If  (ops?)* ~= [p], ops? 2~ + ops!, ops? -<cops!,  and p ® ops 2 7£ ~, then 
n = IPt + 1 p~ = p ® ops n+l. 
Although the loop can be i terated any number  of times, the contents of 
the channel will not grow after the n th iteration. Observe tha t  we demand 
p N ops 2 7£ 0. The condition p ® ops 7£ 0 (in case 2) is not sufficient here. A 
counter-example is p = ba and ops = (?b)(?a)(!a)(!b). We get p ® ops = ab 
and p ® ops 2 = ~. An explanation is that ,  for strings x and y, the relation 
x _ +  y (a condition of case 2) implies x _ y, while x 5c  Y (the corresponding 
condition in case 3) implies x _ y2 but not x _ y. 

4. If  conditions 1, 2, or 3 are not satisfied, then n = Ip l+l .  We have p®ops  n = 0. 
In this case the loop can be executed at most  n times, after which the 
channel becomes empty,  and we deadlock due to inability to perform receive 
operations. 

Notice tha t  the proof  of Lemma  7 gives us a complete characterization of whether 
a loop can be executed infinitely often from a certain configuration (i.e., in cases 
1. - 3.), and whether in such a case the contents of channel grows unboundedly 
or stays finite. 
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Also, observe that  in case we have an SRE (instead of a product) then we 
can apply the lemma to each product  separately. 

The result of Lemma 7 can be generalized to indexed SREs in a straightfor- 
ward manner: The loop can be executed infinitely often if and only if the loop 
can be executed infinitely often with respect to each channel. If the loop can be 
executed infinitely often, then we take the Cartesian products of the expressions 
computed according to Lemma 7. This gives us the following. 

C o r o l l a r y  3. For an indexed SRE R and a sequence Ops o] indexed operations, 
there is an indexed SRE, which we denote by R ®  Ops*, such that [R ® Ops*] = 
Uo<_j[R @ OpsJ]. Furthermore, R ® Ops* can be computed in quadratic time. 

7 Use in Verification Algorithms 

The SRE representation and the operations presented in this paper can be used 
in on-the-fly verification algorithms for lossy channel systems. The techniques 
are rather  standard, so here we only provide a sketch. 

Suppose we want to check whether some set FF of configurations is reachable. 
We then search through the (potentially infinite) set of reachable configurations, 
as follows. 

We use symbolic states to represent sets of configurations. A symbolic state ¢ 
is a pair (s, R), where s is a control s t a t e ,  and R is an indexed SRE describing 
the contents of the channels. The language [¢] defined by ¢ is the set of con- 
figurations {(s, w) ; w E [R]}. We extend the entailment relation in the obvious 
way so that  (s, R) E (s t, R ~) if and only if s = s ~ and R E R r. 

We maintain a set V which we use to store symbolic states which are gener- 
ated during the search. At the start,  the set V contains one unexplored symbolic 
state representing the initial configuration. From each unexplored element in V, 
we compute two sets of new elements: one which corresponds to performing single 
transitions (Lemma 6), and another which describes the effect of a selected set 
of control loops. When a new element ¢ is generated, it is compared with those 
which are already in V. If ¢ E ¢1 for some ¢1 E V, then ¢ is discarded (it will not 
add new configurations to the searched state space). It is also checked whether 

has a non-empty intersection with FF. This is easy if e.g., FF is a recognizable 
set. If the intersection is non-empty, the algorithm terminates. Otherwise, the 
algorithm is terminated when no new symbolic states can be generated. 

When performing control loops during the analysis, there is a choice in how 
many loops to explore. A reasonable strategy seems to be to investigate the 
sequences of transitions which correspond to simple control loops in the program. 
A simple control loop is a loop which enters each control state at most once. By 
applying these control loops we get new symbolic states which can be computed 
according to Corollary 3. 

During our search, it can happen that  a new element ¢ is added to V, al- 
though ¢ will not add any new configurations to the explored state space. This 
is due to the fact that  even if ¢ ~ ¢~ for all ¢' E V, the relation ~¢] C U¢,~v~¢'~ 
may still hold. The test for discarding new SREs can therefore be modified so 
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that ¢ is discarded if and only if [¢] C U¢,ev[¢']" This would make the algo- 
rithm terminate more often (fewer elements need to be added to V). However, for 
indexed SREs (and hence for symbolic states), the above test has an exponential 
complexity in the number of channels. 

From Theorem 2, we know that our algorithm is incomplete. The algorithm 
will always find reachable configurations in FF, but it will not necessarily ter- 
minate if all configurations in FF are unreachable. 

In fact, we can use a slight extension of this procedure to check whether a 
lossy channel system satisfies a linear temporal logic formula over the control 
states of the system. By standard techniques [21], we can transform this prob- 
lem into checking whether a lossy channel system, in which some control states 
are designated as "accepting", has an infinite computation which visits some 
accepting control state infinitely often. In our earlier work [1], we showed that 
this problem is undecidable. However, an incomplete check can be performed 
as part of the state-space generation in the previous paragraph. More precisely, 
when exploring a set of configurations with an accepting control state we can, 
as part of exploring the loops, check whether there is a control loop that can be 
executed an infinite number of times. We only need to check whether one of the 
three first conditions in the proof of Lemma 7 holds. 

8 E x a m p l e  

In this section we apply our algorithm (Table 1) to a sliding window protocol 
(shown in Figure 1). We use a symbolic representation of the form (si, qj, rl ,  r2), 
where s~ and qj are the control states of the sender and the receiver, respec- 
tively, and rl and r2 are SREs which describe the contents of the message and 
acknowledgement channels. We explore the state space as described in the pre- 
ceding section, investigating the effect of simple control loops in the program. 

In Figure 1, we start from (sl,ql,e,e) and apply the speed-up operation 
obtaining ¢0- From ¢o we perform a single transition moving from ql to q2, and 
then perform the speed-up operation obtaining ¢1. In a similar manner we obtain 
¢2 and ~b3 from ¢1, etc. Observe that, e.g. ~b5 entails Cv, so ¢5 is discarded. 

9 C o n c l u s i o n s  

We present a method for performing symbolic forward reachability analysis of 
unbounded lossy channel systems. In spite of the restriction of lossiness, we can 
model the behaviour of many interesting systems such as link protocols which are 
designed to operate correctly even in the case where the channels are lossy and 
can lose messages. Also lossy channel systems offer conservative approximations 
when checking linear time properties of systems with perfect channels. This is 
because the set of computations of a lossy channel system is a superset of the set 
of computations of the corresponding system with perfect channels, and hence 
if a linear time property holds in the first it will also hold in the second. 

In this paper, we accelerate the forward search of the state space, by consider- 
ing (besides single transitions) the effect of "meta-transitions" which are simple 
loops entering each control state at most once. We intend to investigate more 
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?m2 

?m2 

?ml !a2 ? . 1 

Sender  Rece iver  

Fig. 1. Example: A Sliding Window Protocol 

general types of meta-transitions. For example consider the case where we have 
two loops sending two different messages (say al and a2) to the same channel. 
In the algorithm we propose we cannot cover the fact that  the combination of 
the two loops would give the expression (al + a2)* in the channel. We are cur- 
rently carrying out experiments to evaluate the performance of our algorithm. It 
would be particularly interesting to compare the forward reachability algorithm 
we present here with the performance of the backward reachabitity algorithm 
reported in [2]. 

R e f e r e n c e s  

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

Parosh Aziz Abdulla and Bengt Jonsson. Undecidable verification prob- 
lems for programs with unreliable channels. Inform. and Comput., 
130(1):71-90, 1996. ~. 
Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreli- 
able channels. Inform. and Comput., 127(2):91-101, 1996. 
B. Boigelot and P. Godefroid. Symbolic verification of communication 
protocols with infinite state spaces using QDDs. In CAV'96, LNCS 1102. 
B. Boigelot, P. Godefroid, B. Willems, and 
P. Wolper. The power of QDDs. Available at 
http ://www. montef iore. ulg. ac. be/-biogelot/research/BGWW97, ps. 
B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of QDDs. 
In SAS'97, LNCS. 1997. 
A. Bouajjani and P. Habermehl. Symbolic teachability analy- 
sis of fifo-channel systems with nonregular sets of configurations. 
http://www.imag.fr/VERIMAG/PEOPLE/Peter.Habermehl. 
A. Bouajjani and P. Habermehl. Symbolic teachability analysis of fifo- 
channel systems with nonregular sets of configurations. In ICALP '97, 
LNCS 1256. 1997. 
G. V. Bochman. Finite state description of communicating protocols. Com- 
puter Networks, 2:361-371, 1978. 
B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In 
CAV'94, LNCS 818. 1994. 



318 

¢0 (sl,ql , (ml +m2)* , (a3)*) 
¢1 (81,q2, (ml + m 2 ) * ,  (as)* * (al)*) 
¢2 (s2, q2 , (ml + m2)* * (m2 + m3)* , (al)*) 
¢3 (Sl,q3 , (ml -[-m2)* , (63)* • (61)* • (62)*) 
¢4 <s2, qa, (ml + m2)* • (m2 + m3)*, (al)* • (a2)*) 
¢~ (s~, q~, (m, + m2)* • (ml + m3)*, (62)*) 
¢6 (s2,ql,  ( m 2 + m 3 ) * ,  (al)*e(a2)*e(a3)*) 
¢7 <S3, q3, (ml + m2)* • (m2 + m3)* • (ml + ms)* , (a2)*) 
¢8 (s3, ql , (m2-J-m3)* e (ml +m3)* , (62)* • (63)*) 
¢9 

] # # I I 

¢11 (Sl ,  ql , (m2  + m3)* * (I)21 + /ft3)* " (ml + m2)*, (63)*) 
¢12 (81, q2 ,  (ml -]- T/~3)* " (ml -{- m2)*, (63)* " (al)*) 

(s2,q2 , (ml +m3)* • (m2 +m3)* , (al)*) 
¢14 (s2,q2, (ml + m3)" * (ml +m2)* • (m2 +m3)* , (al)*) 

¢1 
¢2, ¢3 

¢4 
¢4, ¢~ 
¢6, tr 
Ent t r  
ts, ¢9 

¢s 
¢10, ¢11 
Ent ¢11 
¢12, ¢13 

¢12 
¢3, ¢14 
Ent ¢14 

¢4 

Table  1. Reachability Analysis of the Sliding Window Protocol 

[10] 

[11] 

[12] 

[13] 

[14] 

[15] 

[16] 

[17] 

[181 

[19] 

[20] 

[21] 

D. Brand and P. Zafiropulo. On communicating finite-state machines. 
Journal of the ACM, 2(5):323-342, April 1983. 
A. Choquet and A. Finkel. Simulation of linear FIFO nets having a struc- 
tured set of terminal markings. In Proc. 8 th European Workshop on Ap- 
plications and Theory of Petri Nets, 1987. 
G6rard C6c6, Alain Finkel, and S. Purushothaman Iyer. Unreliable chan- 
nels are easier to verify than perfect channels. Inform. and Comput., 
124(1):20-31, 10 January 1996. 
C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory effi- 
cient algorithms for the verification of temporal properties. In CAV'90. 
A. Finkel and O. Marc6. Verification of infinite regular communicating 
automata. Technical report, LIFAC, ENS de Cachan, 1996. Tech. Rep. 
M.G. Gouda, E.M. Gurari, T.-H. Lai, and L.E. Rosier. On deadlock de- 
tection in systems of communicating finite state machines. Computers and 
Artificial Intelligence, 6(3):209-228, 1987. 
G. Higman. Ordering by divisibility in abstract algebras. Proc. London 
Math. Soc., 2:326-336, 1952. 
G.J. Holzmann. Design and Validation of Computer Protocols. Prentice 
Hall, 1991. 
J.K. Pachl. Protocol description and analysis based on a state transition 
model with channel expressions. In Protocol Specification, Testing, and 
Verification VII, May 1987. 
W. Peng and S. Purushothaman. Data flow analysis of communicating 
finite state machines. A CM Trans. on Programming Languages and Sys- 
tems, 13(3):399-442, July 1991. 
A.P. Sistla and L.D. Zuck. Automatic temporal verification of buffer sys- 
tems. In Larsen and Skou, editors, CAV'91, LNCS 575. 1991. 
M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic 
program verification. In LICS'86, IEEE, 1986. 


