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Abs t r ac t .  We present a systematic approach to decompose and incre- 
mentally build the proof of correctness of pipelined microprocessors. The 
central idea is to construct the abstraction function using completion 
functions, one per unfinished instruction, each of which specifies the ef- 
fect (on the observables) of completing the instruction. In addition to 
avoiding term-size and case explosion problem that limits the pure flush- 
ing approach, our method helps localize errors, and also handles stages 
with iterative loops. The technique is illustrated on a pipelined and a su- 
perscalar pipelined implementations of a subset of the DLX architecture. 
It has also been applied to a processor with out-of-order execution. 

1 I n t r o d u c t i o n  

Many modern microprocessors employ radical opt imizat ions such as superscalar 
pipelining, speculative execution and out-of-order execution to enhance their 
throughput.  These opt imizat ions make microprocessor verification difficult in 
practice. Most approaches to mechanical verification of pipelined processors rely 
on the following key techniques: First, given a pipelined implementa t ion and 
a simpler ISA-level specification, they require a suitable abstract ion mapping  
f rom an implementat ion state to a specification state and define the correspon- 
dence between the two machines using a commutat ive  diagram. Second, they 
use symbolic simulation to derive logical expressions corresponding to the two 
paths  in the commuta t ive  d iagram which will then be tested for equivalence. 
An automat ic  way to perform this equivalence testing is to use ground decision 
procedures for equality with uninterpreted functions such as the ones in PVS. 
This s trategy has been used to verify several processors in PVS [5, 4, 15]. Some of 
the approaches to pipelined processor verification rely on the user providing the 
definition for the abstract ion function. Butch and Dill in [3] observed tha t  the 
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effect of flushing the pipeline, for example by pumping a sequence of NOPs, can 
be used to automatically compute a suitable abstraction function. Burch and 
Dill used this flushing approach along with a validity checker [9, 1] to automate 
effectively the verification of pipelined implementations of several processors. 

The pure flushing approach has the drawback of making the size of the ab- 
straction function generated and the number of examined cases impractically 
large for deep and complex superscalar pipelines. To verify a superscalar exam- 
ple using the flushing approach, Burch [2] decomposed the verification problem 
into three subproblems and suggested a technique which required the user to 
add some extra control inputs to the implementation and set them appropri- 
ately to construct the abstraction function. He also had to fine-tune the validity 
checker used in the experiment requiring the user to help it with many manually 
derived case splits. It is unclear how the decomposition of the proof and the 
abstraction function used in [2] can be reused for verifying other superscalar ex- 
amples. Another drawback of the pure flushing approach is that it is hard to use 
for pipelines with indeterminate latency, which can arise if the control involves 
data-dependent loops or if some part of the processor, such as memory-cache 
interface, is abstracted away for managing the complexity of the system. 

In this paper, we propose a systematic methodology to modularize as well 
as decompose the proof of correctness of microprocessors with complex pipeline 
architectures. Called the completion functions method, our approach relies on 
the user expressing the abstraction function in terms of a set of completion 
functions, one per unfinished instruction. Each completion function specifies the 
desired effect (on the observables) of completing the instruction. Notice that 
one is not obligated to state how such completion would actually be attained, 
which, indeed, can be very complex, involving details such as squashing, pipeline 
stalls, and even data dependent iterative loops. Moreover, we strongly believe 
that a typical designer would have a very clear understanding of the completion 
functions, and would not find the task of describing them and constructing the 
abstraction function onerous. In addition to actually gaining from designers' 
insights, verification based on the completion functions method has a number of 
other advantages. It results in a natural decomposition of proofs. Proofs build up 
in a layered manner where the designer actually debugs the last pipeline stage 
first through a verification condition, and then uses this verification condition 
as a rewrite rule in debugging the penultimate stage, and so on. Because of 
this layering, the proof strategy employed is fairly simple and almost generic in 
practice. Debugging is far more effective than in other methods because errors 
can be localized to a stage, instead of having to wade through monolithic proofs. 

1.1 Re la t ed  Work  

Levitt and Olukotun [10] use an "unpipelining" technique for merging successive 
pipeline stages through a series of behavior preserving transformations. While 
unpipelining also results in a decomposition of the proofs, their transformation 
is performed on the implementation whereas completion functions are defined 



124 

based on the specification. Their method has the disadvantage that  the imple- 
mentation is verified against itself in the initial steps and that their transforma- 
tions can get complex for superscalar processors and processors with out-of-order 
execution. Cyrluk's technique in [6], which has also been applied to a superscalar 
processor, tackles the term-size and case explosion problem by lazily "inverting 
the abstraction mapping" to replace big implementation terms with smaller spec- 
ification terms and using the conditions in the specification terms to guide the 
proof. Our method contains the complexity of the proof by decomposing the 
proof of the commutative diagram one stage at a time in a fashion that  is closer 
to the user's intuition about the design. Park and Dill have used aggregation 
functions [12], which are conceptually similar to completion functions, for dis- 
tributed cache coherence protocol verification. In [I3], Sawada and Hunt used 
an incremental verification technique to verify a processor with out-of-order exe- 
cution which we have reverified using our approach. We describe the differences 
in section 4.5. 

2 C o r r e c t n e s s  C r i t e r i a  f o r  P r o c e s s o r  V e r i f i c a t i o n  

The completion functions approach aims to realize the correctness criterion (used 
in [13,3]) expressed in Figure l(a), in a manner that  proofs based on it are 
modular and layered as pointed out earlier. 

Figure l(a) requires that  every sequence of n implementation transitions 
which start  and end with flushed states (i.e., no partially executed instructions) 
corresponds to a sequence of m instructions (i.e., transitions) executed by the 
specification machine. I_s tep  is the implementation transition function and 
A_step is the specification transition function. The p r o j e c t i o n  extracts only 
those implementation state components visible to the specification (i.e. the ob- 
servables). This criterion is preferred over others that  have been used to verify 
pipelined processors because it corresponds to the intuition that  a real pipelined 
microprocessor starting at a flushed state, running some program and terminat- 
ing in a flushed state is emulated by a specification machine whose starting and 
terminating states are in direct correspondence through projection. This crite- 
rion can be proved by induction on n once the commutative diagram condition 
shown in Figure l(b) has been proved on a single implementation machine tran- 
sition. This inductive proof can be constructed once, as we have demonstrated 
in [8], for arbitrary machines that  satisfy the conditions described in the next 
paragraph. In the rest of the paper, we concentrate on verifying the commutative 
diagram condition. 

Intuitively, Figure 1 (b) states that  if the implementation machine starts in an 
arbitrary reachable state impl_state and the specification machine starts in a 
corresponding specification state (given by an abstraction function ABS), then af- 
ter executing a transition their new states correspond. ABS must be chosen so that  
for all flushed states f s  the projection condition ABS(fs) = p r o j e c t i o n ( f s )  
holds. The commutative diagram uses a modified transition function A_step' ,  
which denotes zero or more applications of A_step, because an implementation 



125 

flushed 
impl_state impl_statc 

projection " ?  i 

* i n I_step ~j ~t m Astep I ste 

~'~ projection D(~ flushed 
impl_state 

ABS 

ABS 

(b) 

Fig. 1. Pipelined microprocessor correctness criteria 

transition from an arbitrary state might correspond to executing in the specifi- 
cation machine zero instruction (e.g., if the implementation machine stalls due 
to pipeline interlocks) or more than one instruction (e.g., if the implementation 
machine has multiple pipelines). The number of instructions executed by the 
specification machine is provided by a user-defined synchronization function on 
implementation states. One of the crucial proof obligations is to show that  this 
function does not always return zero. One also needs to prove that  the imple- 
mentat ion machine will eventually reach a flushed state if no more instructions 
are inserted into the machine, to make sure that  the correctness criterion in Fig- 
ure l(a) is not vacuous. In addition, the user may need to discover invariants to 
restrict the set of imp l_s t a t e  considered in the proof of Figure l(b) and prove 
that  it is closed under I_s tep.  

3 T h e  C o m p l e t i o n  F u n c t i o n s  A p p r o a c h  

One way of defining ABS is to use a part  of the implementation definition, mod- 
ified, if necessary, to construct an explicit flush operation [3, 2] to flush the 
pipeline. The completion functions approach is based on using an abstraction 
function that  is behaviorally equivalent to flushing but  is not derived opera- 
tionally via flushing in our basic approach 1 . Rather, we construct the abstraction 
function as a composition (followed by a projection) of a sequence of completion 
functions that  map an implementation state to an implementation state. Each 
completion function specifies the desired effect on the observables of completing a 
particular unfinished instruction in the machine leaving all non-observable state 
components unchanged. The order in which these functions are composed is de- 
termined by the program order of the unfinished instructions. The conditions 
under which each function is composed with the rest, if any, is determined by 
whether the unfinished instructions ahead of it could disrupt the flow of instruc- 
tions for example, by being a taken branch or by raising an exception. Observe 
that  one is not required to state how these conditions are actually realised in the 
implementation. Any mistakes, either in specifying the completion functions or 

1 Later we discuss a hybrid scheme extension that uses operational flushing. 
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in constructing the abstraction function, might lead to a false negative verifica- 
tion result, but never a false positive. 

Consider a very simple four-stage pipeline with one observable state compo- 
nent r e g f i l e  which is shown in Figure 2. The instructions flow down the pipeline 
with every cycle in order with no stalls, hazards etc. updating the regf±le  in 
the last stage. (This is unrealistically simple, but we explain how to handle these 
artifacts in subsequent sections.) The pipeline can contain three unfinished in- 
structions at any time, which are held in the three sets of pipeline registers 
labeled IF/ID, ID/EX, and EX/WB. The completion function corresponding to 
an unfinished instruction held in a set of pipeline registers (such as ID/EX) de- 
fines how the information stored in those registers are combined to complete that 
instruction. In our example, the completion functions are C_EX_WB, C_ID ~.X and 
C._.IF_ID, respectively. Now the abstraction function, whose effect should be to 
flush the pipeline, can be expressed as a composition of these completion func- 
tions as follows (we omit p r o j e c t i o n  here as r e g f i l e  is the only observable 
state component): 

ABS(impl_state) = C_IF_ID(C_ID_EX(C_EX_WB(impl_state))) 

IF/ID ID/EX EX/WB 
FiFth ~,  D~DOde ~_ Execute ~EX -N WritebaCkwB 

impl_state C_ID_EX ..f'~ C_IF_ID -~.j = 
I ste V ~ ~  V C ~ ~  V y ~  step 

I I - ' , _ ;  _ - - ~  ) v c 4  C_EX_WB C_ID EX C_IF_ID "----" 

Fig. 2. A simple four stage pipeline and decomposition of the proof under completion 
functions 

This definition of the abstraction function leads to a decomposition of the 
proof of the commutative diagram for r e g f i l e  as shown in Figure 2, generating 
the following series of verification conditions, the last one of which corresponds 
to the complete commutative diagram. 

VCI: regfile(I_step(impl_state)) = regfile(C_EX_WB(impl_state)) 
VC2: regfile(C_EX_WB(I_step(impl_state))) = 

regfile(CID_EX(C_EX_WB(impl_state))) 
VC3: regfile(C ID_EX(C EX WB(I step(impl_state)))) = 

regfile(CIFID(C_ID_EX(CEX_WB(impl_state)))) 
VC4: regfile(C_IF ID(C_ID EX(C EX_WB(I step(impl_state))))) = 

regfile(Astep(CIF_ID(C_ID_EX(C_EX_WB(impl_state))))) 

l_step executes partially the instructions already in the pipeline as well as 
a newly fetched instruction. Given this, VC1 expresses the following fact: since 
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r e g f i l e  is updated in the last stage, we would expect that after I_step is 
executed, the contents of r e g f i l e  would be the same as after completing the 
instruction in the EX/WB registers. 

Now consider the instruction in ID/EX. I_step executes it partially as per the 
logic in stage EX, and then moves the result to the EX/WB registers. C_EX_WB 
can now be used to complete this instruction. This must result in the same 
contents of r e g f i l e  as completing the instructions held in sets EX/WB and 
ID/EX of pipeline registers in that order. This is captured by VC2. VC3 and 
VC4 are constructed similarly. Note that our ultimate goal is to prove only 
VC4, with the proofs of VC1 through VC3 acting as "helpers". Each verification 
condition in the above series can be proved using a standard strategy that involves 
expanding the outermost function on the both sides of the equation and using the 
previously proved verification conditions (if any) as rewrite rules to simplify the 
expressions, followed by automatic case analysis of the boolean terms appearing 
in the conditional structure of the simplified expressions. Since we expand only 
the topmost functions on both sides, and because we use the previously proved 
verification conditions, the sizes of the expressions produced during the proof 
and the required case analysis are kept in check. 

The completion functions approach also supports incremental and layered 
verification. When proving VC1, we are verifying the writeback stage of the 
pipeline against its specification C_EX_WB. When proving VC2, we are verifying 
one more stage of the pipeline, and so on. This makes it easier to locate errors. 
In the flushing approach, if there is a bug in the pipeline, the validity checker 
would produce a counterexample--a set of formulas potentially involving all the 
implementation variables--that implies the negation of the formula correspond- 
ing to the commutative diagram. Such a counterexample cannot isolate the stage 
in which the bug occurred. 

Another advantage of using completion functions is that their definition, un- 
like that of flush operation, is not dependent on the latency of the pipeline. 
Hence our method is applicable even when the latency of the pipeline is indeter- 
minate, which can happen if, for example, the pipeline contains data-dependent 
iterative loops or when the implementation machine has non-determinism. The 
proof that the implementation eventually reaches a flushed state can be con- 
structed by defining a measure function that returns the number of cycles the 
implementation takes to flush and showing that the measure decreases after a 
transition from a non-flushed state. 

A disadvantage of the completion functions approach is that the user must 
explicitly specify the definitions for these completion functions and then con- 
struct an abstraction function. In a later section, we describe a hybrid approach 
to reduce the manual effort involved in this process. 

4 A p p l i c a t i o n  o f  O u r  M e t h o d o l o g y  

In this section, we explain how to apply our methodology to verify three exam- 
ples: a pipelined and a superscalar pipelined implementations of a subset of the 
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DLX processor [7] and a processor with out-of-order execution. We describe how 
to specify the completion functions and construct an abstraction function, how 
to handle stalls, speculative fetching and out-of-order execution, and illustrate 
the particular decomposition and the proof strategies we used. The DLX exam- 
ple was verified in [3] using the flushing approach, the superscalar DLX example 
was verified in [2] and the processor with out-of-order execution was verified in 
[13]. Our verification is carried out in PVS [11]. The detailed implementation, 
specification as well as the proofs for all these examples can be found at [8]. The 
manual effort spent on developing the proofs for the processor with out-of-order 
execution was less than two person weeks. The first two examples were verified 
while developing our methodology and took about two person months, which 
also included the time to learn PVS. 

4.1 D L X  P r o c e s s o r  De ta i l s  

The specification of this processor has four state components: the program 
counter pc, the register file r e g f i l e ,  the data  memory dmem, and the instruction 
memory ±mem. The processor supports six types of instructions: load,  s t o re ,  
unconditional jump, conditional branch, a lu - immedia te  and a 3-register a lu  
instruction. The ALU is modeled using an uninterpreted function. The mem- 
ory system and the register file are modeled as stores with r ead  and w r i t e  
operations. 

IF 

bubble id 
insb'_id 

Complete jam] 
and branch 

I~~instrzctlons. 
Read opetands 
for others if 

ID 

bubbl~ eX 
operand_a 
op~rand b 

dest ex 
offset_ex 

Compute alu 
result or the 

t~get mem~ 
address. 

EX 

d~Lm~ 
result mere 
load_flaz 
store_flag 
R,t ai- 

EX/MEM 
MEM 

dest_wb 

rc~ult_wb 

WB 

Fig. 8. Pipelined implementation 

The implementation uses a five stage pipeline as shown in Figure 3. There are 
four sets of pipeline registers holding information about the partially executed 
instructions in 15 pipeline registers. The intended functionality of each of the 
stages is also shown in the figure. The implementation uses a simple "assume not 
taken" prediction strategy for jump and branch instructions. Consequently, if a 
jump or branch is indeed taken (br_taken signal is asserted), then the pipeline 
squashes the subsequent instruction and corrects the pc. If the instruction in 
the IF / ID registers is dependent on a load  in the ID/EX registers, then that  
instruction will be stalled for one cycle ( s t_ i s sue  signal is asserted), otherwise 
the instructions flow down the pipeline with every cycle. No instructions are 
fetched in the cycle where s t a l l _ i n p u t  is asserted. The implementation provides 
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forwarding of da ta  to the instruction decode unit (ID stage) where the operands 
are read. The details of forwarding are not shown in the figure. 

4.2 S p e c i f y i n g  t h e  C o m p l e t i o n  Functions 

The processor can have four partially executed instructions at any time, one 
each in the four sets of pipeline registers shown. We associate a completion 
function with each such instruction. We need to identify how a partially executed 
instruction is stored in a particular set of pipeline registers--once this is done, 
the completion function for that  unfinished instruction can be easily derived 
from the specification. 

Consider the set IF / ID of pipeline registers. The intended functionality of 
the IF stage is to fetch an instruction (place it in i n s t r _ i d )  and increment the 
pc. The bubble . . id  register indicates whether the instruction is valid or not. (It 
might be invalid, for example, if it is being squashed due to a taken branch) .  So 
in order to complete the execution of this instruction, the completion function 
should do nothing if the instruction is not valid, otherwise it should update the 
pc with the target address if it is a jump or a taken branch  instruction, update 
the dmem if it is a s t o r e  instruction and update the r e g f i l e  if it is a load,  
a l u - i m m e d i a t e  or a l u  instruction according to the semantics of the instruction. 
The details of how these are done can be gleaned from the specification. This 
function is not obtained by tracing the implementation, instead, the user directly 
provides the intended effect. Also note that  we are not concerned with load 
interlock or data  forwarding while specifying the completion function. We call 
this function C..IF I"D. Similarly the completion functions for the other three sets 
of pipeline registers--C_ID_EX, C_EX.NEM and C_MEM_WB--are specified. 

The completion functions for the unfinished instructions in the initial sets 
of pipeline regi§ters are very close to the specification and it is very easy to 
derive them. (For example, C_IF_ID is almost the same as the specification). 
However the completion functions for the unfinished instructions in the later sets 
of pipeline registers are harder to derive as the user needs to understand how 
the information about the instruction is stored in the various pipeline registers 
but the functions themselves are much simpler. 

4.3 The D e c o m p o s i t i o n  and the  P r o o f  D e t a i l s  

Since the instructions flow down the pipeline in order, the abstraction function 
is defined as a simple composition of these completion functions as : 

pro j ect ion (C_IF_ID (C_ID_EX (C_EX_MEM (C_MEM_WB (impl_stat e) ) ) ) ) 
The synchronization function returns zero if either s t ._issue or s t a l l . . i n p u t  or 
b r_ taken  is true, otherwise it return one. 

T h e  D e c o m p o s i t i o n .  The decomposition we used for regfile for this example 
is shown in Figure 4. The justification for the first three verification conditions is 
similar as in Section 3. There are two verification conditions corresponding to the 
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instruction in the IF/ID registers. If s t_ issue is true, then that instruction is not 
issued, so C_IF_ID ought not to be applied in the upper path in the commutative 
diagram. VC4_r requires us to prove this under condition P1 = st_issue.  VC5._r 
is for the case when the instruction is issued, so it should be proved under 
condition P2 = NOT st_issue.  Observe that s t_ issue also appears as a disjunct 
in the synchronization function and hence in A_step' too. Finally, VC6_r is 
the verification condition corresponding to the final commutative diagram for 
regfile. 

i~ dstate 

-7 C MEM WB C EX MEM C_ID_EX _ C_IF_ID /'N 

I Ste ~ ~ Pl ~ /~VC5 r ;_step' " 

[ -~O "(3 ~ "O "[ ) VC6 r 
C MEM_WB C EX_MEM C ID_EX C_IF_ID ~ - 

Fig. 4. The decomposition of the commutative diagram for regf i le  

The decomposition used for a particular observable depends on the pipeline 
stage where that observable is updated. For example, the first verification con- 
dition for dmem states that dmem(C_MEM_WB (impl_state)) = dmem(impl_state) 

since dmem is not updated in the last stage of the pipeline. Other verification 
conditions are exactly identical to that of r e g f i l e .  FinMly, the decompositions 
we used for pc and imem had three and two verification conditions, respectively. 

The  Proof .  The proof is organized into three phases: first that of generating and 
proving certain rewrite rules, second that of proving the verification conditions 
and other lemmas and invariants (if needed) using these rewrite rules and third 
that of proving the other proof obligations mentioned in section 2. 

For each register in a particular set of pipeline registers, we need a rewrite rule 
that states that the register is unaffected by the completion functions of the un- 
finished instructions ahead of it. For example, for bubble_ex, the rewrite rule is 
bubble_ex(C_EX_MEM(C_MEM_WB(impl_state))) = bubble_ex(impl_state). All 
these rules can be generated and proved automatically by rewriting using the 
definitions of the completion functions. We then defined a PVS strategy that 
makes these rules, and the definitions and the axioms from the implementation 
and the specification (leaving out a few on which we do case analysis), as rewrite 
rules. 

Now, the proof strategy for proving all the verification conditions is similar-- 
use the PVS strategy described above to setup the rewrite rules, setup the pre- 
viously proved verification conditions as rewrite rules, expand the outermost 
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functions on both sides, use the PVS command a s s e r t  to do the rewrites and 
simplifications by decision procedures, then perform case analysis with the PVS 
strategy (apply (then* (repeat (lift-if)) (bddsimp) (ground))). Some 
verification conditions (like VC4_r) needed the outermost function to be ex- 
panded on only one side and some were slightly more involved (like VC6-r) 
needing case analysis on the various terms introduced by expanding h_s tep '  

The proof above needed a lemma expressing the correctness of the feedback 
logic. With completion functions, we could state this succinctly as follows: the 
value read in the ID stage by the feedback logic (when the instruction in the 
IF / ID registers is valid and not stalled) is the same as the value read from 
r e g f i l e  after the three instructions ahead of it are completed. Its proof was 
done essentially with case analysis using the PVS strategy shown in the previous 
paragraph. We also needed an invariant on the reachable states in this example 
and the proof that  it was closed under I_s t ep  was trivial. 

Finally we prove that  the implementation machine eventually goes to a 
flushed state if it is stalled sufficiently long and then check in that  flushed state 
f s ,  ABS(fs) = p r o j e c t i o n ( f s ) .  For this example, this proof was done by ob- 
serving that  bubble_ id  will be true after two stall transitions (hence no instruc- 
tion in the IF / ID  registers) and that  this "no-instruction"-ness propagates down 
the pipeline with every stall transition. Also, we prove that  the synchronization 
function does not always return zero which was straightforward. 

4.4 Application to S u p e r s c a l a r  D L X  P r o c e s s o r  

The superscalar DLX processor [2] is a dual issue version of the DLX processor. 
Both the pipelines have similar structure as Figure 3 except that the second 
pipeline only executes a l u - immed ia t e  and a lu  instructions. In addition, the 
processor has one instruction buffer location. 

Specifying the completion functions for the various unfinished instructions 
was similar to the DLX example. A main difference was how the completion 
functions of the unfinished instructions in the IF / ID registers and the instruc- 
tion buffer (say the instructions are i ,  j ,  k and completion functions are C~, 
C_j and C_k respectively) are composed to handle the speculative fetching of 
instructions. These unfinished instructions could be potential branches since the 
branch instructions are executed in the ID stage of the first pipeline. So while 
constructing the abstraction function, we compose C_j (with C _ i ( . . . r e s t  Of 
t he  c o m p l e t i o n  f u n c t i o n s  in  o r d e r . . .  )) only if instruction i is not a taken 
branch and then compose C_k only if instruction j is not a taken branch too. We 
used a similar idea in constructing the synchronization function. The specifica- 
tion machine would not execute any new instructions if any of the instructions 
i ,  j ,  k mentioned above is a taken branch. It is very easy and natural  to ex- 
press these conditions using completion functions since we are not concerned 
with when exactly the branches are taken in the implementation machine. How- 
ever, in the pure flushing approach, even the synchronization function will have 
to be much more complicated--having to cycle the implementation machine for 
many cycles [2]. 
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Another difference between the two processors was the complex issue logic 
here which could issue zero to two instructions per cycle. We had eight verifica- 
tion conditions on how different instructions get issued or stal led/move around. 
The proofs of all the verification conditions again used very similar strategies. 
The synchronization function had many more cases in this example and the 
previously proved verification conditions were used many times over. 

4.5 A p p l i c a t i o n  t o  a P r o c e s s o r  w i t h  O u t - o f - o r d e r  E x e c u t i o n  

We have applied our approach to an out-of-order execution processor that  was 
verified in [13]. This processor has three execution un i t s - -a  multiplier, an adder 
and a load/store uni t - -shar ing the write-back stage. This situation represents 
a structural hazard which is resolved by the issue logic by not issuing instruc- 
tions such that  two may simultaneously be in the write-back stage. We prove 
an invariant on the issue logic that  this hazard is resolved properly and then 
build the proof of the commutat ive diagram in the various cases. Formulating 
the verification conditions in these various cases was similar as in the earlier 
examples. The interesting case is the following scenario of out-of-order comple- 
tion. An add instruction takes one cycle in the execution unit while a mult  takes 
three cycles. So, an add instruction, issed after a mult  instruction, can complete 
before it. However, the processor would issue such an add instruction only if its 
destination register is different from that  of the mult  instruction issued earlier. 
We use this fact to reorder the completion functions of the add and the mult  
instructions into the the order used by the abstraction function. 

In [13], Sawada and Hunt construct an intermediate abstraction of the im- 
plementation machine using a table that  represents the (infinite) trace of all 
executed instructions up to the present time. They achieve incrementality by 
postulating and proving individually a large set of invariant properties about 
this intermediate representation, from which they derive the final correctness 
proof. The main difference of our approach is that  the incremental nature of 
the proof in our case arises from the way we construct our abstraction function 
and the decomposition of the proof of the commutat ive diagram that  it leads 
to. This decomposition is to a large extent independent of the processor design. 
Our approach also has the advantage that  the amount of information the user 
needs to specify is significantly less than their method. For example, we require 
just  a few simple invariants on the reachable states and do not need to construct 
an explicit intermediate abstraction of the implementation machine. 

4.6 H y b r i d  A p p r o a c h  t o  R e d u c e  t h e  M a n u a l  E f f o r t  

In some cases, it is possible to derive the definitions of some of the completion 
functions automatically from the implementation to reduce the manual effort. 
We illustrate this on the DLX example. 

The implementation machine is provided in the form of a typical transition 
function giving the "new" value for each state component.  Since the implemen- 
tation modifies the r e g f i l e  in the writeback stage, we take C_.MEM_hTB to be 
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new_.vegfile which is a function of dest_wb and result_wb. To determine how 
C..EX~EM updates the register file from C_HEMJ4B, we perform a step of symbolic 
simulation of the non-observables in the definition of C_HEM_WB, that is, replace 
d e s t ~ b  and result_wb in its definition with their "new-" counterparts. Since 
the MEM stage updates dmem, C..EX_HEM will have another component modify- 
ing dmem which we simply take as new_.dmem. Similarly we derive C_ID_EX from 
C_EX_HEH through symbolic simulation. For the IF/ID registers, this gets com- 
plicated on two counts: the instruction there could get stalled due to a load 
interlock, and the forwarding logic that appears in the ID stage. So we let the 
user specify this function directly. We have done a complete proof using these 
completion functions. The details of the proof are similar. An important differ- 
ence here is that the invariant that was needed earlier was eliminated. 

While reducing the manual effort, this way of deriving the completion func- 
tions from the implementation has the disadvantage that we are verifying the 
implementation against itself. This contradicts our view of these as desired speci- 
fications and negates our goal of incremental verification. To combine the advan- 
tages of both, we could use a hybrid approach where we use explicitly provided 
and symbolically generated completion functions in combination. For example, 
we could derive it for the last stage, specify it for the penultimate stage and 
then derive it for the stage before that (from the specification for the penulti- 
mate stage) and so on. 

5 C o n c l u s i o n s  

We have presented a systematic approach to modularize and decompose the proof 
of correctness of pipelined microprocessors and shown its generality by applying 
it to three different processors. The methodology relies on the user expressing 
the cumulative effect of flushing in terms of a set of completion functions, one 
per unfinished instruction. This method results in a natural decomposition of the 
proof based on the individual stages of the pipeline and allows the verification 
to proceed incrementally overcoming the term-size and case explosion problem 
of the flushing approach. While this method increases the manual effort on the 
part of the user, we found the knowledge required in specifying the completion 
functions, constructing the abstraction function and formulating the verification 
conditions is close to the designer's intuition about how the pipeline works. 

One of our future plans is to build a system that uses PVS or a part of it as a 
back-end to support the methodology presented. Besides automating parts of the 
methodology, this system would help the user interactively apply the rest of the 
process. We would also like to see how our approach can be extended to verify 
more complex pipeline control that uses reorder buffers or other out-of-order 
completion techniques. Other plans include testing the efficacy of our approach 
for verifying pipelines with data dependent iterative loops and asynchronous 
memory interface. 
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