
Model Checking LTL Using Net Unforldings*

Frank Wallner

Institut fiir Informatik, Technische Universit~t Mfinchen
Arcisstr.21, D-80290 Mfinchen, Germany

email: wallnerf@in.tum.de

Abs t rac t . Net unfoldings are a well-studied partial order semantics for
Petri nets. In this paper, we show that the finite prefix of an unfolding,
introduced by McMillan, is suited for model checking linear-time tempo-
ral properties. The method is based on the so-called automata-theoretic
approach to model checking. We propose a technique to treat this ap-
proach within the framework of safe Petri nets, and give an efficient
algorithm for detecting the system runs violating a given specification.

1 I n t r o d u c t i o n

Linear-time Temporal Logic (LTL) is an adequate formalism for specifying be-
havioural properties of distributed systems, including safety and liveness prop-
erties. Deciding whether a given system Z satisfies a specification 9 is called the
model checking problem.

The automata-theoretic approach to model checking translates this problem
into an automata-theoret ic problem. This approach assumes that Z can be rep-
resented as an automaton A with L(A) being the set of its runs. The system
satisfies 9 iff L(A) is a subset of the language L~ of words satisfying 9-

Vardi, Wolper et al. [20,22] observed that for every formula 9 it is possible to
construct a Bfichi automaton A~ that accepts L~. Since negation of a formula
9 is equivalent to complementing the corresponding language L~, the actual
problem is to decide if there is a system run accepted by A-,~. Defining an
adequate product automaton Ap of A and A ,v that accepts the intersection of
L(A) and L-,v, the problem is finally transformed to an emptiness-problem on
automata: the system satisfies 9 iff Av is empty (accepts no word).

Checking emptiness of Ap requires the detection of accepting cycles, i.e.,
cycles containing an accepting state. There exist efficient algorithms for this
issue [1,9] with t ime complexity linear in the size of the product automaton.
However, this size is often enormous, due to the well-known state explosion
problem: representing concurrency as interleaving may let A, and consequently
Ap, grow exponentially in the size of the system. Several partial order methods
[10,16-19] have been suggested to palliate this problem by reducing the state
space according to the partial order semantics of the system, i.e., by discarding
all the states and transitions not relevant for satisfying 9-

* This work was supported by the SFB 342 (subproject A3) of the DFG.

208

In contrast to these approaches, we will not reduce the state space, but rather
directly use a partial-order representation of the behaviour of the distributed
system under consideration. We assume Z to be given as a safe Petri net, and
explore its behaviour by unfolding the net to McMillan's f ini te prefix [14,7] of
the branching process of Z. This prefix contains every reachable state of the
system. It was already observed by Esparza in [5] that the finite prefix can be
used for model checking $4 (the modal logic based on the teachability relation
of the global state space), which is strictly less expressive than LTL.

We show in this paper how to construct the product of a given Petri net and
a Biichi automaton, yielding Biichi nets, i.e. nets with acceptance capabilities.
We investigate, for which construction the prefix remains small, in some cases
"exponentially compact" compared with the interleaving model. The main con-
tribution, however, is a method for checking emptiness of a Biichi net using its
finite prefix.

The paper is structured as follows. Section 2 briefly formalizes the automata-
theoretic approach. In Section 3, Petri nets and unfoldings are introduced, and
we show how the finite prefix of a Biichi net can be used to decide its empti-
ness. Section 4 describes an adequate product construction and the entire model
checking procedure. Section 5 concludes the paper and refers to related work.

2 The automata-theoretic approach

Let us briefly recall the essential ideas and notions that underlie the automata-
theoretic approach to model checking linear-time temporal properties.

L i n e a r - t i m e T e m p o r a l Logic . Let H be a finite set of atomic propositions.
The set of LTL- formulae over I I is defined inductively as follows: if ~Q = ~r E / /
then ~ is a formula; if ~ and ¢ are formulae then ~ A ¢, --~, X~, and ~QU¢ are
formulae. The other operators of propositional logic are defined as usual, and we
define O~Q := trueU~Q, and E]~ := -,~-~Q. The set of propositions appearing in

is written as (9).
A formula is interpreted on w-words ~ over the alphabet 2//. An w-word over

2 / / i s an infinite sequence ~ = xoxx . . . with x~ E 2 / / fo r all i >_ 0. The elements of
2 / / a re meant to assign t ruth values to H in the obvious manner: the proposition
~r holds at xi iff 7r E xi. We define ~(i) := xi, and ~(i) is the suffix of ~ starting
at xi. We write ~ ~ ~p to denote that ~ satisfies ~. By L~ we denote the set of
w-words satisfying T. The relation ~ is inductively defined as follows.

¢ ~ ,.,- ifl ,,- e ¢(o)
¢ ~ -.,,,., iff C g : ~

¢ ~ U 0 iff 3i_>0. ¢ (0 ~ ¢ and ¢ (~) ~ f o r a l l j < i

B~ichi a u t o m a t a . A Biichi automaton over the alphabet 2// is a quadruple
A = (Q, q0, 6, ~'), where Q is a finite set of states, including the initial state q0,

209

c Q x 2 / / x Q is the transition relation, and ~" C_ Q a set of accepting states.
A run of A on an w-word (over 2// is an infinite sequence cr = qoql . . . such
that (qi,((i),qi+l) E 6 for all i > 0. A run ~ is accepting if an accepting state
occurs infinitely often in ~, and the automaton A accepts the word (iff there is
an accepting run of A on ~. L(A) denotes the set of all w-words accepted by A.

T h e o r e m 1 ([20,22]). Let ~ be an LTL formula. There exists a Biichi automa-
ton A~, such that L(A~,) = L~,.

Efficient methods for how to build the automaton A~ from a given formula
can be found in [21,8].

The automata-theoretic approach assumes the system to be given as an au-
tomaton A over an alphabet Act of actions, and a valuation v from the transitions
of A to subsets of H. In action-based semantics, v is determined by the action as-
sociated with the transition, in a state-based setting by the state that enables the
transition. Given the system A and the automaton A.~ for the negation of ~, an
adequate product automaton Ap is defined. The basic idea is that ((s, q), (s', q'))
becomes a transition of Ap if there is a transition (s, a, s ~) of the system evalu-
ated to / /~ , and (q , /F , q~) is a transition of A~ v. The accepting states of Ap are
the states (s, q) where q ia an accepting state of A ~ . For this construction it
holds that the product Ap is empty iff it contains no cycle including an accepting
state iff the system automaton A satisfies the property ~.

3 P e t r i n e t s a n d u n f o l d i n g s

Let us begin with a glance on Petri nets and their unfoldings. We will then show
how to use McMillan's prefix for deciding the existence of accepting runs.

P e t r i ne t s . Let P and T be disjoint sets of places and transitions. The elements
of P U T are called nodes. A net is a triple N = (P, T, F) with a flow relation F,
given by its characteristic function F : (P x T) U (T x P) -4 {0, 1}.

The preset of the node x is defined as *x := {y E P U T I F(y, x) -- 1} and
its postset as x* := {y E P U T I F(x , y) = 1}. The preset (postset) of a set X of
nodes is given by the union of the presets (postsets) of all nodes in X. By °x we
denote the set *x \ x °, and analogously x ° := x* \ *x.

A marking of a net is a mapping P--+N0. We call ~ = (N, M0) a net system
with initial marking M0 if N is a net and M0 a marking of N. A marking M
enables the transition t if M(p) > 1 for each pE *t. In this case the transition can
occur, leading to the new marking M' , given by M'(p) = M(p)+ F(t, p) - F(p, t)

for every place p. We denote this occurrence by M t ~ M' . If there exists a chain

M0 t l)M1 t2) . . . t,> Mn , the sequence 7 = MotlMl t2 . . . tnMn is called a
computation. A computat ion of infinite length is called a run. A marking M
is reachable if there exists a computat ion 7 such that M appears in 7- The
reachable markings will also be called the (reachable) states of the system.

We will exclusively regard safe systems, in which all reachable states map each
place to 0 or 1. So every state can be identified with the set of places it maps

210

to 1, i.e., M C P for every reachable state M. Note that this is no restriction.
Often safe nets are used for modelling distributed systems because they can be
seen as a composit ion of several components which are given as finite au tomata .
Furthermore, so-called high-level net systems like coloured or algebraic nets can
automat ical ly be transformed into equivalent safe net systems.

Net system semantics fo r LTL. We define an adequate LTL semantics for
safe net systems, distinguishing state and action oriented settings.

In a state-based interpretation, the atomic propositions H are identified with
the set P of places. A proposition p holds at s tate M iff M(p) -- 1. Since
every state can be expressed as a Boolean combination of marked and unmarked
places, any set of propositions on states can be encoded using places as the
only propositions. Formulae are interpreted on marking sequences: a run 7 --
MotlMlt2M2... satisfies p iff the w-word ~(7) -- MoM1M2... belongs to L~.

In an action-based interpretation, we assume a valuation v : T -+ 2 n ,
and we interpret formulae on sequences of transition occurrences: a run 7 =
MotlMlt2M2... satisfies p iff the w-word a(7) = v(tl)v(t2).., belongs to L~.

We say tha t the system Z satisfies p iff every run of Z satisfies !o.

Bi ich i n e t s . A Biichi net is a net with acceptance capabilities, i.e., a tuple
Zp = (E, 2-) where Z = (P, T, F, M0) is a finite, safe net system and 2- C_ P
a set of accepting places. A run 7 of L'p is accepting if an accepting transition
t E ° 5 appears infinitely often in 7, and Zp is empty if it has no accepting run.
A Biichi net will be the product of a safe net system and a Bfichi au tomaton ,
defined in the next section.

N e t u n f o l d i n g s . The partial-order representation of the behaviour of safe net
systems is based on net unfoldings, also known as branching processes. We briefly
recall the main definitions and results of [4].

Two nodes x, x ' of the net N = (P, T, F) are in conflict, denoted x # x ' , if
there exist two distinct transitions t,t' with *t V1 ' t ' -fi 0 such that (t,x) and
(t', x ') belong to the reflexive transit ive closure of the flow relation F . If x#x,
we say x is in self-conflict.

An occurrence net [15] is a net N ' = (B, E, F) where the irrefiexive transit ive
closure of F is well-founded and acyclic (and thus a strict partial order, writ ten
as -~), where furtheron I'b] < 1 for every b 6 B, and no element e 6 E is in
self-conflict. The elements of B and E are called conditions and events, respec-
tively. The reflexive closure _ of -~ is a partial order called causality relation.
By Min(N') we denote the minimal elements of N ' w.r.t. -~.

Given two nets N1 and N2, the mapping h : N1 --+ N2 is a homomorphism
if h(P1) C P2, h(T1) C_ T2, and if for each t E T1 the restriction of h to °t is a
bijection between ' t and 'h(t) , and similarly for t ° and h(t) °.

A branching process of a net system Z = (N, Mo) is a pair ~ = (N', h) where
N ' = (B, E, F) is an occurrence net and h : N ' -+ N is a homomorphism tha t
bijectively maps Min(g') onto 5/0, and tha t satisfies: if h(e) = h(e') and 'e = °e'
then e = e', for all events e, d E E. In a word, we unfold the net N to an occurrence
net N ' such tha t each node x of N ' refers to a node h(x) of N.

211

The branching processes ~1 and ~2 are isomorphic if there exists a bijective
homomorph i sm h : N[~ N~, such tha t the composit ion h2 o h equals hi . If h
is an injection that bijectively maps Min(N~) onto Min(N~), and BI C_ B~ and
E1 C_ E2, we call ~l a prefix of/~2. Notice that a prefix is uniquely determined by
its set of events. In [4] it is shown tha t each net system Z has a unique maximal
branching process up to isomorphism, called unfolding of Z and denoted by
Unf x = (N', h). Note that N ' is infinite iff Z has infinite computat ions.

C o n f i g u r a t i o n s a n d C u t s . For the remainder of the section, let Unf~ =
(N ' , h) and N 1 = (B, E, F) be fixed. A configuration C of N ' is a causally
downward-closed, conflict-free set of events, i.e., for each e E C : if e I ~ e then
e I E C, and for all e, e I E C : -~(e~e').

Two nodes of N I are concurrent if they are neither in conflict nor causally
related. A set B ~ of conditions of N ~ is called a co-set if all elements of B I are
pairwise concurrent. A co-set is called a cut if it is maximal w.r.t, set inclusion.
For a finite configuration C, the set Cut(C) := (Min(g') U C') *C of conditions
is a cut. The set h(Cut(C)) of places is a reachable marking of 22, called the
marking Mark(C) of C. Conversely, for every reachable state M of Z there
exists a finite configuration C in Unfm such that M is the marking of C. Often,
a configuration C is identified with the state Mark(C).

An essential observation on configurations is tha t their continuations are
determined by their markings: let]'CC_ B U E be defined as the set of nodes x,
such tha t x E] 'C iff x _ b for some b E Cut(C) and -,(b#x) for all b E Cut(C).
By Fc (resp. hc) we denote the restriction of the flow relation F (resp. of the
homomorph i sm h) of Unf~ onto] 'C. We define the continuation of C as the
branching process ~(C) := (Nc, hc), where Nc := (tC ;3 B,'rC M E, Fc). It is
easy to see tha t for two finite configurations C, C ' with equal marking it holds
tha t ~(C) and /~(C ') are isomorphic.

The set of predecessors of each event e is a configuration, called local config-
uration ore, given by [el := {e' E E I e' __ e}. We call two events e, e ' equivalent if
the markings of their local configurations coincide, i.e., Mark([e]) = M a r k (M) .

T h e f i n i t e p r e f i x . In [14], K.L. McMillan defined a finite prefix of the unfolding
of a finite-state net system, in which every state is represented by some cut. The
idea is tha t if the prefix contains two equivalent events then the continuations
of their local configurations are isomorphic and thus only one of them needs to
be explored further, while the other one becomes a cut-off event. Formally, an
event e is a cut-off event if there exists an event e I equivalent to e such tha t
I[e']] < [[eli. If there are several such events e I for the cut-off e, we fix one of
them and refer to it as the corresponding event cot(e) of e. By off(e I) we denote
the set of cut-offs, such that e ~ is their corresponding event.

The finite prefix Fin m is defined as the unique prefix of Unf~ with EFm C E
as set of events, where e E EFin iff no event e I -~ e is a cut-off event. Let Off
(Cor) denote the set of all cut-off (corresponding) events of Fin~.

It is easy to prove that Fin m is finite for net systems with finitely many states.
Usually, Fin~ is much smaller than the s tate space of the system. However,

212

sometimes it is larger. In [7] it is shown how to construct a storage-optimal
prefix, essentially by determining cut-offs not by comparison of the size of their
local configurations, but another well-founded, strict partial order instead. In
the prefix constructed by the improved algorithm [7], it is always the case that
two non-cut-off events have different markings. Therefore, the number of non-
cut-off events never exceeds the number of reachable states of the system, and
so Fin~ never is larger than the state space (up to a small constant).

C y c l e - d e t e c t i o n in t h e p re f ix . As indicated, the model checking problem
requires the detection of a cycle containing an accepting transition. Let Ta = *:F
be the set of accepting transitions of the Biichi net ~p = (Z, 5) . The goal is to
find a run 7 such that infinitely often a transition t ETa appears in 7.

The problem is solved in two steps: first we will construct a directed graph
G = (V, Edg) where V = Off is the Set of cut-off events of the prefix, and
Edg C_ V × V a set of edges. An edge e -+ e ~ indicates that from state [e] the state

[e'] is reachable. Some of the edges will be labelled by a. Intuitively, e a > e ~
means that on the partial computation leading from [e] to [e r] an accepting
transition occurs. Since every (local) configuration of the prefix is reachable,
every node in G can be seen as being initial. The graph G is constructed by the
algorithm given in Fig. 1, with Ta as the input parameter.

The second step is to apply a standard algorithm on G for detecting a strongly
connected component [1] or a cycle [9] containing an a-labelled edge.

The key idea of the algorithm for constructing the graph G is as follows.
Let el, el ° be a cut-off and its corresponding event. Since fl([el]) and/?([e°]) are
isomorphic, every state that is reachable from [e °] is also reachable from [eli.
Thus, if e ° -~ e2 for some other cut-off e2, an edge el --~ e2 is added to G. If
It2] \ [e °] contains an accepting event then the edge is labelled by a.

The other case is a bit more involved. Let e ° be the corresponding event of
e2, and assume e ° _ e °. This means that from state [e °] (equivalent to [eli) the
state [e~] (equivalent to [e2]) is reachable, and so an edge el -+ e~ is added. But
when and how has such an edge to be labelled? Clearly, if [e °] \ [e °] contains an
accepting event, the edge must be labelled. However, this is not the only case.
Additionally, there may exist a state of the system (possibly not corresponding
to a local configuration) where concurrently It1 °] and [e2] are reachable. In this
case, we have to consider the set E~ :-- [e~] \ [e°]. If el ° and e2 are concurrent,
and the set E [contains an accepting event, we label the edge el --4 e2 with a.
In the algorithm, let F(e °, e2) denote the function computing the set of these
events: F(e °, e2) :-- E~, if e ° and e~ are concurrent, and the empty set else.

P r o p o s i t i o n 2. Ta C_ T contains a transition that infinitely often can occur in
Z iff there exists a cycle in the graph G, containing an a-labelled edge.

4 T h e a u t o m a t a - t h e o r e t i c a p p r o a c h f o r P e t r i n e t s

We now want to lift the automata-theoretic approach to the framework of safe
net systems. We show two different methods for constructing a product Biichi

Bui ldGraph(T~)

213

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

v := o/~, Ed~ := ~; E~ := {eeEF~. I h(e)eTo};
forall e ° E Cor do

X : = { e ' E Offl e' >" e°}; Y := {e' e Corl e' >'- e°};
forall e2 E X do

forall el e off(e °) do
| f G contains no edge el ~ e2 then add el---~ e2 to Edg;,
i f ([e2] \ [e°]) N E , ¢ ~ then label el--* e2 with a;

enddo
enddo
forall e ° E Y do

forall (el, e2) e off(e °) x off(e °) do
i f G contains no edge el--+ e2 then add el--+e2 to Edg;
if (([e °] \ [e°]) U F(e °, e2)) N E~ ~ 0 then label el--~ e2 with a;

enddo
e n d d o

enddo

Fig. 1. Algorithm for constructing the graph G.

net, corresponding to product au t om a t a of Section 2. This product is constructed
as a synchronization or an observation on the net level.

In the entire section, we assume the system net under consideration to be
deadlock-free, i.e., all of its computat ions are infinite.

S y n c h r o n i z a t i o n . We will first assume an action-based interpretation. In this
case, the product net Zp of the au tomaton A-.~ and of the system ~ under con-
sideration is obtained by synchronizing the transitions according to the valuation
v. Let A ~ = (Q, q0, 6, iT) be fixed.

The product net Zp is an extension of Z in the following sense: the states Q
of the au tomaton are added to the set P of places of Z, and initially M0 U {q0}
is marked. The accepting states ~" become the accepting places, and for each
transit ion (q, H ~, q') E 6, we add q to the preset and q' to the postset of every
transit ion t of the system, with v(t) = IIq

P r o p o s i t i o n 3. Let Zp be the synchronized product of Z and A . ~ as defined
above. The system Z satisfies ~ in action-based semantics iff ~p is empty.

O b s e r v a t i o n . In a s tate-based interpretation, the au tomaton A ~ can be seen
as a process observing the marking sequences of Z . Clearly, it suffices to observe
only the places tha t appear as a tomic propositions in ~ as s tated by L e m m a 4
below.

Let ~ -- MoM1 . . . be the infinite marking sequence corresponding to a run
7, and Q c P a set of places. By M Q := Mi N Q we denote the restriction of Mi

onto the places in Q, and we define ~@ := M0 QM1Q

L e m m a 4. I f ~ is an LTL formula and Q c P a set of propositions such that
(9) C_ Q, then ~ ~ ~ iff ~q ~ ~ for every w-word ~ over2 P.

214

We will construct ~v in such a way that the automaton and the system alter-
nate their moves. Intuitively, i f (q, P~, q') is a transition of A-.~, the automaton
tests if the current marking is P ' . In this case it moves from q to q' and enables
Z to make a move, which makes its move and again enables the automaton to
observe the current marking. The mutual enabling is implemented using two
"scheduler" places s], ss. If sf (s s) i s marked, then the automaton (the system)
has to move next. The automaton must observe M0, so initially s! is marked.

The testing of a marking is done by connecting the relevant places with the
transitions of the automaton. If d = (q, P~, q~) is a transition of A.~, we add all
the places in P ' C P to the preset and to the postset of d. Thus, d can occur
if all places in P ' are marked, and after d occurred, again P ' is marked. In
general, however, this is insufficient: the automaton changes from q to q' only
if the current marking is equal to P ' , in particular, if no proposition in P \ P~
belongs to the marking. By simply adding P ' to 'd, the transition d can occur,
no matter whether any place p ~ P~ is marked or not. Therefore, we have to
presuppose some complementary places in Z.

Let p , ~ C P . The place ~ is the complement of p, if ~ ' = 0p, ,~ = p0, and
Mo(p) = 1 - Mo(p). Thus, p E M iff p ¢~ M for every reachable state M. Due
to Lemma 4, only the propositions (places, here) that appear in ~ are relevant.
So, we have to extend Z by a complementary place for every place in (9). Note
that this extension has no influence on the system's behaviour. Let us denote by
Obs(9) := {p,~[pC(9)} the set of observed places.

The Biichi net ~v then is defined as follows: the places are P U Q u {ss, s]} ,
the transitions are T U (~, the initial marking is M0 U {q0} U {s]}, the accepting
places are ~', and the flow relation is F , extended by

- (s~,t), (t ,s]) for all t E T , and (s l ,d) , (d,s~) for all de6 ;
- (q, d), (d, q') for every d = (q, P ' , q') 6 (f, as well as (p, d), (d, p) and (F, d), (d, ~)

for all p E P' and r E (~) \ P ' .

The construction is sketched in Fig. 2 for a transition d = (q, {p~}, q') of the
automaton A ~ where (9) = {pl, p~}.

P r o p o s i t i o n 5. Let ~p be the observation product of Z and A-.~ as defined
above. The system ~ satisfies 9 in state-based semantics iff Zp is empty.

R e l a x i n g t h e o b s e r v a t i o n . Since A-,~ behaves strictly sequentially, each ob-
servation introduces causal dependency on observed transitions, which ruins the
benefits of any partial-order representation. However, restricting ourselves to
stutter-invariant properties, it is sufficient to observe only all the visible transi-
tions [18]. A transition t is visible iff °t or t ° contains some place of Obs(9).

In [13] it has been shown that stutter-invariant properties are expressed by
the "next-free" fragment of LTL, i.e., LTL without the next step operator X. In
this fragment one cannot distinguish between the w-word ~ = xoxl . . . and an
w-word ~ similar to (except that any of the xi s are repeated finitely often. Let
p(~) denote the w-word where every maximal finite subsequence z x . . . x in ~ is
substituted by x. Two w-words (, (' are stutter-equivalent if #(~) = #(~').

215

system 2~

. 8 s

au toma ton A.~

q

~ " ' "

q~

Fig. 2. The observation construction.

L e m m a 6 ([13]). I f 9 is a next-free LTL formula and ~,~' are stutter-equivalent
w-words then ~ ~ 9 iff ~' ~ 9.

In the construction of the product this means, that only the visible system
transitions and all transitions of the automaton are strictly alternating, while all
concurrency among the non-visible transitions is preserved. The reduced product
Sr thus is defined like Sp, except that for every non-visible transition t, the arcs
(ss,t) and (t ,s]) are discarded.

Unfortunately, with this construction it is possible that some run 7 satisfies
-~9, but it is not accepting. This is the case if only finitely many visible transitions
occur in 7. Then the place s8 remains marked forever and thus no transition of
the automaton will occur anymore. However, we have:

Proposition 7. Let7 = Mot lMl t2 . . . be a run of Z~, andtlj the j th occurrence
of a transition of ~ in 7- For each state Mj of 7 , let Pj := M j N P the restriction
of Mj onto system places. The projection of 7 onto system nodes then is defined
as Proj(7) := PotitPilt i2Pi2.. .
1. I f 7 is a run of Zr then its projection Proj(7) onto system nodes is a run of

Z, and 7 ~ - ~ 9 iff Pro j(7) ~ -~9.
2. For every run 71 of Z satisfying -~9, there exists a run 7 of Zr, such that

7 ~ = Pro j(7) is the projection of 7 onto system nodes, and 7 ~ -~9.
3. I f 7 is a run of Zr containing infinitely many visible transitions then the

projection Pro j(7) of 7 satisfies " 9 iff 7 is accepting.

M o d e l c h e c k i n g LTL. The fact that acceptance requires infinitely many visible
transition occurrences may look like a drawback. To cope with this problem, we
have to apply a 2-phase model checking procedure ("mc_unf"):

Phase 1. We construct the reduced product ~U~ of L' and A-,~, and compute
its finite prefix F i n s r. Now we build the graph G, applying BuildGraph(Ta)
(Fig. 1), where Ta is the set of accepting transitions of A ~ . Additionally we
apply BuildGraph(Tb), where Tb is the set of all the automaton transitions, not
only the accepting ones. The edges of the graph now may be labelled with a
and/or b. Now, Tarjan's depthfirst search algorithm [1] determines the maximal
strongly connected components (scc) of G. Each scc containing an a-labelled

216

edge represents an accepting run. If such an scc is found then we reconstruct the
corresponding violating run of the system and stop, else consider Phase 2.

Phase 2. We discard each scc containing an a- or b- or a, b-labelled edge. The
remaining sccs correspond to infinite runs of Zr containing only finitely many
occurrences of automaton (and, consequently, of visible) transitions. This means,
that after finitely many steps, M(p) remains unchanged for all observed places
p E Obs(~). Since each cut-off e in a remaining scc can be considered as being
initial in G, each e in scc refers to a certain set of runs. All these e-runs have
a unique, last reached automaton state qe in common, determined by q~ =
Mark([e]) f) Q. That is, in all possible e-runs of Zr, the automaton get stuck in
state qe. Further note that the set P~ := Mark([e]) N Obs(~) of observed places
is the last, forever-unchanged, "relevant" submarking in all these runs.

Thus, for each cut-off e in all the remaining sccs, we have to determine q~ and
Pe, and have then to investigate if Pe allows an accepting cycle of the automaton
starting at q~. If so, the corresponding violating run of S can be reconstructed.
Note that the Phase 2 needs only a fraction of the verification effort since A ~
is usually small compared with the size of the product.

E x p e r i m e n t a l r e su l t s . A prototype implementation of the proposed method,
using the very efficient unfolding procedure of [7], yielded promising results.
Mainly, we observed that even large systems, synchronized with small automata,
e.g. for (the negation of) the usual liveness property m(p ~ (>q), result in rea-
sonably small prefixes. Liveness (resp. non-liveness) of Peterson's, Dekker's and
Lamport ' s mutex-algorithms were checked within less than two seconds.

We also considered (the reactive version of) a leader election algorithm for a
ring topology, described in [3]. The modelling is due to Stephan Melzer [6].

Essentially, the system consists of n processes, connected via a token ring.
Each of the processes can be identified by its unique process number. The algo-
r i thm (in the reactive version) strives for repeated determination of a designated
process, i.e., the one with the maximal number. We considered the liveness prop-
erty DO(elected = true), expressing that infinitely often a designated process is
found. The results are presented in Table 1. They are extremely positive, since
for all n, the prefix contained only one cut-off event. The complementary prop-
erty <>D(elected = false) was shown to be not valid both by Spin [11] and our
implementation in a second. All experiments were done within the PEP-tool [2].

Z Z~ Fin time (sec.)
n IPI] ITI I Iel] ITI [IBI I IEI [mc-unf Spin
5 s8 s4 94 s s 179 9s o.s 2.2

6 110 106 116 110 215 113 0.9 9.3
7 142 138 148 142 251 133 0.9 39.4
8 160 156 166 160 287 153 0.9 - 1

Table 1. Results and comparison with SPIN for leader election.

1 64 MB main memory are exceeded.

217

5 Conclus ion
Discussion. We have presented a method for model checking LTL in the frame-
work of safe Petri nets, adopting the well-known automata-theoretic approach.
We have shown how the finite prefix can be used for detecting the emptiness
of a net with acceptance capabilities, and how to construct the product net of
a given net system and a Biichi automaton, exhibiting enough concurrency to
take profit from the partial order representation of behaviour.

How efficient is the proposed method? If one suppose a setting where only
a small fraction of the behaviour influences the specification (i.e. there are few
visible transitions), the "degree" of concurrency will remain high enough to
exploit the advantages of net unfoldings, which are in some cases exponentially
smaller than the global state space.

However, until now there is no better way to handle fairness constraints than
including them into the formula, i.e., checking "~fai~ ~ ~". This may increase
the number of visible transitions, and so possibly a larger part of the behaviour
will be sequentialized. A more efficient method for treating fairness is desirable.

For a fast detection of violating runs when dealing with systems under de-
velopment, we want to investigate an on-the-fly construction of the graph G:
whenever a new cut-off event is detected during the unfolding procedure, the
(partial) graph has to be "updated" and searched for an accepting cycle. If such
a cycle is found, the unfolding needs not to be constructed further.

Related work. A closely related approach recently has been investigated in
[6], also considering a product of a given safe net system and a Biichi automaton.
There, a semidecision test is considered, that is a procedure which may answer
"yes", in which case 2~ satisfies the specification, or "don't know". The procedure
works without ever constructing the state space, but uses structural net theory.

The common idea of the partial order methods proposed so far [10,16-19],
bases on the observation that the order of execution of concurrent actions in
many cases is irrelevant for the checked property ~o. Intuitively, when several
concurrent actions are enabled at a state, only some of them are selected, such
that certain computation sequences and states may be discarded, yielding a
reduced system. Since ~, may be sensitive to certain interleavings of visible actions
[18], all concurrent visible actions are considered to be causally dependent.

So-called on-the-fig methods are investigated in [10,17,19]. There, the Biichi
automaton is incorporated in the construction of a reduced product. That is,
instead of first reducing the system and then building the product, the Biichi
automaton is used to guide the further exploration of concurrently enabled tran-
sition sets. In some cases, it is possible to detect accepting cycles during the
construction, and thus not the entire product needs to be built.

In [12] it was shown that the visibility of actions (and thus the need to
consider them dependent) may diminish during the construction of the reduced
product, sometimes resulting in even better reduction.

Acknowledgments. I 'd like to thank Stephan Melzer and Javier Esparza for
many fruitful discussions. Special thanks to Stephan Melzer for the support with
the implementation and the experiments.

218

R e f e r e n c e s

1. A.V. Aho, J.E. Hopcroft, J.D. Un-
man. The Design and Analysis
of Computer Algorithms. Addison-
Wesley, 1974.

2. E. Best, H. Fleischhack (eds.). PEP:
Programming Environment based on
Petri nets. Technical report, Univer-
sity of Hildesheim, 1995.

3. E. Chang, R. Roberts. An Inproved
Algorithm for Decentralised Extrema-
finding in Circular Distributed Sys-
tems. Communication of the A CM,
22(5):281-283, 1979.

4. J. Engelfriet. Branching processes of
Petri nets. Acta lnformatica, 28:575-
591, 1991.

5. J. Esparza. Model checking using net
unfoldings. Science of Computer Pro-
gramming, 23:151-195, 1994.

6. J. Esparza, S. Melzer. Model Check-
ing LTL Using Constraint Program-
ming. In Proc. of 18th Int. Conf. on
Application and Theory of Petri Nets,
LNCS 1248, pp. 1-20, 1997.

7. J. Esparza, S. RSmer, W. Vogler. An
Improvement of McMillan's Unfolding
Algorithm. In Tools and Algorithms
for the Construction and Analysis of
Systems TACAS "96, LNCS 1055, pp.
87-106, 1996.

8. R. Gerth, D. Peled, M. Vardi,
P. Wolper. Simple On-the-fly Auto-
matic Verification of Linear Temporal
Logic. In Protocol Specification, Test-
ing, and Verification PSTV'95, pp. 3-
18, 1995.

9. P. Godefroid, G.J. ttolzmann. On the
Verification of Temporal Properties.
In Protocol Specification, Testing, and
Verification PSTV'93, 1993.

t0. P. Godefroid, P. Wolper. A Partial
Approach to Model Checking. In
Proc. of 6th IEEE Syrup. on Logic in
Computer Science, pp. 406-415, 1991.

11. G.J. Holzmann. The model checker
Spin. IEEE Trans. on Software Engi-
neering, 23(5):279-295, 1997.

12. I. Kokkarinen, D. Peled, A. Valmari.
Relaxed Visibility Enhances Partial
Order Reduction. In Proc. of 9th
Computer-Aided Verification CA V'97,
LNCS 1254, pp. 328-339, 1997.

13. L. Lamport. What good is temporal
logic? Information Processing 83, pp.
657-668, 1983.

14. K.L. McMiUan. Using unfoldings to
avoid the state explosion problem in
the verification of asynchronous cir-
cuits. In Proc. 4th Workshop on
Computer-Aided Verification, LNCS
663, pp. 164-174, 1992.

15. M. Nielsen, G. Plotkin, G. Winskel.
Petri nets, event structures and do-
mains. Theoretical Computer Science,
13(1):85-108, 1980.

16. D. Peled. All from one, one for all:
on model checking using representa-
tives. In Proc. of 5th Computer-Aided
Verification CAV'93, LNCS 697, pp.
409-423, 1993.

17. D. Peled. Combining partial order re-
ductions with on-the-fly model check-
ing. In Proc. of 6th Computer-Aided
Verification CAV'9~, LNCS 818, pp.
377-390, 1994.

18. A. Valmari. A Stubborn Attack on
State Explosion. Formal Methods in
System Design, 1:297-322, 1992.

19. A. Valmari. On-the-fly Verification
with Stubborn Sets. In Proc. of 5th
Computer-Aided Verification CA V'93,
LNCS 697, pp. 397-408, 1993.

20. M.Y. Vardi, P. Wolper. An auto-
mata-theoretic approach to automatic
program verification. In Proc. of 1st
IEEE Syrup. on Logic in Computer
Science, pp. 322-331, 1986.

21. P. Wolper. On the relations on pro-
grams and computations to models of
temporal logic. In Proc. of Temporal
Logic in Specification, LNCS 398, pp.
75-123, 1989.

22. P. Wolper, M.Y. Vardi, A.P. Sistla.
Reasoning about infinite computation
paths. In Proc. of P4th IEEE Syrup.
on Foundations of Computer Science,
pp. 185-194, 1983.

