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Abs t rac t .  We describe a framework for verifying a pipelined micro- 
processor whose implementation contains precise exceptions, external 
interrupts, and speculative execution. We present our correctness crite- 
rion which compares the state transitions of pipelined and non-pipelined 
machines in presence of external interrupts. To perform the verifica- 
tion, we created a table-based model of pipeline execution. This model 
records committed and in-flight instructions as performed by the micro- 
architecture. Given that certain requirements are met by this table-based 
model, we have mechanically verified our correctness criterion using the 
ACL2 theorem prover. 

1 I n t r o d u c t i o n  

We have studied the verification of a pipelined microprocessor whose implemen- 
tat ion contains speculative execution, external interrupts and precise exceptions. 
The verification of pipelined microprocessors has been studied[l,  12, 6, 13], but  
complicated features, such as exception mechanisms, are often simplified away 
from the implementation model. Several verified microprocessor designs contain 
exception mechanisms[4, 11]; however, they contain only one kind of exception 
and require only a few cycles before exception handling starts. Modern micro- 
processors have multiple exception types, which can occur simultaneously in its 
pipeline. Correct handling of an exception requires synchronizing and saving the 
machine state, which may take many clock cycles. This synchronization process 
may itself cause further exceptions. 

Modern processors often execute a large number of instructions speculatively 
using branch prediction mechanisms. The processor has to keep track of these 
instructions correctly so that  speculatively executed instructions following a mis- 
predicted branch have no side-effect. Also speculatively executed instructions 
may themselves cause exceptions, which may need to be ignored. 

* This research was supported in part by the Semiconductor Research Corporation 
under contract 97-DJ-388. 



136 

To investigate these issues, we designed a processor model which can spec- 
ulatively execute instructions and simultaneously detect multiple exceptions 
while executing instructions out-of-order. This machine has been specified at 
the instruction-set architecture level and micro-architecture level. We discuss 
the machine specification in Sect. 2. 

Previously, we used a correctness criterion for verifying a pipelined micropro- 
cessor which did not contain exceptions[10]. In Sect. 3, we have extended this 
correctness criterion to permit the verification of a design containing speculative 
execution and external interrupts. 

We have modeled the behavior of our processor using an intermediate model, 
called a MAETT,  which records all executed instructions. This model, given 
in Sect. 4, presents an abstraction of the behavior of our pipelined design on 
speculative execution and exceptions. Using this model, we wrote an invariant 
condition that  meets several requirements, and show that  these requirements 
are strong enough to prove the correctness criterion. The proof has been carried 
out with ACL2 theorem prover[9]. A brief proof sketch is given Sect. 5. The 
verification of the invariant condition is in progress. 

2 Hardware Specifications 

Our processor model has been specified at two levels: its micro-architecture (MA) 
and its instruction-set architecture (ISA). At the ISA level, we only describe the 
states of the components visible to the programmer, which are shown as shaded 
boxes in Fig. 1. We specify the ISA behavior with an instruction interpreter 
function ISA-step0, which takes a current ISA state and an external interrupt 
input and returns the state after executing a single instruction. At the MA level, 
we describe the behavior of all components shown in Fig. 1. The behavioral 
function MA-step 0 takes a current MA state and its external inputs, and returns 
the state after one clock cycle of execution. The ISA model is a non-pipelined 
machine specification while the MA model is pipelined. 

Our ISA model implements eleven instructions, each in a different instruc- 
tion class. For instance, ADD is the only integer operation instruction. For the 
purpose of our investigation, parameters such as the number of instructions, 
registers, and the register width are not critical. The ISA specification describes 
the action for external interrupts and internal exceptions. When an exception 
occurs, the processor saves some states in special registers, switches to supervisor 
mode, and jumps to the address specific to the exception type. 

The MA specification gives an abstract description of the complete design 
shown in Fig. 1, as well as the exception mechanism, branch prediction unit, 
and memory-write buffers. It fetches and commits instructions in program order, 
but  it has the capability to issue up to three instructions to the execution units 
simultaneously and does execute instructions in an out-of-order manner. The 
machine can hold as many as 15 instructions in the pipeline, and 12 instructions 
can be speculatively executed. 
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Common Data Bus 

Fig. 1. Block Diagram of Our Pipeline Machine Design 

Instructions are executed as follows. A fetched instruction is decoded and 
dispatched to an appropriate reservation stations, where the instruction waits 
for its operands. Once an instruction has all necessary values, it is issued to the 
corresponding execution unit, and the result is written to the re-order buffer[7]. 
Finally, instructions are committed in program order. Committing is the point 
where the instruction actually takes its effect. Speculatively executed instruc- 
tions may reach the re-order buffer, but  are only committed if appropriate. 

Our MA deals with four types of exceptions: fetch errors, decode errors, data  
access errors, and external interrupts. The first three exceptions have internal 
causes, and they are called internal exceptions. All exceptions are precise; that  
is, the correct machine state is saved so that  the executed program can be 
restarted from the point where the exception occurred. To achieve this, our 
machine satisfies the following properties for precise exceptions: 

1. All instructions preceding an exception must complete their operation. 
2. All partially executed instructions following an exception must be abandoned 

with no side-effect. 

The machine may take a large number of machine cycles before it actually starts 
exception handling, because the first condition requires completion of partially 
executed instructions that  precede the exception in program order. The re-order 
buffer is used to sort out the instructions to be completed from those to be 
abandoned[5]. If multiple exceptions are detected in the pipeline, only the earliest 
exception in program order is processed. Our MA design does not contain any 
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imprecise exceptions, and we have not considered the verification a processor 
with imprecise exceptions. 

3 C o r r e c t n e s s  C r i t e r i o n  

Our verification objective is to show that  the MA design correctly executes in- 
structions as specified by the ISA. Various ways to show the equivalence between 
the two levels have been presented. Burch and Dill verified pipelined designs 
using a correctness criterion that  involves pipeline flushing[2]. Although this cri- 
terion with flushing has been extended to cover superscalar processors[3, 14], it 
does not address speculative execution and external exceptions. 

We previously used the correctness criterion shown as diagram (a) in Fig. 2 
to verify a pipelined design[10]. This diagram compares two paths. The lower 
path runs the MA design for an arbitrary number of clock cycles from a flushed 
pipeline state MAo to another flushed state MA,~, which causes m ISA instruc- 
tions to be executed. By stripping off states not visible to the programmer, we 
can project MAn to ISAm. The upper path first projects MAo to an initial ISA 
state ISAo and then runs the ISA specification for m cycles to get the final state 
ISAm. By comparing ISAm obtained by following the different paths, we can 
check whether the MA design conforms to the ISA specification. 

ISAo  m cycle ISA transition ISAm 

M A  0 n cycle MA transition : M A  n 

diagram (a) 

ISAo 

proj 

MAo 

. i -  ISA~ 

= _ ~  _ _ : ISA m 

~proj proj 

~ MAn 

-MA: 
diagram(b) 

Fig. 2. Correctness Diagrams 

In a correctly implemented MA design, speculatively executed instructions 
after a mispredicted branch should have no side-effect on the programmer visible 
state. This can be checked by verifying diagram (a), because the ISA executes 
instructions one-by-one. The correctness diagram shows that  instructions are 
executed correctly independently of how branches are predicted. 

Let us consider how internal exceptions affect the diagram. The ISA specifi- 
cation describes the machine behavior for internal exceptions; it specifies what 
states are stored in special registers, what the next PC value is, and so on. We 
want to show the MA design implements this action correctly, but we also want 
to check it implements precise exceptions. Since the ISA specification executes 
instructions one-by-one, it captures the requirements for precise exceptions given 
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in Sect. 2. The  correct behavior on multiple exceptions in the pipelined MA is 
also implied by the ISA specification, because it always processes exceptions in 
program order. These are our reasons to claim that  verifying diagram (a) demon- 
strates precise handling of internal exceptions, as well as the correct action on 
exceptions. We do not check how exceptions are handled by exception handlers, 
since this is a software verification problem[Ill .  

External  exceptions make the problem more complicated. The ISA specifica- 
tion function ISA-stepO takes an external interrupt signal as its argument, and 
describes the action of an external interrupt as it does for internal exceptions. 
The problem is tha t  the non-determinism introduced by the external signal can 
lead to different final ISA states, as shown in diagram (b). The commutative 
diagram holds only for the ISA state transitions which interrupt the same in- 
structions as the MA does. Since supplying different environments to the MA 
will cause different instructions to be executed and interrupted, we need to find 
the corresponding ISA sequence for each MA state sequence with different input 
signals. 

C o r r e c t n e s s  C r i t e r i o n :  For an arbi t rary MA execution sequence from 
a flushed state MAo to another flushed state MAn, there exists a cor- 
responding ISA execution sequence from ISAo to ISAm. This sequence 
executes and interrupts the same instructions as occur in the MA execu- 
tion sequence, and satisfy ISAo = proj(MAo) and ISAm = proj(MA,~). 

The problem of self-modifying code is inseparable from pipelined processor 
verification, because instructions can be fetched from the main memory prior to 
the completion of writes by previous instructions. As a part of the statement 
of our correctness criterion, we assume that  the program executed between the 
initial flushed MA state and the final flushed MA state does not modify itself. 

Our correctness criterion does not imply the complete correctness of a mi- 
croprocessor design. Intuitively, our correctness criterion only suggests tha t  the 
execution of instructions is correct if they are in fact executed. The liveness of 
the processor is not part  of our criterion, but  can be proven separately. The 
criterion suggests that  external interrupt signals are processed correctly, but it 
does not guarantee that  all the interrupt signals actually interrupt the machine. 
For a real time system, we may further want to show that  the processor responds 
to an external signal in a bounded amount of time. 

4 M A E T T  for Speculat ive  Execut ion  and Except ions  

We have extended our Micro-Architectural Execution Trace Table (MAETT)[10] 
to model the behavior for speculative execution, internal exceptions and external 
interrupts. A M A E T T  is an abstraction of an MA state, which contains redun- 
dant information that  makes it straitforward to specify machine invariants. 

A M A E T T  is a list whose entries correspond to either a committed or in-flight 
instruction. Each entry represents an instruction with a data  structure whose 
fields are shown in Table 1. A M A E T T  records all instructions that  are executed 



140 

from the initial MA state, and the size of a M A E T T  is unbounded. A M A E T T  
grows as more instructions are fetched, and shrinks when speculatively executed 
instructions are abandoned.  Instructions are recorded in the ISA execution order. 
The M A E T T  corresponding to a flushed MA state  contains only commit ted  
instructions. 

In the rest of the paper,  we write ( I1 , . . .  ,It) to designate a M A E T T  which 

records instructions I i , . . . , I t .  ISAo ~ ISA1 ~ .. .  -~ ISAt designates an ISA 
state sequence tha t  executes instructions I 1 , . . . ,  Iz. The  arrow labeled with Ii 
means s tate  ISAi-t  changes to ISAi under the action of Ii. Since each M A E T T  
entry contains the ISA states before and after executing the corresponding in- 

struction, it is easy to reconstruct  the ISA state  sequence ISAo ~ ... ~ ISA~ 
from a M A E T T  ( I1 , . . .  , I t ) .  

Field name Brief description 

ID Identity of Ii. 
word Instruction word. 
s tg  Current pipeline stage of Ii. 
robe Reorder buffer entry where Ii is stored. 
modify? Flag to show whether Ii is a modified instruction. 
spoeula t ive?  Flag to show whether Ii is speculatively executed. 
b r - p r e d i c t ?  Outcome of branch prediction if Ii is a conditional branch. 
ex in t r?  Flag to show whether Ii is interrupted. 
p r e - I S i  ISAi-1, i.e., ISA state before executing Ii. 
post-ISA ISAi, i.e., ISA state after executing Ii. 

Table  1. Data structure for representing an instruction. 

We define a M A E T T  step function MAETT-stepO to simulate the MA 
state transition. MAETT-stepO takes the current MA state, its corresponding 
MAETT,  and external inputs, and returns a new M A E T T  representing the MA 
state one cycle later. 

Each clock cycle, a M A E T T  is updated  in concert with the MA state  tran- 
sition. Suppose the current M A E T T  is ( I 1 , . . . , I i ) .  If  the MA fetches a new 
instruction Iz+l, MAETT-stepO returns an extended M A E T T  ( I1 , - - .  , I t , I  1+1). 
The fields of each in-flight instruction are modified to reflect its progress in the 
pipeline. 

When the MA abandons instructions following a mispredicted branch or an 
exception, M A E T T  entries corresponding to these instructions are eliminated. 
Figure 3 shows branching of an ISA state  transit ion sequence due to an external 
interrupt.  If  instruction Ii is not interrupted,  s tate  ISAi-1 changes to ISAi. If Ii 
is interrupted, it changes to ISA~. Before an external interrupt  occurs, the MA 
executes instructions along the normal execution path,  and the M A E T T  contains 
instructions ( I 0 , . . . ,  Ii, I i+l , . . . ,  Ik), and looks like M A E T T  (a). When an exter- 
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ISAo 
I1 I i-1 

~ I S A i  I i+l Ik 
. . . . .  ISAk 

ISAi-1 
J -/"~ISXi . . . . .  IS•m 
"~ I i i/i+l I/m 

interrupt 

MAETT (a) 

. . . .  I_I . . . . . .  

I i-1 
. . . .  I i  . . . . .  

I i+I 

Ik 

MAETT (b) MAETT(c) 

~ Ii-1 ) Ii-1 
[ - - -Y ; - ; ,LL  
[-- - i ' , ; ;  . . . .  l 

Update of a MAETT Normal 
External interrupt fetching cycle 
raised in this cycle. 

Fig. 3. Branching of ISA state sequence on an external interrupt. Corresponding 
MAETTs axe also shown. 

nal interrupt signal is received, the MA design starts synchronizing the machine 
and picks an instruction to be interrupted. If the interrupted instruction is I~, 
instructions I i , . . . ,  Ik are abandoned. When this happens, MAETT-step 0 elimi- 
nates the abandoned instruction and returns ( I 0 , . . . ,  I i -1,  ID, which is shown as 
M A E T T  (b). MAETT-stepO replaces Ii with I~, whose pos t - ISA field contains 
ISA~ and e x i n t r ?  flag is set to record the fact tha t  I~ was where the interrupt 
occurred. By the time we reach the final MA state, the MA ETT will contain 
a history of instructions that  shows where the interrupts occurred. From the 
MAETT,  we can easily reconstruct the ISA execution sequence that  satisfies the 
commutative diagram of our correctness criterion. Similarly, we use the M A E T T  
to model speculative execution and internal exceptions. 

5 I n v a r i a n t s  C o n d i t i o n s  a n d  C o r r e c t n e s s  C r i t e r i o n  

We have defined various invariant properties about  our pipeline implementation. 
Instead of discussing a complete list of invariant properties and techniques to 
define them, we present the minimum requirements that  our invariant condition 
should satisfy, and we give a sketch of the proof of our correctness criterion using 
them. 

In the following argument,  we assume that  MTk is the M A E T T  representing 
an MA state MAk, and MTk contains l instructions I1,...,It. MTk essentially 

represents the ISA transitions ISAo ~ ... ~ ISAt, by storing ISA states in fields 
pre-ISA and post-ISA. 

We defined an invariant condition as Inv(MTk, MAk) that  should satisfy fol- 
lowing requirements. 
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Requirement 1. If  Inv(MTk, MAk) holds and MAk is a flushed pipeline state, 
then every instruction Ii in MTk is committed. 

A mispredicted conditional branch and an error-causing instruction will eventu- 
ally cause instructions to be abandoned. MAETT-speculative?(MTk) is a predi- 
cate to check whether MTk contains such an uncommitted mispredicted branch 
or an uncommitted error-causing instruction. The program counter in MAk 
should correctly point to the next instruction It+l to be fetched by ISAz, unless 
it is fetching instructions speculatively. 

R e q u i r e m e n t  2. If  Inv( MT~, MAk ) holds and MTk = ( /1 , - . - ,  It), then 

-~MAETT-speculative ?( MTk ) =~ MA-pc( MAk ) = ISA-pc( ISAt ). 

Results of instructions are written back to the register file when the instructions 
commit. 

R e q u i r e m e n t  3. If Inv(MTk, MTk) is true and Ii+1, i < l, is the first uncom- 
mitted instruction in MTk = (I1, . . . ,  It), then 

MA-regs( MAk ) = ISA-regs( ISAi ). 

R e q u i r e m e n t  4. If Inv(MTk, MAk) is true and I~+1, i < l, is the first memory 
store instruction whose memory write is not completed, then 

MA-mem( MAk ) = ISA-mem( ISAi ). 

R e q u i r e m e n t  5. For an arbitrary flushed initial state MAo and its M A E T T  
MTo, Inv( MTo, MAo) holds. 

We must show that  the invariant condition Inv 0 is preserved during M A E T T  
updates; however, if self-modified code is executed, the pipelined MA may not 
work correctly with respect to ISA specification. To characterize this problem, 
we defined a predicate commit-self-modified-inst-p(MT) to check whether any 
instruction in MT is self-modified and also committed. Our invariant is preserved 
only when there is no such instruction. The machine can speculatively execute 
self-modified instructions, if they are eventually abandoned and have no effect 
on the programmer visible state. 

R e q u i r e m e n t  6. Suppose MAk+I and MTk+I are the next MA state and next 
MAETT, that is: 

MAk+I = MA-step(MAk, Inputsk), 
MTk+t = MAETT-step( MTk, MAk, Inputsk). 

Then 

Inv( MTk, MAk ) ~ Inv( M Tk+ l , MAk + t ) V commit-self-modified-inst-p( MTk + l ) . 
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Requirements 5 and 6 assure that Inv 0 is true for all reachable states. Re- 
quirements 2, 3 and 4 constrain the relation between an MA state and the ISA 
state sequence represented by its MAETT. An example of this relation is shown 
in Fig. 4. Let us assume that, at the state MA~, instruction I0 is committed,/1 is 
waiting for its memory operation to complete,/2 and/3 are being executed, and 
/4 is not fetched yet. Requirement 2 implies that the program counter in MAi is 
equal to that of ISA4, because it should point to instruction/4 in both states. 
Examples of Requirement 3 and 4 are also shown in the figure; the register file in 
MAi is equal to the register file in ISA2, and the memory of MAi is equal to the 
memory in ISA1. If all instructions I0 , . . . , / 5  are committed, then the skewed 
dashed lines align to relate the final MA state and the final ISA state. 

memory-wri te  
committed not completed 

proj 

not committed not committed not fetched 

J 

= regs . . "  

= mem',,  - ' " =  pc 

k ' . - ' "  if not in speculative 
. -"  execution '~, f -  

• m ~  D • • • • 

1 

i 

i 

final f lushed state 

Fig. 4. Relations between MA and ISA sequences. 

Checking the first five requirements is easy, since they don't involve a state 
transition of MA. However, checking Requirement 6 takes extensive analysis of 
MA state transitions, and this is where the actual verification activity of the 
hardware design takes place. In the rest of this section, we summarize the proof 
of our correctness criterion, assuming that Inv 0 satisfies Requirement 6. 

From Requirements 2, 3 and 4 and the definition of MAETT-speculative?O, 
it is straight forward to get the following lemma. 

L e m m a l .  Suppose that invariant condition Inv(MAn, MTn) holds, and every 
instruction Ii in MTn = ( I1 , . . . , Im)  is committed, then 

proj( MA,,) = ISAm. 

L e m m a  2. Let MAo be a flushed MA state, MA,~ be the state after n MA tran- 
sitions, and MTn be the MAETT of MAn. Then 

-~commit-sel/-modified-inst-p( MTn ) ~ Inv( MTn, MAn). 
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Proof. Although a M A E T T  trace grows and shrinks, committed instructions are 
never removed from a MAETT.  So any instruction in the intermediate MA ETT 
MTi for i < n is also in the final M A E T T  MTn. This implies 

~commit-self-modified-inst-p( MTn ) ~ ~commit-self-modified-inst-p( MTi ). 

Hence, if commit-self-modified-inst-p(MTn) is false, we can combine Require- 
ment 5 and 6 and get Inv(MTn, MAn) by induction. <> 

C o r o l l a r y  3. If  M A E T T  MTn does not contain any modified instructions, then 
Inv(MTn, MAn) is true. 

From Requirement 1, Lemma 1 and Corollary 3, we get the following theorem. 

T h e o r e m 4 .  Suppose MAo is a flushed MA state and ISAo = proj(MAo). After 
n cycles of MA state transitions with arbitrary input sequence Inputs, we arrive at 
another flushed MA state MAn = MA-stepn(MAo, Inputs, n). Then there exists a 

corresponding 1SA transition sequence ISAo ~ ... ~ 1SAm, and if this sequence 
is not self-modifying, then proj(MAn) = ISAm. 

The ISA sequence ISAo ~ .. .  ~ ISAm can be constructed by calculating the 
M A E T T  of state MAn with M A E T T  step function MAETT-step O. 

The proof of Theorem 4 has been mechanically checked with ACL2 theorem 
prover. At this point, we have not yet completed the verification of Require- 
ment 6. As pointed out earlier, the real verification problem is finding and veri- 
fying the invariant conditions. A merit of using the M A E T T  is tha t  it helps us to 
define various pipeline invariants. For example, one invariant is that  instructions 
are dispatched and committed in the ISA execution order. This is nicely defined 
as a recursive function over the list of instructions in a MAETT.  We have verified 
6 out of 18 invariant conditions of Inv O. So far, this verification process found 
three bugs in the design, even though the design had been simulated. 

Our proof presented here reduces the problem of checking the correctness 
criterion to the problem of verifying our requirements. In this sense, what we have 
presented here is a framework for verifying a microprocessor. Our requirements 
are strong enough to prove our correctness criterion, since we have carried out the 
mechanical proof by assuming only those conditions. This suggests the possibility 
that  we can reuse the structure of the proof for other hardware designs which 
satisfy these requirements, even though the construction of MAETT-step 0 and 
the verification of the requirements are design dependent. 

6 Conclus ion 

We have described a framework for verifying pipelined machine designs at the 
micro-architectural level. Our correctness criterion compares MA state transi- 
tions between two flushed states to the corresponding ISA state transitions. We 
discussed why our correctness criterion implies correct speculative execution and 



145 

precise exceptions. The non-determinism at the ISA level introduced by external 
interrupts requires us to dynamically construct corresponding ISA transitions. 
This construction is done by modeling the execution of the MA design with a 
MAETT,  which is essentially a history of committed and in-flight instructions. 
We defined an invariant condition that  satisfies several requirements, and proved 
our correctness criterion under the assumption that  the invariant conditions are 
preserved during MA state transitions. The proof has been mechanically checked 
by the ACL2 theorem prover. We have shown that  our requirements are strong 
enough to carry out the proof. 

We are currently verifying the invariant condition. We also would like to 
check whether an external interrupt is guaranteed to be processed. In our MA 
design, some external interrupts are dropped because internal exceptions have 
higher priority or because multiple interrupts are received within too short of 
an interval. It is an open question whether the M A E T T  model can help us to 
prove properties such as tha t  an isolated external interrupt is guaranteed to be 
serviced. 

References  

1. Bishop C. Brock and Warren A. Hunt, Jr. Formally Specifying and Mechanically 
Verifying Programs for the Motorola Complex Arithmetic Processor DSP. In 1997 
IEEE International Conference on Computer Design, IEEE Computer Society. pp. 
31-36, October 13-15, 1997. 

2. J. R. Burch, D. L. Dill. Automatic Verification of Pipelined Microprocessor Control, 
Computer Aided Verification, Lecture Notes in Computer Science 818, Springer 
Verlag, pages 68-80, 1994. 

3. J. R. Burch. Techniques for verifying superscalar microprocessors. In Design Au- 
tomation Conference, June 1996. 

4. M. Coe. Results from Verifying a Pipelined Microprocessor, Master's Thesis, Uni- 
versity of Idaho, 1994. 

5. H. G. Cragon. Memory Systems and Pipelined Processors, Jones and Bartlett 
Publishers, Inc., 1996. 

6. D. Cyrluk. Microprocessor verification in PVS: A methodology and simple example, 
Technical Report SRI-CSL-93-12, SRI Computer Science Laboratory, Dec. 1993. 

7. J. Hennessey, D. Patterson. Computer Architecture a Quantitative Approach, Mor- 
gan Kaufmann Publishers, Inc., 1996. 

8. W. A. Hunt, Jr., B. Brock. A Formal HDL and Its Use in the FM9001 Verification. 
In C.A.R. Hoare and M.J.C. Gordon, editors, Mechanized Reasoning and Hardware 
Design, pages 35-48. Prentice-Hall International Series in Computer Science, Engle 
wood Cliffs, N.J., 1992. 

9. M. Kaufmann, J S. Moore. ACL2: An Industrial Strength Version of Nqthm, Pro- 
ceedings of the Eleventh Annual Conference on Computer Assurance (COMPASS- 
96), pages 23-34, IEEE Computer Society Press, June 1996. 

10. J. Sawada, W. Hunt, Jr. Trace Table Based Approach for Pipelined Microproces- 
sor Verification, Computer Aided Verification, Lecture Notes in Computer Science 
1254, Springer Verlag, pages 364-375, 1997. 

11. M. Srivas, M. Bickford. Formal Verification of a Pipelined Microprocessor, IEEE 
Software, pages 52-64, September 1990. 



146 

12. M. K. Srivas, S. P. Miller. Formal Verification of a Commercial Microprocessor, 
Technical Report SRI-CSL-95-12, SRI Computer Science Laboratory, July 1995. 

13. S. Tahar, R. Kumar. Formal Verification of Pipeline Conflicts in RISC Proces- 
sors, Proc. European Design Automation Conference (EURO-DAC94), Grenoble, 
Prance, IEEE Computer Society Press. pages 285-289, September 1994. 

14. P .J .  Windley, J. R. Burch. Mechanically Checking a Lemma Used in an Automatic 
Verification Tool, Formal Methods in Computer-Aided Design, Lecture Notes in 
Computer Scienc.e 1166, Springer Verlag, pages 362-376, 1996. 


