
Processor Verification with Precise Exceptions
and Speculative Execution

Jun Sawada 1 and Warren A. Hunt, Jr. 2

1 Department of Computer Sciences, University of Texas at Austin
Austin, TX 78712, USA

E-marl: sawada~cs.utexas.edu
IBM Austin Research Laboratory

11400 Burnet Road MS/9460, Austin, TX 78758, USA
E-malh whunt@austin.ibm.com

Abs t rac t . We describe a framework for verifying a pipelined micro-
processor whose implementation contains precise exceptions, external
interrupts, and speculative execution. We present our correctness crite-
rion which compares the state transitions of pipelined and non-pipelined
machines in presence of external interrupts. To perform the verifica-
tion, we created a table-based model of pipeline execution. This model
records committed and in-flight instructions as performed by the micro-
architecture. Given that certain requirements are met by this table-based
model, we have mechanically verified our correctness criterion using the
ACL2 theorem prover.

1 I n t r o d u c t i o n

We have studied the verification of a pipelined microprocessor whose implemen-
tat ion contains speculative execution, external interrupts and precise exceptions.
The verification of pipelined microprocessors has been studied[l, 12, 6, 13], but
complicated features, such as exception mechanisms, are often simplified away
from the implementation model. Several verified microprocessor designs contain
exception mechanisms[4, 11]; however, they contain only one kind of exception
and require only a few cycles before exception handling starts. Modern micro-
processors have multiple exception types, which can occur simultaneously in its
pipeline. Correct handling of an exception requires synchronizing and saving the
machine state, which may take many clock cycles. This synchronization process
may itself cause further exceptions.

Modern processors often execute a large number of instructions speculatively
using branch prediction mechanisms. The processor has to keep track of these
instructions correctly so that speculatively executed instructions following a mis-
predicted branch have no side-effect. Also speculatively executed instructions
may themselves cause exceptions, which may need to be ignored.

* This research was supported in part by the Semiconductor Research Corporation
under contract 97-DJ-388.

136

To investigate these issues, we designed a processor model which can spec-
ulatively execute instructions and simultaneously detect multiple exceptions
while executing instructions out-of-order. This machine has been specified at
the instruction-set architecture level and micro-architecture level. We discuss
the machine specification in Sect. 2.

Previously, we used a correctness criterion for verifying a pipelined micropro-
cessor which did not contain exceptions[10]. In Sect. 3, we have extended this
correctness criterion to permit the verification of a design containing speculative
execution and external interrupts.

We have modeled the behavior of our processor using an intermediate model,
called a MAETT, which records all executed instructions. This model, given
in Sect. 4, presents an abstraction of the behavior of our pipelined design on
speculative execution and exceptions. Using this model, we wrote an invariant
condition that meets several requirements, and show that these requirements
are strong enough to prove the correctness criterion. The proof has been carried
out with ACL2 theorem prover[9]. A brief proof sketch is given Sect. 5. The
verification of the invariant condition is in progress.

2 Hardware Specifications

Our processor model has been specified at two levels: its micro-architecture (MA)
and its instruction-set architecture (ISA). At the ISA level, we only describe the
states of the components visible to the programmer, which are shown as shaded
boxes in Fig. 1. We specify the ISA behavior with an instruction interpreter
function ISA-step0, which takes a current ISA state and an external interrupt
input and returns the state after executing a single instruction. At the MA level,
we describe the behavior of all components shown in Fig. 1. The behavioral
function MA-step 0 takes a current MA state and its external inputs, and returns
the state after one clock cycle of execution. The ISA model is a non-pipelined
machine specification while the MA model is pipelined.

Our ISA model implements eleven instructions, each in a different instruc-
tion class. For instance, ADD is the only integer operation instruction. For the
purpose of our investigation, parameters such as the number of instructions,
registers, and the register width are not critical. The ISA specification describes
the action for external interrupts and internal exceptions. When an exception
occurs, the processor saves some states in special registers, switches to supervisor
mode, and jumps to the address specific to the exception type.

The MA specification gives an abstract description of the complete design
shown in Fig. 1, as well as the exception mechanism, branch prediction unit,
and memory-write buffers. It fetches and commits instructions in program order,
but it has the capability to issue up to three instructions to the execution units
simultaneously and does execute instructions in an out-of-order manner. The
machine can hold as many as 15 instructions in the pipeline, and 12 instructions
can be speculatively executed.

137

Common Data Bus

Fig. 1. Block Diagram of Our Pipeline Machine Design

Instructions are executed as follows. A fetched instruction is decoded and
dispatched to an appropriate reservation stations, where the instruction waits
for its operands. Once an instruction has all necessary values, it is issued to the
corresponding execution unit, and the result is written to the re-order buffer[7].
Finally, instructions are committed in program order. Committing is the point
where the instruction actually takes its effect. Speculatively executed instruc-
tions may reach the re-order buffer, but are only committed if appropriate.

Our MA deals with four types of exceptions: fetch errors, decode errors, data
access errors, and external interrupts. The first three exceptions have internal
causes, and they are called internal exceptions. All exceptions are precise; that
is, the correct machine state is saved so that the executed program can be
restarted from the point where the exception occurred. To achieve this, our
machine satisfies the following properties for precise exceptions:

1. All instructions preceding an exception must complete their operation.
2. All partially executed instructions following an exception must be abandoned

with no side-effect.

The machine may take a large number of machine cycles before it actually starts
exception handling, because the first condition requires completion of partially
executed instructions that precede the exception in program order. The re-order
buffer is used to sort out the instructions to be completed from those to be
abandoned[5]. If multiple exceptions are detected in the pipeline, only the earliest
exception in program order is processed. Our MA design does not contain any

138

imprecise exceptions, and we have not considered the verification a processor
with imprecise exceptions.

3 C o r r e c t n e s s C r i t e r i o n

Our verification objective is to show that the MA design correctly executes in-
structions as specified by the ISA. Various ways to show the equivalence between
the two levels have been presented. Burch and Dill verified pipelined designs
using a correctness criterion that involves pipeline flushing[2]. Although this cri-
terion with flushing has been extended to cover superscalar processors[3, 14], it
does not address speculative execution and external exceptions.

We previously used the correctness criterion shown as diagram (a) in Fig. 2
to verify a pipelined design[10]. This diagram compares two paths. The lower
path runs the MA design for an arbitrary number of clock cycles from a flushed
pipeline state MAo to another flushed state MA,~, which causes m ISA instruc-
tions to be executed. By stripping off states not visible to the programmer, we
can project MAn to ISAm. The upper path first projects MAo to an initial ISA
state ISAo and then runs the ISA specification for m cycles to get the final state
ISAm. By comparing ISAm obtained by following the different paths, we can
check whether the MA design conforms to the ISA specification.

ISAo m cycle ISA transition ISAm

M A 0 n cycle MA transition : M A n

diagram (a)

ISAo

proj

MAo

. i - ISA~

= _ ~ _ _ : ISA m

~proj proj

~ MAn

-MA:
diagram(b)

Fig. 2. Correctness Diagrams

In a correctly implemented MA design, speculatively executed instructions
after a mispredicted branch should have no side-effect on the programmer visible
state. This can be checked by verifying diagram (a), because the ISA executes
instructions one-by-one. The correctness diagram shows that instructions are
executed correctly independently of how branches are predicted.

Let us consider how internal exceptions affect the diagram. The ISA specifi-
cation describes the machine behavior for internal exceptions; it specifies what
states are stored in special registers, what the next PC value is, and so on. We
want to show the MA design implements this action correctly, but we also want
to check it implements precise exceptions. Since the ISA specification executes
instructions one-by-one, it captures the requirements for precise exceptions given

139

in Sect. 2. The correct behavior on multiple exceptions in the pipelined MA is
also implied by the ISA specification, because it always processes exceptions in
program order. These are our reasons to claim that verifying diagram (a) demon-
strates precise handling of internal exceptions, as well as the correct action on
exceptions. We do not check how exceptions are handled by exception handlers,
since this is a software verification problem[Ill .

External exceptions make the problem more complicated. The ISA specifica-
tion function ISA-stepO takes an external interrupt signal as its argument, and
describes the action of an external interrupt as it does for internal exceptions.
The problem is tha t the non-determinism introduced by the external signal can
lead to different final ISA states, as shown in diagram (b). The commutative
diagram holds only for the ISA state transitions which interrupt the same in-
structions as the MA does. Since supplying different environments to the MA
will cause different instructions to be executed and interrupted, we need to find
the corresponding ISA sequence for each MA state sequence with different input
signals.

C o r r e c t n e s s C r i t e r i o n : For an arbi t rary MA execution sequence from
a flushed state MAo to another flushed state MAn, there exists a cor-
responding ISA execution sequence from ISAo to ISAm. This sequence
executes and interrupts the same instructions as occur in the MA execu-
tion sequence, and satisfy ISAo = proj(MAo) and ISAm = proj(MA,~).

The problem of self-modifying code is inseparable from pipelined processor
verification, because instructions can be fetched from the main memory prior to
the completion of writes by previous instructions. As a part of the statement
of our correctness criterion, we assume that the program executed between the
initial flushed MA state and the final flushed MA state does not modify itself.

Our correctness criterion does not imply the complete correctness of a mi-
croprocessor design. Intuitively, our correctness criterion only suggests tha t the
execution of instructions is correct if they are in fact executed. The liveness of
the processor is not part of our criterion, but can be proven separately. The
criterion suggests that external interrupt signals are processed correctly, but it
does not guarantee that all the interrupt signals actually interrupt the machine.
For a real time system, we may further want to show that the processor responds
to an external signal in a bounded amount of time.

4 M A E T T for Speculat ive Execut ion and Except ions

We have extended our Micro-Architectural Execution Trace Table (MAETT)[10]
to model the behavior for speculative execution, internal exceptions and external
interrupts. A M A E T T is an abstraction of an MA state, which contains redun-
dant information that makes it straitforward to specify machine invariants.

A M A E T T is a list whose entries correspond to either a committed or in-flight
instruction. Each entry represents an instruction with a data structure whose
fields are shown in Table 1. A M A E T T records all instructions that are executed

140

from the initial MA state, and the size of a M A E T T is unbounded. A M A E T T
grows as more instructions are fetched, and shrinks when speculatively executed
instructions are abandoned. Instructions are recorded in the ISA execution order.
The M A E T T corresponding to a flushed MA state contains only commit ted
instructions.

In the rest of the paper, we write (I1 , . . . ,It) to designate a M A E T T which

records instructions I i , . . . , I t . ISAo ~ ISA1 ~ .. . -~ ISAt designates an ISA
state sequence tha t executes instructions I 1 , . . . , Iz. The arrow labeled with Ii
means s tate ISAi-t changes to ISAi under the action of Ii. Since each M A E T T
entry contains the ISA states before and after executing the corresponding in-

struction, it is easy to reconstruct the ISA state sequence ISAo ~ ... ~ ISA~
from a M A E T T (I1 , . . . , I t) .

Field name Brief description

ID Identity of Ii.
word Instruction word.
s tg Current pipeline stage of Ii.
robe Reorder buffer entry where Ii is stored.
modify? Flag to show whether Ii is a modified instruction.
spoeula t ive? Flag to show whether Ii is speculatively executed.
b r - p r e d i c t ? Outcome of branch prediction if Ii is a conditional branch.
ex in t r? Flag to show whether Ii is interrupted.
p r e - I S i ISAi-1, i.e., ISA state before executing Ii.
post-ISA ISAi, i.e., ISA state after executing Ii.

Table 1. Data structure for representing an instruction.

We define a M A E T T step function MAETT-stepO to simulate the MA
state transition. MAETT-stepO takes the current MA state, its corresponding
MAETT, and external inputs, and returns a new M A E T T representing the MA
state one cycle later.

Each clock cycle, a M A E T T is updated in concert with the MA state tran-
sition. Suppose the current M A E T T is (I 1 , . . . , I i) . If the MA fetches a new
instruction Iz+l, MAETT-stepO returns an extended M A E T T (I1 , - - . , I t , I 1+1).
The fields of each in-flight instruction are modified to reflect its progress in the
pipeline.

When the MA abandons instructions following a mispredicted branch or an
exception, M A E T T entries corresponding to these instructions are eliminated.
Figure 3 shows branching of an ISA state transit ion sequence due to an external
interrupt. If instruction Ii is not interrupted, s tate ISAi-1 changes to ISAi. If Ii
is interrupted, it changes to ISA~. Before an external interrupt occurs, the MA
executes instructions along the normal execution path, and the M A E T T contains
instructions (I 0 , . . . , Ii, I i+l , . . . , Ik), and looks like M A E T T (a). When an exter-

141

ISAo
I1 I i-1

~ I S A i I i+l Ik
. ISAk

ISAi-1
J -/"~ISXi IS•m
"~ I i i/i+l I/m

interrupt

MAETT (a)

. . . . I_I

I i-1
. . . . I i

I i+I

Ik

MAETT (b) MAETT(c)

~ Ii-1) Ii-1
[- - -Y ; - ; ,LL
[-- - i ' , ; ; l

Update of a MAETT Normal
External interrupt fetching cycle
raised in this cycle.

Fig. 3. Branching of ISA state sequence on an external interrupt. Corresponding
MAETTs axe also shown.

nal interrupt signal is received, the MA design starts synchronizing the machine
and picks an instruction to be interrupted. If the interrupted instruction is I~,
instructions I i , . . . , Ik are abandoned. When this happens, MAETT-step 0 elimi-
nates the abandoned instruction and returns (I 0 , . . . , I i -1, ID, which is shown as
M A E T T (b). MAETT-stepO replaces Ii with I~, whose pos t - ISA field contains
ISA~ and e x i n t r ? flag is set to record the fact tha t I~ was where the interrupt
occurred. By the time we reach the final MA state, the MA ETT will contain
a history of instructions that shows where the interrupts occurred. From the
MAETT, we can easily reconstruct the ISA execution sequence that satisfies the
commutative diagram of our correctness criterion. Similarly, we use the M A E T T
to model speculative execution and internal exceptions.

5 I n v a r i a n t s C o n d i t i o n s a n d C o r r e c t n e s s C r i t e r i o n

We have defined various invariant properties about our pipeline implementation.
Instead of discussing a complete list of invariant properties and techniques to
define them, we present the minimum requirements that our invariant condition
should satisfy, and we give a sketch of the proof of our correctness criterion using
them.

In the following argument, we assume that MTk is the M A E T T representing
an MA state MAk, and MTk contains l instructions I1,...,It. MTk essentially

represents the ISA transitions ISAo ~ ... ~ ISAt, by storing ISA states in fields
pre-ISA and post-ISA.

We defined an invariant condition as Inv(MTk, MAk) that should satisfy fol-
lowing requirements.

142

Requirement 1. If Inv(MTk, MAk) holds and MAk is a flushed pipeline state,
then every instruction Ii in MTk is committed.

A mispredicted conditional branch and an error-causing instruction will eventu-
ally cause instructions to be abandoned. MAETT-speculative?(MTk) is a predi-
cate to check whether MTk contains such an uncommitted mispredicted branch
or an uncommitted error-causing instruction. The program counter in MAk
should correctly point to the next instruction It+l to be fetched by ISAz, unless
it is fetching instructions speculatively.

R e q u i r e m e n t 2. If Inv(MT~, MAk) holds and MTk = (/1 , - . - , It), then

-~MAETT-speculative ?(MTk) =~ MA-pc(MAk) = ISA-pc(ISAt).

Results of instructions are written back to the register file when the instructions
commit.

R e q u i r e m e n t 3. If Inv(MTk, MTk) is true and Ii+1, i < l, is the first uncom-
mitted instruction in MTk = (I1, . . . , It), then

MA-regs(MAk) = ISA-regs(ISAi).

R e q u i r e m e n t 4. If Inv(MTk, MAk) is true and I~+1, i < l, is the first memory
store instruction whose memory write is not completed, then

MA-mem(MAk) = ISA-mem(ISAi).

R e q u i r e m e n t 5. For an arbitrary flushed initial state MAo and its M A E T T
MTo, Inv(MTo, MAo) holds.

We must show that the invariant condition Inv 0 is preserved during M A E T T
updates; however, if self-modified code is executed, the pipelined MA may not
work correctly with respect to ISA specification. To characterize this problem,
we defined a predicate commit-self-modified-inst-p(MT) to check whether any
instruction in MT is self-modified and also committed. Our invariant is preserved
only when there is no such instruction. The machine can speculatively execute
self-modified instructions, if they are eventually abandoned and have no effect
on the programmer visible state.

R e q u i r e m e n t 6. Suppose MAk+I and MTk+I are the next MA state and next
MAETT, that is:

MAk+I = MA-step(MAk, Inputsk),
MTk+t = MAETT-step(MTk, MAk, Inputsk).

Then

Inv(MTk, MAk) ~ Inv(M Tk+ l , MAk + t) V commit-self-modified-inst-p(MTk + l) .

143

Requirements 5 and 6 assure that Inv 0 is true for all reachable states. Re-
quirements 2, 3 and 4 constrain the relation between an MA state and the ISA
state sequence represented by its MAETT. An example of this relation is shown
in Fig. 4. Let us assume that, at the state MA~, instruction I0 is committed,/1 is
waiting for its memory operation to complete,/2 and/3 are being executed, and
/4 is not fetched yet. Requirement 2 implies that the program counter in MAi is
equal to that of ISA4, because it should point to instruction/4 in both states.
Examples of Requirement 3 and 4 are also shown in the figure; the register file in
MAi is equal to the register file in ISA2, and the memory of MAi is equal to the
memory in ISA1. If all instructions I0 , . . . , / 5 are committed, then the skewed
dashed lines align to relate the final MA state and the final ISA state.

memory-wri te
committed not completed

proj

not committed not committed not fetched

J

= regs . . "

= mem',, - ' " = pc

k ' . - ' " if not in speculative
. -" execution '~, f -

• m ~ D • • • •

1

i

i

final f lushed state

Fig. 4. Relations between MA and ISA sequences.

Checking the first five requirements is easy, since they don't involve a state
transition of MA. However, checking Requirement 6 takes extensive analysis of
MA state transitions, and this is where the actual verification activity of the
hardware design takes place. In the rest of this section, we summarize the proof
of our correctness criterion, assuming that Inv 0 satisfies Requirement 6.

From Requirements 2, 3 and 4 and the definition of MAETT-speculative?O,
it is straight forward to get the following lemma.

L e m m a l . Suppose that invariant condition Inv(MAn, MTn) holds, and every
instruction Ii in MTn = (I1 , . . . , Im) is committed, then

proj(MA,,) = ISAm.

L e m m a 2. Let MAo be a flushed MA state, MA,~ be the state after n MA tran-
sitions, and MTn be the MAETT of MAn. Then

-~commit-sel/-modified-inst-p(MTn) ~ Inv(MTn, MAn).

144

Proof. Although a M A E T T trace grows and shrinks, committed instructions are
never removed from a MAETT. So any instruction in the intermediate MA ETT
MTi for i < n is also in the final M A E T T MTn. This implies

~commit-self-modified-inst-p(MTn) ~ ~commit-self-modified-inst-p(MTi).

Hence, if commit-self-modified-inst-p(MTn) is false, we can combine Require-
ment 5 and 6 and get Inv(MTn, MAn) by induction. <>

C o r o l l a r y 3. If M A E T T MTn does not contain any modified instructions, then
Inv(MTn, MAn) is true.

From Requirement 1, Lemma 1 and Corollary 3, we get the following theorem.

T h e o r e m 4 . Suppose MAo is a flushed MA state and ISAo = proj(MAo). After
n cycles of MA state transitions with arbitrary input sequence Inputs, we arrive at
another flushed MA state MAn = MA-stepn(MAo, Inputs, n). Then there exists a

corresponding 1SA transition sequence ISAo ~ ... ~ 1SAm, and if this sequence
is not self-modifying, then proj(MAn) = ISAm.

The ISA sequence ISAo ~ .. . ~ ISAm can be constructed by calculating the
M A E T T of state MAn with M A E T T step function MAETT-step O.

The proof of Theorem 4 has been mechanically checked with ACL2 theorem
prover. At this point, we have not yet completed the verification of Require-
ment 6. As pointed out earlier, the real verification problem is finding and veri-
fying the invariant conditions. A merit of using the M A E T T is tha t it helps us to
define various pipeline invariants. For example, one invariant is that instructions
are dispatched and committed in the ISA execution order. This is nicely defined
as a recursive function over the list of instructions in a MAETT. We have verified
6 out of 18 invariant conditions of Inv O. So far, this verification process found
three bugs in the design, even though the design had been simulated.

Our proof presented here reduces the problem of checking the correctness
criterion to the problem of verifying our requirements. In this sense, what we have
presented here is a framework for verifying a microprocessor. Our requirements
are strong enough to prove our correctness criterion, since we have carried out the
mechanical proof by assuming only those conditions. This suggests the possibility
that we can reuse the structure of the proof for other hardware designs which
satisfy these requirements, even though the construction of MAETT-step 0 and
the verification of the requirements are design dependent.

6 Conclus ion

We have described a framework for verifying pipelined machine designs at the
micro-architectural level. Our correctness criterion compares MA state transi-
tions between two flushed states to the corresponding ISA state transitions. We
discussed why our correctness criterion implies correct speculative execution and

145

precise exceptions. The non-determinism at the ISA level introduced by external
interrupts requires us to dynamically construct corresponding ISA transitions.
This construction is done by modeling the execution of the MA design with a
MAETT, which is essentially a history of committed and in-flight instructions.
We defined an invariant condition that satisfies several requirements, and proved
our correctness criterion under the assumption that the invariant conditions are
preserved during MA state transitions. The proof has been mechanically checked
by the ACL2 theorem prover. We have shown that our requirements are strong
enough to carry out the proof.

We are currently verifying the invariant condition. We also would like to
check whether an external interrupt is guaranteed to be processed. In our MA
design, some external interrupts are dropped because internal exceptions have
higher priority or because multiple interrupts are received within too short of
an interval. It is an open question whether the M A E T T model can help us to
prove properties such as tha t an isolated external interrupt is guaranteed to be
serviced.

References

1. Bishop C. Brock and Warren A. Hunt, Jr. Formally Specifying and Mechanically
Verifying Programs for the Motorola Complex Arithmetic Processor DSP. In 1997
IEEE International Conference on Computer Design, IEEE Computer Society. pp.
31-36, October 13-15, 1997.

2. J. R. Burch, D. L. Dill. Automatic Verification of Pipelined Microprocessor Control,
Computer Aided Verification, Lecture Notes in Computer Science 818, Springer
Verlag, pages 68-80, 1994.

3. J. R. Burch. Techniques for verifying superscalar microprocessors. In Design Au-
tomation Conference, June 1996.

4. M. Coe. Results from Verifying a Pipelined Microprocessor, Master's Thesis, Uni-
versity of Idaho, 1994.

5. H. G. Cragon. Memory Systems and Pipelined Processors, Jones and Bartlett
Publishers, Inc., 1996.

6. D. Cyrluk. Microprocessor verification in PVS: A methodology and simple example,
Technical Report SRI-CSL-93-12, SRI Computer Science Laboratory, Dec. 1993.

7. J. Hennessey, D. Patterson. Computer Architecture a Quantitative Approach, Mor-
gan Kaufmann Publishers, Inc., 1996.

8. W. A. Hunt, Jr., B. Brock. A Formal HDL and Its Use in the FM9001 Verification.
In C.A.R. Hoare and M.J.C. Gordon, editors, Mechanized Reasoning and Hardware
Design, pages 35-48. Prentice-Hall International Series in Computer Science, Engle
wood Cliffs, N.J., 1992.

9. M. Kaufmann, J S. Moore. ACL2: An Industrial Strength Version of Nqthm, Pro-
ceedings of the Eleventh Annual Conference on Computer Assurance (COMPASS-
96), pages 23-34, IEEE Computer Society Press, June 1996.

10. J. Sawada, W. Hunt, Jr. Trace Table Based Approach for Pipelined Microproces-
sor Verification, Computer Aided Verification, Lecture Notes in Computer Science
1254, Springer Verlag, pages 364-375, 1997.

11. M. Srivas, M. Bickford. Formal Verification of a Pipelined Microprocessor, IEEE
Software, pages 52-64, September 1990.

146

12. M. K. Srivas, S. P. Miller. Formal Verification of a Commercial Microprocessor,
Technical Report SRI-CSL-95-12, SRI Computer Science Laboratory, July 1995.

13. S. Tahar, R. Kumar. Formal Verification of Pipeline Conflicts in RISC Proces-
sors, Proc. European Design Automation Conference (EURO-DAC94), Grenoble,
Prance, IEEE Computer Society Press. pages 285-289, September 1994.

14. P .J . Windley, J. R. Burch. Mechanically Checking a Lemma Used in an Automatic
Verification Tool, Formal Methods in Computer-Aided Design, Lecture Notes in
Computer Scienc.e 1166, Springer Verlag, pages 362-376, 1996.

