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Abs t rac t .  Net unfoldings are a well-studied partial order semantics for 
Petri nets. In this paper, we show that the finite prefix of an unfolding, 
introduced by McMillan, is suited for model checking linear-time tempo- 
ral properties. The method is based on the so-called automata-theoretic 
approach to model checking. We propose a technique to treat this ap- 
proach within the framework of safe Petri nets, and give an efficient 
algorithm for detecting the system runs violating a given specification. 

1 I n t r o d u c t i o n  

Linear-time Temporal  Logic (LTL) is an adequate formalism for specifying be- 
havioural properties of distributed systems, including safety and liveness prop- 
erties. Deciding whether a given system Z satisfies a specification 9 is called the 
model checking problem. 

The automata-theoretic approach to model checking translates this problem 
into an automata-theoret ic  problem. This approach assumes that  Z can be rep- 
resented as an automaton A with L(A) being the set of its runs. The system 
satisfies 9 iff L(A) is a subset of the language L~ of words satisfying 9- 

Vardi, Wolper et al. [20,22] observed that  for every formula 9 it is possible to 
construct a Bfichi automaton A~ that  accepts L~. Since negation of a formula 
9 is equivalent to complementing the corresponding language L~, the actual 
problem is to decide if there is a system run accepted by A-,~. Defining an 
adequate product automaton Ap of A and A ,v  that  accepts the intersection of 
L(A) and L-,v, the problem is finally transformed to an emptiness-problem on 
automata:  the system satisfies 9 iff Av is empty (accepts no word). 

Checking emptiness of Ap requires the detection of accepting cycles, i.e., 
cycles containing an accepting state. There exist efficient algorithms for this 
issue [1,9] with t ime complexity linear in the size of the product automaton.  
However, this size is often enormous, due to the well-known state explosion 
problem: representing concurrency as interleaving may let A, and consequently 
Ap, grow exponentially in the size of the system. Several partial order methods 
[10,16-19] have been suggested to palliate this problem by reducing the state 
space according to the partial order semantics of the system, i.e., by discarding 
all the states and transitions not relevant for satisfying 9- 
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In contrast to these approaches, we will not reduce the state space, but rather 
directly use a partial-order representation of the behaviour of the distributed 
system under consideration. We assume Z to be given as a safe Petri net, and 
explore its behaviour by unfolding the net to McMillan's f ini te  prefix [14,7] of 
the branching process of Z.  This prefix contains every reachable state of the 
system. It was already observed by Esparza in [5] that  the finite prefix can be 
used for model checking $4 (the modal logic based on the teachability relation 
of the global state space), which is strictly less expressive than LTL. 

We show in this paper how to construct the product of a given Petri net and 
a Biichi automaton,  yielding Biichi nets,  i.e. nets with acceptance capabilities. 
We investigate, for which construction the prefix remains small, in some cases 
"exponentially compact" compared with the interleaving model. The main con- 
tribution, however, is a method for checking emptiness of a Biichi net using its 
finite prefix. 

The paper is structured as follows. Section 2 briefly formalizes the automata-  
theoretic approach. In Section 3, Petri nets and unfoldings are introduced, and 
we show how the finite prefix of a Biichi net can be used to decide its empti- 
ness. Section 4 describes an adequate product construction and the entire model 
checking procedure. Section 5 concludes the paper and refers to related work. 

2 The automata-theoretic approach 

Let us briefly recall the essential ideas and notions that  underlie the automata-  
theoretic approach to model checking linear-time temporal  properties. 

L i n e a r - t i m e  T e m p o r a l  Logic .  Let H be a finite set of atomic propositions. 
The set of LTL- formulae  over I I  is defined inductively as follows: if ~Q = ~r E / /  
then ~ is a formula; if ~ and ¢ are formulae then ~ A ¢, --~, X~, and ~QU¢ are 
formulae. The other operators of propositional logic are defined as usual, and we 
define O~Q := trueU~Q, and E]~ := -,~-~Q. The set of propositions appearing in 

is written as (9). 
A formula is interpreted on w-words ~ over the alphabet 2//. An w-word  over 

2 / / i s  an infinite sequence ~ = xoxx . . .  with x~ E 2 / / fo r  all i >_ 0. The elements of 
2 / / a re  meant to assign t ruth values to H in the obvious manner: the proposition 
~r holds at xi iff 7r E xi. We define ~(i) := xi, and ~(i) is the suffix of ~ starting 
at xi. We write ~ ~ ~p to denote that  ~ satisfies ~. By L~ we denote the set of 
w-words satisfying T. The relation ~ is inductively defined as follows. 

¢ ~ ,.,- ifl  ,,- e ¢(o) 
¢ ~ -.,,,., iff C g : ~  

¢ ~ U 0  iff 3i_>0.  ¢ ( 0 ~ ¢  and ¢ ( ~ ) ~  f o r a l l j < i  

B~ichi a u t o m a t a .  A Biichi automaton over the alphabet 2// is a quadruple 
A = (Q, q0, 6, ~'), where Q is a finite set of states, including the initial state q0, 
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c Q x 2 / / x  Q is the transition relation, and ~" C_ Q a set of accepting states. 
A run of A on an w-word ( over 2// is an infinite sequence cr = qoql . . .  such 
that  (qi,((i),qi+l) E 6 for all i > 0. A run ~ is accepting if an accepting state 
occurs infinitely often in ~, and the automaton A accepts the word ( iff there is 
an accepting run of A on ~. L(A) denotes the set of all w-words accepted by A. 

T h e o r e m  1 ([20,22]).  Let ~ be an LTL formula. There exists a Biichi automa- 
ton A~, such that L(A~,) = L~,. 

Efficient methods for how to build the automaton A~ from a given formula 
can be found in [21,8]. 

The automata-theoretic approach assumes the system to be given as an au- 
tomaton A over an alphabet Act of actions, and a valuation v from the transitions 
of A to subsets of H.  In action-based semantics, v is determined by the action as- 
sociated with the transition, in a state-based setting by the state that  enables the 
transition. Given the system A and the automaton A.~  for the negation of ~, an 
adequate product automaton Ap is defined. The basic idea is that  ((s, q), (s', q')) 
becomes a transition of Ap if there is a transition (s, a, s ~) of the system evalu- 
ated to / /~ ,  and (q , /F ,  q~) is a transition of A~ v. The accepting states of Ap are 
the states (s, q) where q ia an accepting state of A ~ .  For this construction it 
holds that  the product Ap is empty iff it contains no cycle including an accepting 
state iff the system automaton A satisfies the property ~. 

3 P e t r i  n e t s  a n d  u n f o l d i n g s  

Let us begin with a glance on Petri nets and their unfoldings. We will then show 
how to use McMillan's prefix for deciding the existence of accepting runs. 

P e t r i  ne t s .  Let P and T be disjoint sets of places and transitions. The elements 
of P U T are called nodes. A net is a triple N = (P, T, F)  with a flow relation F, 
given by its characteristic function F :  (P  x T) U (T x P)  -4 {0, 1}. 

The preset of the node x is defined as *x := {y E P U T I F(y, x) -- 1} and 
its postset as x* := {y E P U T I F(x ,  y) = 1}. The preset (postset) of a set X of 
nodes is given by the union of the presets (postsets) of all nodes in X. By °x we 
denote the set *x \ x °, and analogously x ° := x* \ *x. 

A marking of a net is a mapping P--+N0. We call ~ = (N, M0) a net system 
with initial marking M0 if N is a net and M0 a marking of N. A marking M 
enables the transition t if M(p) > 1 for each pE  *t. In this case the transition can 
occur, leading to the new marking M' ,  given by M'(p)  = M(p)+ F(t, p ) -  F(p, t) 

for every place p. We denote this occurrence by M t ~ M' .  If there exists a chain 

M0 t l )M1 t2) . . .  t,> Mn , the sequence 7 = MotlMl t2 . . . tnMn is called a 
computation. A computat ion of infinite length is called a run. A marking M 
is reachable if there exists a computat ion 7 such that  M appears in 7- The 
reachable markings will also be called the (reachable) states of the system. 

We will exclusively regard safe systems, in which all reachable states map each 
place to 0 or 1. So every state can be identified with the set of places it maps 
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to 1, i.e., M C P for every reachable state M.  Note that  this is no restriction. 
Often safe nets are used for modelling distributed systems because they can be 
seen as a composit ion of several components  which are given as finite au tomata .  
Furthermore,  so-called high-level net systems like coloured or algebraic nets can 
automat ical ly  be transformed into equivalent safe net systems. 

Net system semantics fo r  LTL.  We define an adequate LTL semantics for 
safe net systems, distinguishing state and action oriented settings. 

In a state-based interpretation, the atomic propositions H are identified with 
the set P of places. A proposition p holds at s tate M iff M(p) -- 1. Since 
every state can be expressed as a Boolean combination of marked and unmarked 
places, any set of propositions on states can be encoded using places as the 
only propositions. Formulae are interpreted on marking sequences: a run 7 -- 
MotlMlt2M2... satisfies p iff the w-word ~(7) -- MoM1M2... belongs to L~. 

In an action-based interpretation, we assume a valuation v : T -+ 2 n ,  
and we interpret formulae on sequences of transition occurrences: a run 7 = 
MotlMlt2M2... satisfies p iff the w-word a(7) = v(tl)v(t2).., belongs to L~. 

We say tha t  the system Z satisfies p iff every run of Z satisfies !o. 

Bi ich i  n e t s .  A Biichi net is a net with acceptance capabilities, i.e., a tuple 
Zp = (E, 2-) where Z = (P, T, F, M0) is a finite, safe net system and 2- C_ P 
a set of accepting places. A run 7 of L'p is accepting if an accepting transition 
t E ° 5  appears  infinitely often in 7, and Zp is empty if it has no accepting run. 
A Biichi net will be the product  of a safe net system and a Bfichi au tomaton ,  
defined in the next section. 

N e t  u n f o l d i n g s .  The partial-order representation of the behaviour of safe net 
systems is based on net unfoldings, also known as branching processes. We briefly 
recall the main  definitions and results of [4]. 

Two nodes x, x '  of the net N = (P, T, F )  are in conflict, denoted x # x ' ,  if 
there exist two distinct transitions t,t' with *t V1 ' t '  -fi 0 such that  (t,x) and 
(t', x ' )  belong to the reflexive transit ive closure of the flow relation F .  If  x#x,  
we say x is in self-conflict. 

An occurrence net [15] is a net N '  = (B, E,  F )  where the irrefiexive transit ive 
closure of F is well-founded and acyclic (and thus a strict partial  order, writ ten 
as -~), where furtheron I'b] < 1 for every b 6 B, and no element e 6 E is in 
self-conflict. The  elements of B and E are called conditions and events, respec- 
tively. The reflexive closure _ of -~ is a partial  order called causality relation. 
By Min(N') we denote the minimal  elements of N '  w.r.t. -~. 

Given two nets N1 and N2, the mapping  h : N1 --+ N2 is a homomorphism 
if h(P1) C P2, h(T1) C_ T2, and if for each t E T1 the restriction of h to °t is a 
bijection between ' t  and 'h( t ) ,  and similarly for t ° and h(t) °. 

A branching process of a net system Z =  (N, Mo) is a pair ~ =  (N', h) where 
N '  = (B, E,  F)  is an occurrence net and h : N '  -+ N is a homomorphism tha t  
bijectively maps  Min(g') onto 5/0, and tha t  satisfies: if h(e) = h(e') and 'e  = °e' 
then e = e', for all events e, d E E.  In a word, we unfold the net N to an occurrence 
net N '  such tha t  each node x of N '  refers to a node h(x) of N.  
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The branching processes ~1 and ~2 are isomorphic if there exists a bijective 
homomorph i sm h : N[ ~ N~, such tha t  the composit ion h2 o h equals hi .  If  h 
is an injection that  bijectively maps  Min(N~) onto Min(N~), and BI C_ B~ and 
E1 C_ E2, we call ~l a prefix of/~2. Notice that  a prefix is uniquely determined by 
its set of events. In [4] it is shown tha t  each net system Z has a unique maximal  
branching process up to isomorphism, called unfolding of Z and denoted by 
Unf x = (N', h). Note that  N '  is infinite iff Z has infinite computat ions.  

C o n f i g u r a t i o n s  a n d  C u t s .  For the remainder  of the section, let Unf~ = 
(N ' ,  h) and N 1 = (B, E,  F)  be fixed. A configuration C of N '  is a causally 
downward-closed, conflict-free set of events, i.e., for each e E C : if e I ~ e then 
e I E C, and for all e, e I E C : -~(e~e').  

Two nodes of N I are concurrent if they are neither in conflict nor causally 
related. A set B ~ of conditions of N ~ is called a co-set if all elements of B I are 
pairwise concurrent. A co-set is called a cut if it is maximal  w.r.t, set inclusion. 
For a finite configuration C, the set Cut(C) := (Min(g') U C') \*C of conditions 
is a cut. The  set h(Cut(C)) of places is a reachable marking of 22, called the 
marking Mark(C) of C. Conversely, for every reachable state M of Z there 
exists a finite configuration C in Unfm such that  M is the marking of C. Often, 
a configuration C is identified with the state Mark(C). 

An essential observation on configurations is tha t  their continuations are 
determined by their markings: let ]'CC_ B U E be defined as the set of nodes x, 
such tha t  x E ] 'C iff x _ b for some b E Cut(C) and -,(b#x) for all b E Cut(C). 
By Fc (resp. hc ) we denote the restriction of the flow relation F (resp. of the 
homomorph i sm h ) of Unf~ onto ] 'C. We define the continuation of C as the 
branching process ~(C)  := (Nc, hc), where Nc := (tC ;3 B,'rC M E, Fc). It  is 
easy to see tha t  for two finite configurations C, C '  with equal marking it holds 
tha t  ~(C)  and /~(C ' )  are isomorphic. 

The set of predecessors of each event e is a configuration, called local config- 
uration ore, given by [el := {e' E E I  e' __ e}. We call two events e, e '  equivalent if 
the markings  of their local configurations coincide, i.e., Mark([e]) = M a r k ( M ) .  

T h e  f i n i t e  p r e f i x .  In [14], K.L. McMillan defined a finite prefix of the unfolding 
of a finite-state net system, in which every state is represented by some cut. The 
idea is tha t  if the prefix contains two equivalent events then the continuations 
of their local configurations are isomorphic and thus only one of them needs to 
be explored further, while the other one becomes a cut-off event. Formally, an 
event e is a cut-off event if there exists an event e I equivalent to e such tha t  
I[e']] < [[eli. If  there are several such events e I for the cut-off e, we fix one of 
them and refer to it as the corresponding event cot(e) of e. By off(e I) we denote 
the set of cut-offs, such that  e ~ is their corresponding event. 

The finite prefix Fin m is defined as the unique prefix of Unf~ with EFm C E 
as set of events, where e E EFin iff no event e I -~ e is a cut-off event. Let Off 
(Cor) denote the set of all cut-off (corresponding) events of  Fin~. 

It  is easy to prove that  Fin m is finite for net systems with finitely many  states. 
Usually, Fin~ is much smaller than the s tate  space of the system. However, 
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sometimes it is larger. In [7] it is shown how to construct a storage-optimal 
prefix, essentially by determining cut-offs not by comparison of the size of their 
local configurations, but  another well-founded, strict partial  order instead. In 
the prefix constructed by the improved algorithm [7], it is always the case that  
two non-cut-off events have different markings. Therefore, the number of non- 
cut-off events never exceeds the number of reachable states of the system, and 
so Fin~ never is larger than the state space (up to a small constant). 

C y c l e - d e t e c t i o n  in  t h e  p re f ix .  As indicated, the model checking problem 
requires the detection of a cycle containing an accepting transition. Let Ta = *:F 
be the set of accepting transitions of the Biichi net ~p = (Z, 5 ) .  The goal is to 
find a run 7 such that infinitely often a transition t ETa appears in 7. 

The problem is solved in two steps: first we will construct a directed graph 
G = (V, Edg) where V = Off is the Set of cut-off events of the prefix, and 
Edg C_ V × V  a set of edges. An edge e -+ e ~ indicates that  from state [e] the state 

[e'] is reachable. Some of the edges will be labelled by a. Intuitively, e a > e ~ 
means that on the partial computation leading from [e] to [e r] an accepting 
transition occurs. Since every (local) configuration of the prefix is reachable, 
every node in G can be seen as being initial. The  graph G is constructed by the 
algorithm given in Fig. 1, with Ta as the input parameter.  

The second step is to apply a standard algorithm on G for detecting a strongly 
connected component [1] or a cycle [9] containing an a-labelled edge. 

The key idea of the algorithm for constructing the graph G is as follows. 
Let el, el ° be a cut-off and its corresponding event. Since fl([el]) and/?([e°]) are 
isomorphic, every state that  is reachable from [e °] is also reachable from [eli. 
Thus, if e ° -~ e2 for some other cut-off e2, an edge el --~ e2 is added to G. If 
It2] \ [e °] contains an accepting event then the edge is labelled by a. 

The other case is a bit more involved. Let e ° be the corresponding event of 
e2, and assume e ° _ e °. This means that  from state [e °] (equivalent to [eli) the 
state [e~] (equivalent to [e2]) is reachable, and so an edge el -+ e~ is added. But 
when and how has such an edge to be labelled? Clearly, if [e °] \ [e °] contains an 
accepting event, the edge must be labelled. However, this is not the only case. 
Additionally, there may exist a state of the system (possibly not corresponding 
to a local configuration) where concurrently It1 °] and [e2] are reachable. In this 
case, we have to consider the set E~ :-- [e~] \ [e°]. If el ° and e2 are concurrent, 
and the set E [  contains an accepting event, we label the edge el --4 e2 with a. 
In the algorithm, let F(e °, e2) denote the function computing the set of these 
events: F(e °, e2) :-- E~, if e ° and e~ are concurrent, and the empty set else. 

P r o p o s i t i o n  2. Ta C_ T contains a transition that infinitely often can occur in 
Z iff there exists a cycle in the graph G, containing an a-labelled edge. 

4 T h e  a u t o m a t a - t h e o r e t i c  a p p r o a c h  f o r  P e t r i  n e t s  

We now want to lift the automata-theoretic approach to the framework of safe 
net systems. We show two different methods for constructing a product Biichi 
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v := o/~, Ed~ := ~; E~ := {eeEF~. I h(e)eTo}; 
forall  e ° E Cor do 

X : = { e ' E  Offl e' >" e°}; Y := {e' e Corl e' >'- e°}; 
forall  e2 E X do 

forall  el e off(e °) do 
| f G  contains no edge el ~ e2 then  add el---~ e2 to Edg;, 
i f  ([e2] \ [e°]) N E ,  ¢ ~ then  label el--* e2 with a; 

enddo  
enddo  
forall  e ° E Y do 

forall  (el, e2) e off(e °) x off(e °) do 
i f G  contains no edge el--+ e2 then  add el--+e2 to Edg; 
if  ( ([e °] \ [e°]) U F(e °, e2) ) N E~ ~ 0 then  label el--~ e2 with a; 

enddo  
e n d d o  

enddo  

Fig. 1. Algorithm for constructing the graph G. 

net, corresponding to product  au t om a t a  of Section 2. This product is constructed 
as a synchronization or an observation on the net level. 

In the entire section, we assume the system net under consideration to be 
deadlock-free, i.e., all of its computat ions  are infinite. 

S y n c h r o n i z a t i o n .  We will first assume an action-based interpretation. In this 
case, the product  net Zp of the au tomaton  A-.~ and of the system ~ under con- 
sideration is obtained by synchronizing the transitions according to the valuation 
v. Let A ~  = (Q, q0, 6, iT) be fixed. 

The product  net Zp is an extension of Z in the following sense: the states Q 
of the au tomaton  are added to the set P of places of Z,  and initially M0 U {q0} 
is marked.  The  accepting states ~" become the accepting places, and for each 
transit ion (q, H ~, q') E 6, we add q to the preset and q' to the postset of every 
transit ion t of the system, with v(t) = IIq 

P r o p o s i t i o n  3. Let Zp be the synchronized product of Z and A . ~  as defined 
above. The system Z satisfies ~ in action-based semantics iff ~p is empty. 

O b s e r v a t i o n .  In a s tate-based interpretation, the au tomaton  A ~  can be seen 
as a process observing the marking sequences of Z .  Clearly, it suffices to observe 
only the places tha t  appear  as a tomic propositions in ~ as s tated by L e m m a  4 
below. 

Let ~ -- MoM1 . . .  be the infinite marking sequence corresponding to a run 
7, and Q c P a set of places. By M Q := Mi N Q we denote the restriction of Mi 

onto the places in Q, and we define ~@ := M0 QM1Q . . . .  

L e m m a  4. I f  ~ is an LTL formula and Q c P a set of propositions such that 
(9) C_ Q, then ~ ~ ~ iff ~q ~ ~ for every w-word ~ over2 P. 
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We will construct ~v in such a way that  the automaton and the system alter- 
nate their moves. Intuitively, i f  (q, P~, q') is a transition of A-.~, the automaton 
tests if the current marking is P ' .  In this case it moves from q to q' and enables 
Z to make a move, which makes its move and again enables the automaton to 
observe the current marking. The mutual enabling is implemented using two 
"scheduler" places s], ss. If sf  ( s s ) i s  marked, then the automaton (the system) 
has to move next. The automaton must observe M0, so initially s! is marked. 

The testing of a marking is done by connecting the relevant places with the 
transitions of the automaton. If d = (q, P~, q~) is a transition of A.~,  we add all 
the places in P '  C P to the preset and to the postset of d. Thus, d can occur 
if all places in P '  are marked, and after d occurred, again P '  is marked. In 
general, however, this is insufficient: the automaton changes from q to q' only 
if the current marking is equal to P ' ,  in particular, if no proposition in P \ P~ 
belongs to the marking. By simply adding P '  to 'd, the transition d can occur, 
no matter  whether any place p ~ P~ is marked or not. Therefore, we have to 
presuppose some complementary places in Z.  

Let p , ~ C P .  The place ~ is the complement of p, if ~ '  = 0p, ,~  = p0, and 
Mo(p) = 1 - Mo(p). Thus, p E M  iff p ¢~ M for every reachable state M. Due 
to Lemma 4, only the propositions (places, here) that  appear in ~ are relevant. 
So, we have to extend Z by a complementary place for every place in (9). Note 
that  this extension has no influence on the system's behaviour. Let us denote by 
Obs(9) := {p,~[ pC(9)}  the set of observed places. 

The Biichi net ~v then is defined as follows: the places are P U Q u {ss, s]} , 
the transitions are T U (~, the initial marking is M0 U {q0} U {s]}, the accepting 
places are ~', and the flow relation is F ,  extended by 

- (s~,t), ( t ,s])  for all t E T ,  and ( s l ,d ) ,  (d,s~) for all de6 ;  
- (q, d), (d, q') for every d = (q, P ' ,  q') 6 (f, as well as (p, d), (d, p) and (F, d), (d, ~) 

for all p E P'  and r E (~) \ P ' .  

The construction is sketched in Fig. 2 for a transition d = (q, {p~}, q') of the 
automaton A ~  where (9) = {pl, p~}. 

P r o p o s i t i o n  5. Let ~p be the observation product of Z and A-.~ as defined 
above. The system ~ satisfies 9 in state-based semantics iff Zp is empty. 

R e l a x i n g  t h e  o b s e r v a t i o n .  Since A-,~ behaves strictly sequentially, each ob- 
servation introduces causal dependency on observed transitions, which ruins the 
benefits of any partial-order representation. However, restricting ourselves to 
stutter-invariant properties, it is sufficient to observe only all the visible transi- 
tions [18]. A transition t is visible iff °t or t ° contains some place of Obs(9). 

In [13] it has been shown that  stutter-invariant properties are expressed by 
the "next-free" fragment of LTL, i.e., LTL without the next step operator X. In 
this fragment one cannot distinguish between the w-word ~ = xoxl . . .  and an 
w-word ~ similar to ( except that  any of the xi s are repeated finitely often. Let 
p(~) denote the w-word where every maximal finite subsequence z x . . . x  in ~ is 
substituted by x. Two w-words (, ( '  are stutter-equivalent if #(~) = #(~'). 
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system 2~ 

. . . . .  8 s 

au toma ton  A.~ 

q 

~ " ' "  

q~ 

Fig. 2. The observation construction. 

L e m m a  6 ([13]). I f 9  is a next-free LTL formula and ~,~' are stutter-equivalent 
w-words then ~ ~ 9 iff ~' ~ 9. 

In the construction of the product this means, that  only the visible system 
transitions and all transitions of the automaton are strictly alternating, while all 
concurrency among the non-visible transitions is preserved. The reduced product 
Sr  thus is defined like Sp, except that  for every non-visible transition t, the arcs 
(ss,t) and ( t ,s])  are discarded. 

Unfortunately, with this construction it is possible that  some run 7 satisfies 
-~9, but  it is not accepting. This is the case if only finitely many visible transitions 
occur in 7. Then the place s8 remains marked forever and thus no transition of 
the automaton will occur anymore. However, we have: 

Proposition 7. Let7  = Mot lMl t2  . . . be a run of Z~, andtlj  the j th occurrence 
of a transition of ~ in 7- For each state Mj of 7 , let Pj := M j N P  the restriction 
of Mj onto system places. The projection of 7 onto system nodes then is defined 
as Proj(7) := PotitPilt i2Pi2.. .  
1. I f 7  is a run of Zr then its projection Proj(7) onto system nodes is a run of 

Z,  and 7 ~ - ~ 9  iff Pro j(7) ~ -~9. 
2. For every run 71 of Z satisfying -~9, there exists a run 7 of Zr,  such that 

7 ~ = Pro j(7) is the projection of 7 onto system nodes, and 7 ~ -~9. 
3. I f  7 is a run of Zr containing infinitely many visible transitions then the 

projection Pro j(7) of 7 satisfies " 9  iff 7 is accepting. 

M o d e l  c h e c k i n g  LTL.  The fact that  acceptance requires infinitely many visible 
transition occurrences may look like a drawback. To cope with this problem, we 
have to apply a 2-phase model checking procedure ("mc_unf"): 

Phase 1. We construct the reduced product  ~U~ of L' and A-,~, and compute 
its finite prefix F i n s  r. Now we build the graph G, applying BuildGraph(Ta) 
(Fig. 1), where Ta is the set of accepting transitions of A ~ .  Additionally we 
apply BuildGraph(Tb), where Tb is the set of all the automaton transitions, not 
only the accepting ones. The edges of the graph now may be labelled with a 
and/or b. Now, Tarjan's depthfirst search algorithm [1] determines the maximal 
strongly connected components (scc) of G. Each scc containing an a-labelled 
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edge represents an accepting run. If such an scc is found then we reconstruct the 
corresponding violating run of the system and stop, else consider Phase 2. 

Phase 2. We discard each scc containing an a- or b- or a, b-labelled edge. The 
remaining sccs correspond to infinite runs of Zr  containing only finitely many 
occurrences of automaton (and, consequently, of visible) transitions. This means, 
that  after finitely many steps, M(p) remains unchanged for all observed places 
p E Obs(~). Since each cut-off e in a remaining scc can be considered as being 
initial in G, each e in scc refers to a certain set of runs. All these e-runs have 
a unique, last reached automaton state qe in common, determined by q~ = 
Mark([e]) f) Q. That  is, in all possible e-runs of Zr,  the automaton get stuck in 
state qe. Further note that  the set P~ := Mark([e]) N Obs(~) of observed places 
is the last, forever-unchanged, "relevant" submarking in all these runs. 

Thus, for each cut-off e in all the remaining sccs, we have to determine q~ and 
Pe, and have then to investigate if Pe allows an accepting cycle of the automaton 
starting at q~. If so, the corresponding violating run of S can be reconstructed. 
Note that  the Phase 2 needs only a fraction of the verification effort since A ~  
is usually small compared with the size of the product. 

E x p e r i m e n t a l  r e su l t s .  A prototype implementation of the proposed method,  
using the very efficient unfolding procedure of [7], yielded promising results. 
Mainly, we observed that  even large systems, synchronized with small automata,  
e.g. for (the negation of) the usual liveness property m(p ~ (>q), result in rea- 
sonably small prefixes. Liveness (resp. non-liveness) of Peterson's, Dekker's and 
Lamport ' s  mutex-algorithms were checked within less than two seconds. 

We also considered (the reactive version of) a leader election algorithm for a 
ring topology, described in [3]. The modelling is due to Stephan Melzer [6]. 

Essentially, the system consists of n processes, connected via a token ring. 
Each of the processes can be identified by its unique process number. The algo- 
r i thm (in the reactive version) strives for repeated determination of a designated 
process, i.e., the one with the maximal number. We considered the liveness prop- 
erty DO(elected = true), expressing that  infinitely often a designated process is 
found. The results are presented in Table 1. They are extremely positive, since 
for all n, the prefix contained only one cut-off event. The complementary prop- 
erty <>D( elected = false) was shown to be not valid both by Spin [11] and our 
implementation in a second. All experiments were done within the PEP-tool  [2]. 

Z Z~ Fin time (sec.) 
n IPI ] ITI I Iel ] ITI [ IBI I IEI [ mc-unf Spin 
5 s8 s4 94 s s  179 9s o.s 2.2 

6 110 106 116 110 215 113 0.9 9.3 
7 142 138 148 142 251 133 0.9 39.4 
8 160 156 166 160 287 153 0.9 - 1 

Table 1. Results and comparison with SPIN for leader election. 

1 64 MB main memory are exceeded. 
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5 Conclus ion 
Discussion. We have presented a method for model checking LTL in the frame- 
work of safe Petri nets, adopting the well-known automata-theoretic approach. 
We have shown how the finite prefix can be used for detecting the emptiness 
of a net with acceptance capabilities, and how to construct the product net of 
a given net system and a Biichi automaton, exhibiting enough concurrency to 
take profit from the partial order representation of behaviour. 

How efficient is the proposed method? If one suppose a setting where only 
a small fraction of the behaviour influences the specification (i.e. there are few 
visible transitions), the "degree" of concurrency will remain high enough to 
exploit the advantages of net unfoldings, which are in some cases exponentially 
smaller than the global state space. 

However, until now there is no better way to handle fairness constraints than 
including them into the formula, i.e., checking "~fai~ ~ ~". This may increase 
the number of visible transitions, and so possibly a larger part of the behaviour 
will be sequentialized. A more efficient method for treating fairness is desirable. 

For a fast detection of violating runs when dealing with systems under de- 
velopment, we want to investigate an on-the-fly construction of the graph G: 
whenever a new cut-off event is detected during the unfolding procedure, the 
(partial) graph has to be "updated" and searched for an accepting cycle. If such 
a cycle is found, the unfolding needs not to be constructed further. 

Related work. A closely related approach recently has been investigated in 
[6], also considering a product of a given safe net system and a Biichi automaton. 
There, a semidecision test is considered, that  is a procedure which may answer 
"yes", in which case 2~ satisfies the specification, or "don't  know". The procedure 
works without ever constructing the state space, but uses structural net theory. 

The common idea of the partial order methods proposed so far [10,16-19], 
bases on the observation that  the order of execution of concurrent actions in 
many cases is irrelevant for the checked property ~o. Intuitively, when several 
concurrent actions are enabled at a state, only some of them are selected, such 
that  certain computation sequences and states may be discarded, yielding a 
reduced system. Since ~, may be sensitive to certain interleavings of visible actions 
[18], all concurrent visible actions are considered to be causally dependent. 

So-called on-the-fig methods are investigated in [10,17,19]. There, the Biichi 
automaton is incorporated in the construction of a reduced product. That  is, 
instead of first reducing the system and then building the product, the Biichi 
automaton is used to guide the further exploration of concurrently enabled tran- 
sition sets. In some cases, it is possible to detect accepting cycles during the 
construction, and thus not the entire product needs to be built. 

In [12] it was shown that  the visibility of actions (and thus the need to 
consider them dependent) may diminish during the construction of the reduced 
product, sometimes resulting in even better reduction. 
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