
Decomposing the Proof of Correctness of
Pipelined Microprocessors*

Ravi Hosabet tu I , Mandayam Srivas 2 and Ganesh Gopalakrishnan 1

Department of Computer Science, University of Utah, Salt Lake City, UT 84112,
hosabet t,ganesh@cs.utah.edu

2 Computer Science Laboratory, SRI International, Menlo Park, CA 94025,
srivas@csl.sri.com

Abs t r ac t . We present a systematic approach to decompose and incre-
mentally build the proof of correctness of pipelined microprocessors. The
central idea is to construct the abstraction function using completion
functions, one per unfinished instruction, each of which specifies the ef-
fect (on the observables) of completing the instruction. In addition to
avoiding term-size and case explosion problem that limits the pure flush-
ing approach, our method helps localize errors, and also handles stages
with iterative loops. The technique is illustrated on a pipelined and a su-
perscalar pipelined implementations of a subset of the DLX architecture.
It has also been applied to a processor with out-of-order execution.

1 I n t r o d u c t i o n

Many modern microprocessors employ radical opt imizat ions such as superscalar
pipelining, speculative execution and out-of-order execution to enhance their
throughput. These opt imizat ions make microprocessor verification difficult in
practice. Most approaches to mechanical verification of pipelined processors rely
on the following key techniques: First, given a pipelined implementa t ion and
a simpler ISA-level specification, they require a suitable abstract ion mapping
f rom an implementat ion state to a specification state and define the correspon-
dence between the two machines using a commutat ive diagram. Second, they
use symbolic simulation to derive logical expressions corresponding to the two
paths in the commuta t ive d iagram which will then be tested for equivalence.
An automat ic way to perform this equivalence testing is to use ground decision
procedures for equality with uninterpreted functions such as the ones in PVS.
This s trategy has been used to verify several processors in PVS [5, 4, 15]. Some of
the approaches to pipelined processor verification rely on the user providing the
definition for the abstract ion function. Butch and Dill in [3] observed tha t the

* This work was done in part when Ravi Hosabettu was visiting SRI International in
summer 1997. The work done by the authors at University of Utah was supported in
part by DARPA under Contract #DABT6396C0094 (Utah Verifier) and NSF MIP
MIP-9321836. The work done by the authors at SRI International was supported in
part under NASA Contract NAS1-20334 and ARPA Contract A721/NAG 2-891.

123

effect of flushing the pipeline, for example by pumping a sequence of NOPs, can
be used to automatically compute a suitable abstraction function. Burch and
Dill used this flushing approach along with a validity checker [9, 1] to automate
effectively the verification of pipelined implementations of several processors.

The pure flushing approach has the drawback of making the size of the ab-
straction function generated and the number of examined cases impractically
large for deep and complex superscalar pipelines. To verify a superscalar exam-
ple using the flushing approach, Burch [2] decomposed the verification problem
into three subproblems and suggested a technique which required the user to
add some extra control inputs to the implementation and set them appropri-
ately to construct the abstraction function. He also had to fine-tune the validity
checker used in the experiment requiring the user to help it with many manually
derived case splits. It is unclear how the decomposition of the proof and the
abstraction function used in [2] can be reused for verifying other superscalar ex-
amples. Another drawback of the pure flushing approach is that it is hard to use
for pipelines with indeterminate latency, which can arise if the control involves
data-dependent loops or if some part of the processor, such as memory-cache
interface, is abstracted away for managing the complexity of the system.

In this paper, we propose a systematic methodology to modularize as well
as decompose the proof of correctness of microprocessors with complex pipeline
architectures. Called the completion functions method, our approach relies on
the user expressing the abstraction function in terms of a set of completion
functions, one per unfinished instruction. Each completion function specifies the
desired effect (on the observables) of completing the instruction. Notice that
one is not obligated to state how such completion would actually be attained,
which, indeed, can be very complex, involving details such as squashing, pipeline
stalls, and even data dependent iterative loops. Moreover, we strongly believe
that a typical designer would have a very clear understanding of the completion
functions, and would not find the task of describing them and constructing the
abstraction function onerous. In addition to actually gaining from designers'
insights, verification based on the completion functions method has a number of
other advantages. It results in a natural decomposition of proofs. Proofs build up
in a layered manner where the designer actually debugs the last pipeline stage
first through a verification condition, and then uses this verification condition
as a rewrite rule in debugging the penultimate stage, and so on. Because of
this layering, the proof strategy employed is fairly simple and almost generic in
practice. Debugging is far more effective than in other methods because errors
can be localized to a stage, instead of having to wade through monolithic proofs.

1.1 Re la t ed Work

Levitt and Olukotun [10] use an "unpipelining" technique for merging successive
pipeline stages through a series of behavior preserving transformations. While
unpipelining also results in a decomposition of the proofs, their transformation
is performed on the implementation whereas completion functions are defined

124

based on the specification. Their method has the disadvantage that the imple-
mentation is verified against itself in the initial steps and that their transforma-
tions can get complex for superscalar processors and processors with out-of-order
execution. Cyrluk's technique in [6], which has also been applied to a superscalar
processor, tackles the term-size and case explosion problem by lazily "inverting
the abstraction mapping" to replace big implementation terms with smaller spec-
ification terms and using the conditions in the specification terms to guide the
proof. Our method contains the complexity of the proof by decomposing the
proof of the commutative diagram one stage at a time in a fashion that is closer
to the user's intuition about the design. Park and Dill have used aggregation
functions [12], which are conceptually similar to completion functions, for dis-
tributed cache coherence protocol verification. In [I3], Sawada and Hunt used
an incremental verification technique to verify a processor with out-of-order exe-
cution which we have reverified using our approach. We describe the differences
in section 4.5.

2 C o r r e c t n e s s C r i t e r i a f o r P r o c e s s o r V e r i f i c a t i o n

The completion functions approach aims to realize the correctness criterion (used
in [13,3]) expressed in Figure l(a), in a manner that proofs based on it are
modular and layered as pointed out earlier.

Figure l(a) requires that every sequence of n implementation transitions
which start and end with flushed states (i.e., no partially executed instructions)
corresponds to a sequence of m instructions (i.e., transitions) executed by the
specification machine. I_s tep is the implementation transition function and
A_step is the specification transition function. The p r o j e c t i o n extracts only
those implementation state components visible to the specification (i.e. the ob-
servables). This criterion is preferred over others that have been used to verify
pipelined processors because it corresponds to the intuition that a real pipelined
microprocessor starting at a flushed state, running some program and terminat-
ing in a flushed state is emulated by a specification machine whose starting and
terminating states are in direct correspondence through projection. This crite-
rion can be proved by induction on n once the commutative diagram condition
shown in Figure l(b) has been proved on a single implementation machine tran-
sition. This inductive proof can be constructed once, as we have demonstrated
in [8], for arbitrary machines that satisfy the conditions described in the next
paragraph. In the rest of the paper, we concentrate on verifying the commutative
diagram condition.

Intuitively, Figure 1 (b) states that if the implementation machine starts in an
arbitrary reachable state impl_state and the specification machine starts in a
corresponding specification state (given by an abstraction function ABS), then af-
ter executing a transition their new states correspond. ABS must be chosen so that
for all flushed states f s the projection condition ABS(fs) = p r o j e c t i o n (f s)
holds. The commutative diagram uses a modified transition function A_step' ,
which denotes zero or more applications of A_step, because an implementation

125

flushed
impl_state impl_statc

projection " ? i

* i n I_step ~j ~t m Astep I ste

~'~ projection D(~ flushed
impl_state

ABS

ABS

(b)

Fig. 1. Pipelined microprocessor correctness criteria

transition from an arbitrary state might correspond to executing in the specifi-
cation machine zero instruction (e.g., if the implementation machine stalls due
to pipeline interlocks) or more than one instruction (e.g., if the implementation
machine has multiple pipelines). The number of instructions executed by the
specification machine is provided by a user-defined synchronization function on
implementation states. One of the crucial proof obligations is to show that this
function does not always return zero. One also needs to prove that the imple-
mentat ion machine will eventually reach a flushed state if no more instructions
are inserted into the machine, to make sure that the correctness criterion in Fig-
ure l(a) is not vacuous. In addition, the user may need to discover invariants to
restrict the set of imp l_s t a t e considered in the proof of Figure l(b) and prove
that it is closed under I_s tep.

3 T h e C o m p l e t i o n F u n c t i o n s A p p r o a c h

One way of defining ABS is to use a part of the implementation definition, mod-
ified, if necessary, to construct an explicit flush operation [3, 2] to flush the
pipeline. The completion functions approach is based on using an abstraction
function that is behaviorally equivalent to flushing but is not derived opera-
tionally via flushing in our basic approach 1 . Rather, we construct the abstraction
function as a composition (followed by a projection) of a sequence of completion
functions that map an implementation state to an implementation state. Each
completion function specifies the desired effect on the observables of completing a
particular unfinished instruction in the machine leaving all non-observable state
components unchanged. The order in which these functions are composed is de-
termined by the program order of the unfinished instructions. The conditions
under which each function is composed with the rest, if any, is determined by
whether the unfinished instructions ahead of it could disrupt the flow of instruc-
tions for example, by being a taken branch or by raising an exception. Observe
that one is not required to state how these conditions are actually realised in the
implementation. Any mistakes, either in specifying the completion functions or

1 Later we discuss a hybrid scheme extension that uses operational flushing.

126

in constructing the abstraction function, might lead to a false negative verifica-
tion result, but never a false positive.

Consider a very simple four-stage pipeline with one observable state compo-
nent r e g f i l e which is shown in Figure 2. The instructions flow down the pipeline
with every cycle in order with no stalls, hazards etc. updating the regf±le in
the last stage. (This is unrealistically simple, but we explain how to handle these
artifacts in subsequent sections.) The pipeline can contain three unfinished in-
structions at any time, which are held in the three sets of pipeline registers
labeled IF/ID, ID/EX, and EX/WB. The completion function corresponding to
an unfinished instruction held in a set of pipeline registers (such as ID/EX) de-
fines how the information stored in those registers are combined to complete that
instruction. In our example, the completion functions are C_EX_WB, C_ID ~.X and
C._.IF_ID, respectively. Now the abstraction function, whose effect should be to
flush the pipeline, can be expressed as a composition of these completion func-
tions as follows (we omit p r o j e c t i o n here as r e g f i l e is the only observable
state component):

ABS(impl_state) = C_IF_ID(C_ID_EX(C_EX_WB(impl_state)))

IF/ID ID/EX EX/WB
FiFth ~, D~DOde ~_ Execute ~EX -N WritebaCkwB

impl_state C_ID_EX ..f'~ C_IF_ID -~.j =
I ste V ~ ~ V C ~ ~ V y ~ step

I I - ' , _ ; _ - - ~) v c 4 C_EX_WB C_ID EX C_IF_ID "----"

Fig. 2. A simple four stage pipeline and decomposition of the proof under completion
functions

This definition of the abstraction function leads to a decomposition of the
proof of the commutative diagram for r e g f i l e as shown in Figure 2, generating
the following series of verification conditions, the last one of which corresponds
to the complete commutative diagram.

VCI: regfile(I_step(impl_state)) = regfile(C_EX_WB(impl_state))
VC2: regfile(C_EX_WB(I_step(impl_state))) =

regfile(CID_EX(C_EX_WB(impl_state)))
VC3: regfile(C ID_EX(C EX WB(I step(impl_state)))) =

regfile(CIFID(C_ID_EX(CEX_WB(impl_state))))
VC4: regfile(C_IF ID(C_ID EX(C EX_WB(I step(impl_state))))) =

regfile(Astep(CIF_ID(C_ID_EX(C_EX_WB(impl_state)))))

l_step executes partially the instructions already in the pipeline as well as
a newly fetched instruction. Given this, VC1 expresses the following fact: since

127

r e g f i l e is updated in the last stage, we would expect that after I_step is
executed, the contents of r e g f i l e would be the same as after completing the
instruction in the EX/WB registers.

Now consider the instruction in ID/EX. I_step executes it partially as per the
logic in stage EX, and then moves the result to the EX/WB registers. C_EX_WB
can now be used to complete this instruction. This must result in the same
contents of r e g f i l e as completing the instructions held in sets EX/WB and
ID/EX of pipeline registers in that order. This is captured by VC2. VC3 and
VC4 are constructed similarly. Note that our ultimate goal is to prove only
VC4, with the proofs of VC1 through VC3 acting as "helpers". Each verification
condition in the above series can be proved using a standard strategy that involves
expanding the outermost function on the both sides of the equation and using the
previously proved verification conditions (if any) as rewrite rules to simplify the
expressions, followed by automatic case analysis of the boolean terms appearing
in the conditional structure of the simplified expressions. Since we expand only
the topmost functions on both sides, and because we use the previously proved
verification conditions, the sizes of the expressions produced during the proof
and the required case analysis are kept in check.

The completion functions approach also supports incremental and layered
verification. When proving VC1, we are verifying the writeback stage of the
pipeline against its specification C_EX_WB. When proving VC2, we are verifying
one more stage of the pipeline, and so on. This makes it easier to locate errors.
In the flushing approach, if there is a bug in the pipeline, the validity checker
would produce a counterexample--a set of formulas potentially involving all the
implementation variables--that implies the negation of the formula correspond-
ing to the commutative diagram. Such a counterexample cannot isolate the stage
in which the bug occurred.

Another advantage of using completion functions is that their definition, un-
like that of flush operation, is not dependent on the latency of the pipeline.
Hence our method is applicable even when the latency of the pipeline is indeter-
minate, which can happen if, for example, the pipeline contains data-dependent
iterative loops or when the implementation machine has non-determinism. The
proof that the implementation eventually reaches a flushed state can be con-
structed by defining a measure function that returns the number of cycles the
implementation takes to flush and showing that the measure decreases after a
transition from a non-flushed state.

A disadvantage of the completion functions approach is that the user must
explicitly specify the definitions for these completion functions and then con-
struct an abstraction function. In a later section, we describe a hybrid approach
to reduce the manual effort involved in this process.

4 A p p l i c a t i o n o f O u r M e t h o d o l o g y

In this section, we explain how to apply our methodology to verify three exam-
ples: a pipelined and a superscalar pipelined implementations of a subset of the

128

DLX processor [7] and a processor with out-of-order execution. We describe how
to specify the completion functions and construct an abstraction function, how
to handle stalls, speculative fetching and out-of-order execution, and illustrate
the particular decomposition and the proof strategies we used. The DLX exam-
ple was verified in [3] using the flushing approach, the superscalar DLX example
was verified in [2] and the processor with out-of-order execution was verified in
[13]. Our verification is carried out in PVS [11]. The detailed implementation,
specification as well as the proofs for all these examples can be found at [8]. The
manual effort spent on developing the proofs for the processor with out-of-order
execution was less than two person weeks. The first two examples were verified
while developing our methodology and took about two person months, which
also included the time to learn PVS.

4.1 D L X P r o c e s s o r De ta i l s

The specification of this processor has four state components: the program
counter pc, the register file r e g f i l e , the data memory dmem, and the instruction
memory ±mem. The processor supports six types of instructions: load, s t o re ,
unconditional jump, conditional branch, a lu - immedia te and a 3-register a lu
instruction. The ALU is modeled using an uninterpreted function. The mem-
ory system and the register file are modeled as stores with r ead and w r i t e
operations.

IF

bubble id
insb'_id

Complete jam]
and branch

I~~instrzctlons.
Read opetands
for others if

ID

bubbl~ eX
operand_a
op~rand b

dest ex
offset_ex

Compute alu
result or the

t~get mem~
address.

EX

d~Lm~
result mere
load_flaz
store_flag
R,t ai-

EX/MEM
MEM

dest_wb

rc~ult_wb

WB

Fig. 8. Pipelined implementation

The implementation uses a five stage pipeline as shown in Figure 3. There are
four sets of pipeline registers holding information about the partially executed
instructions in 15 pipeline registers. The intended functionality of each of the
stages is also shown in the figure. The implementation uses a simple "assume not
taken" prediction strategy for jump and branch instructions. Consequently, if a
jump or branch is indeed taken (br_taken signal is asserted), then the pipeline
squashes the subsequent instruction and corrects the pc. If the instruction in
the IF / ID registers is dependent on a load in the ID/EX registers, then that
instruction will be stalled for one cycle (s t_ i s sue signal is asserted), otherwise
the instructions flow down the pipeline with every cycle. No instructions are
fetched in the cycle where s t a l l _ i n p u t is asserted. The implementation provides

129

forwarding of da ta to the instruction decode unit (ID stage) where the operands
are read. The details of forwarding are not shown in the figure.

4.2 S p e c i f y i n g t h e C o m p l e t i o n Functions

The processor can have four partially executed instructions at any time, one
each in the four sets of pipeline registers shown. We associate a completion
function with each such instruction. We need to identify how a partially executed
instruction is stored in a particular set of pipeline registers--once this is done,
the completion function for that unfinished instruction can be easily derived
from the specification.

Consider the set IF / ID of pipeline registers. The intended functionality of
the IF stage is to fetch an instruction (place it in i n s t r _ i d) and increment the
pc. The bubble . . id register indicates whether the instruction is valid or not. (It
might be invalid, for example, if it is being squashed due to a taken branch) . So
in order to complete the execution of this instruction, the completion function
should do nothing if the instruction is not valid, otherwise it should update the
pc with the target address if it is a jump or a taken branch instruction, update
the dmem if it is a s t o r e instruction and update the r e g f i l e if it is a load,
a l u - i m m e d i a t e or a l u instruction according to the semantics of the instruction.
The details of how these are done can be gleaned from the specification. This
function is not obtained by tracing the implementation, instead, the user directly
provides the intended effect. Also note that we are not concerned with load
interlock or data forwarding while specifying the completion function. We call
this function C..IF I"D. Similarly the completion functions for the other three sets
of pipeline registers--C_ID_EX, C_EX.NEM and C_MEM_WB--are specified.

The completion functions for the unfinished instructions in the initial sets
of pipeline regi§ters are very close to the specification and it is very easy to
derive them. (For example, C_IF_ID is almost the same as the specification).
However the completion functions for the unfinished instructions in the later sets
of pipeline registers are harder to derive as the user needs to understand how
the information about the instruction is stored in the various pipeline registers
but the functions themselves are much simpler.

4.3 The D e c o m p o s i t i o n and the P r o o f D e t a i l s

Since the instructions flow down the pipeline in order, the abstraction function
is defined as a simple composition of these completion functions as :

pro j ect ion (C_IF_ID (C_ID_EX (C_EX_MEM (C_MEM_WB (impl_stat e)))))
The synchronization function returns zero if either s t ._issue or s t a l l . . i n p u t or
b r_ taken is true, otherwise it return one.

T h e D e c o m p o s i t i o n . The decomposition we used for regfile for this example
is shown in Figure 4. The justification for the first three verification conditions is
similar as in Section 3. There are two verification conditions corresponding to the

130

instruction in the IF/ID registers. If s t_ issue is true, then that instruction is not
issued, so C_IF_ID ought not to be applied in the upper path in the commutative
diagram. VC4_r requires us to prove this under condition P1 = st_issue. VC5._r
is for the case when the instruction is issued, so it should be proved under
condition P2 = NOT st_issue. Observe that s t_ issue also appears as a disjunct
in the synchronization function and hence in A_step' too. Finally, VC6_r is
the verification condition corresponding to the final commutative diagram for
regfile.

i~ dstate

-7 C MEM WB C EX MEM C_ID_EX _ C_IF_ID /'N

I Ste ~ ~ Pl ~ /~VC5 r ;_step' "

[-~O "(3 ~ "O "[) VC6 r
C MEM_WB C EX_MEM C ID_EX C_IF_ID ~ -

Fig. 4. The decomposition of the commutative diagram for regf i le

The decomposition used for a particular observable depends on the pipeline
stage where that observable is updated. For example, the first verification con-
dition for dmem states that dmem(C_MEM_WB (impl_state)) = dmem(impl_state)

since dmem is not updated in the last stage of the pipeline. Other verification
conditions are exactly identical to that of r e g f i l e . FinMly, the decompositions
we used for pc and imem had three and two verification conditions, respectively.

The Proof . The proof is organized into three phases: first that of generating and
proving certain rewrite rules, second that of proving the verification conditions
and other lemmas and invariants (if needed) using these rewrite rules and third
that of proving the other proof obligations mentioned in section 2.

For each register in a particular set of pipeline registers, we need a rewrite rule
that states that the register is unaffected by the completion functions of the un-
finished instructions ahead of it. For example, for bubble_ex, the rewrite rule is
bubble_ex(C_EX_MEM(C_MEM_WB(impl_state))) = bubble_ex(impl_state). All
these rules can be generated and proved automatically by rewriting using the
definitions of the completion functions. We then defined a PVS strategy that
makes these rules, and the definitions and the axioms from the implementation
and the specification (leaving out a few on which we do case analysis), as rewrite
rules.

Now, the proof strategy for proving all the verification conditions is similar--
use the PVS strategy described above to setup the rewrite rules, setup the pre-
viously proved verification conditions as rewrite rules, expand the outermost

131

functions on both sides, use the PVS command a s s e r t to do the rewrites and
simplifications by decision procedures, then perform case analysis with the PVS
strategy (apply (then* (repeat (lift-if)) (bddsimp) (ground))). Some
verification conditions (like VC4_r) needed the outermost function to be ex-
panded on only one side and some were slightly more involved (like VC6-r)
needing case analysis on the various terms introduced by expanding h_s tep '

The proof above needed a lemma expressing the correctness of the feedback
logic. With completion functions, we could state this succinctly as follows: the
value read in the ID stage by the feedback logic (when the instruction in the
IF / ID registers is valid and not stalled) is the same as the value read from
r e g f i l e after the three instructions ahead of it are completed. Its proof was
done essentially with case analysis using the PVS strategy shown in the previous
paragraph. We also needed an invariant on the reachable states in this example
and the proof that it was closed under I_s t ep was trivial.

Finally we prove that the implementation machine eventually goes to a
flushed state if it is stalled sufficiently long and then check in that flushed state
f s , ABS(fs) = p r o j e c t i o n (f s) . For this example, this proof was done by ob-
serving that bubble_ id will be true after two stall transitions (hence no instruc-
tion in the IF / ID registers) and that this "no-instruction"-ness propagates down
the pipeline with every stall transition. Also, we prove that the synchronization
function does not always return zero which was straightforward.

4.4 Application to S u p e r s c a l a r D L X P r o c e s s o r

The superscalar DLX processor [2] is a dual issue version of the DLX processor.
Both the pipelines have similar structure as Figure 3 except that the second
pipeline only executes a l u - immed ia t e and a lu instructions. In addition, the
processor has one instruction buffer location.

Specifying the completion functions for the various unfinished instructions
was similar to the DLX example. A main difference was how the completion
functions of the unfinished instructions in the IF / ID registers and the instruc-
tion buffer (say the instructions are i , j , k and completion functions are C~,
C_j and C_k respectively) are composed to handle the speculative fetching of
instructions. These unfinished instructions could be potential branches since the
branch instructions are executed in the ID stage of the first pipeline. So while
constructing the abstraction function, we compose C_j (with C _ i (. . . r e s t Of
t he c o m p l e t i o n f u n c t i o n s in o r d e r . . .)) only if instruction i is not a taken
branch and then compose C_k only if instruction j is not a taken branch too. We
used a similar idea in constructing the synchronization function. The specifica-
tion machine would not execute any new instructions if any of the instructions
i , j , k mentioned above is a taken branch. It is very easy and natural to ex-
press these conditions using completion functions since we are not concerned
with when exactly the branches are taken in the implementation machine. How-
ever, in the pure flushing approach, even the synchronization function will have
to be much more complicated--having to cycle the implementation machine for
many cycles [2].

132

Another difference between the two processors was the complex issue logic
here which could issue zero to two instructions per cycle. We had eight verifica-
tion conditions on how different instructions get issued or stal led/move around.
The proofs of all the verification conditions again used very similar strategies.
The synchronization function had many more cases in this example and the
previously proved verification conditions were used many times over.

4.5 A p p l i c a t i o n t o a P r o c e s s o r w i t h O u t - o f - o r d e r E x e c u t i o n

We have applied our approach to an out-of-order execution processor that was
verified in [13]. This processor has three execution un i t s - -a multiplier, an adder
and a load/store uni t - -shar ing the write-back stage. This situation represents
a structural hazard which is resolved by the issue logic by not issuing instruc-
tions such that two may simultaneously be in the write-back stage. We prove
an invariant on the issue logic that this hazard is resolved properly and then
build the proof of the commutat ive diagram in the various cases. Formulating
the verification conditions in these various cases was similar as in the earlier
examples. The interesting case is the following scenario of out-of-order comple-
tion. An add instruction takes one cycle in the execution unit while a mult takes
three cycles. So, an add instruction, issed after a mult instruction, can complete
before it. However, the processor would issue such an add instruction only if its
destination register is different from that of the mult instruction issued earlier.
We use this fact to reorder the completion functions of the add and the mult
instructions into the the order used by the abstraction function.

In [13], Sawada and Hunt construct an intermediate abstraction of the im-
plementation machine using a table that represents the (infinite) trace of all
executed instructions up to the present time. They achieve incrementality by
postulating and proving individually a large set of invariant properties about
this intermediate representation, from which they derive the final correctness
proof. The main difference of our approach is that the incremental nature of
the proof in our case arises from the way we construct our abstraction function
and the decomposition of the proof of the commutat ive diagram that it leads
to. This decomposition is to a large extent independent of the processor design.
Our approach also has the advantage that the amount of information the user
needs to specify is significantly less than their method. For example, we require
just a few simple invariants on the reachable states and do not need to construct
an explicit intermediate abstraction of the implementation machine.

4.6 H y b r i d A p p r o a c h t o R e d u c e t h e M a n u a l E f f o r t

In some cases, it is possible to derive the definitions of some of the completion
functions automatically from the implementation to reduce the manual effort.
We illustrate this on the DLX example.

The implementation machine is provided in the form of a typical transition
function giving the "new" value for each state component. Since the implemen-
tation modifies the r e g f i l e in the writeback stage, we take C_.MEM_hTB to be

133

new_.vegfile which is a function of dest_wb and result_wb. To determine how
C..EX~EM updates the register file from C_HEMJ4B, we perform a step of symbolic
simulation of the non-observables in the definition of C_HEM_WB, that is, replace
d e s t ~ b and result_wb in its definition with their "new-" counterparts. Since
the MEM stage updates dmem, C..EX_HEM will have another component modify-
ing dmem which we simply take as new_.dmem. Similarly we derive C_ID_EX from
C_EX_HEH through symbolic simulation. For the IF/ID registers, this gets com-
plicated on two counts: the instruction there could get stalled due to a load
interlock, and the forwarding logic that appears in the ID stage. So we let the
user specify this function directly. We have done a complete proof using these
completion functions. The details of the proof are similar. An important differ-
ence here is that the invariant that was needed earlier was eliminated.

While reducing the manual effort, this way of deriving the completion func-
tions from the implementation has the disadvantage that we are verifying the
implementation against itself. This contradicts our view of these as desired speci-
fications and negates our goal of incremental verification. To combine the advan-
tages of both, we could use a hybrid approach where we use explicitly provided
and symbolically generated completion functions in combination. For example,
we could derive it for the last stage, specify it for the penultimate stage and
then derive it for the stage before that (from the specification for the penulti-
mate stage) and so on.

5 C o n c l u s i o n s

We have presented a systematic approach to modularize and decompose the proof
of correctness of pipelined microprocessors and shown its generality by applying
it to three different processors. The methodology relies on the user expressing
the cumulative effect of flushing in terms of a set of completion functions, one
per unfinished instruction. This method results in a natural decomposition of the
proof based on the individual stages of the pipeline and allows the verification
to proceed incrementally overcoming the term-size and case explosion problem
of the flushing approach. While this method increases the manual effort on the
part of the user, we found the knowledge required in specifying the completion
functions, constructing the abstraction function and formulating the verification
conditions is close to the designer's intuition about how the pipeline works.

One of our future plans is to build a system that uses PVS or a part of it as a
back-end to support the methodology presented. Besides automating parts of the
methodology, this system would help the user interactively apply the rest of the
process. We would also like to see how our approach can be extended to verify
more complex pipeline control that uses reorder buffers or other out-of-order
completion techniques. Other plans include testing the efficacy of our approach
for verifying pipelines with data dependent iterative loops and asynchronous
memory interface.

Acknowledgements We would like to thank John Rushby and David Cyrluk
for their feedback on earlier drafts of this paper.

134

R e f e r e n c e s

1. Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for combinations
of theories with equality. In Srivas and Camilleri [14], pages 187-201.

2. J. R. Burch. Techniques for verifying superscalar microprocessors. In Design
Automation Conference, DAC '96, June 1996.

3. J. R. Burch and D. L. Dill. Automatic verification of pipefined microprocessor
control. In David Dill, editor, Computer-Aided Verification, CAV '94, volume 818
of Lecture Notes in Computer Science, pages 68-80, Stanford, CA, June 1994.
Springer-Verlag.

4. D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. Effective theorem proving
for hardware verification. In Ramayya Kumar and Thomas Kropf, editors, Theo-
rem Provers in Circuit Design (TPCD '94), volume 910 of Lecture Notes in Com-
puter Science, pages 203-222, Bad Herrenalb, Germany, September 1994. Springer-
Verlag.

5. David Cyrluk. Microprocessor verification in PVS: A methodology and simple
example. Technical Report SRI-CSL-93-12, Computer Science Laboratory, SRI
International, Menlo Park, CA, December 1993.

6. David Cyrluk. Inverting the abstraction mapping: A methodology for hardware
verification. In Srivas and Camilleri [14], pages 172-186.

7. John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, San Mateo, CA, 1990.

8. Ravi Hosabettu. PVS specification and proofs of the DLX, superscalar DLX
examples and the processor with out-of-order execution, 1998. Available at
http://www.cs.utah.edu/-hosabett/pvs/processor.ht ml.

9. R. B. Jones, D. L. Dill, and J. R. Butch. Efficient validity checking for processor
verification. In International Conference on Computer Aided Design, ICCAD '95,
1995.

10. Jeremy Levitt and Kunle Olukotun. A scalable formal verification methodology
for pipelined microprocessors. In Design Automation Conference, DAC '96, June
1996.

11. Sam Owre, John Rushby, Natarajan Shankar, and Friedrich yon Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107-125, February 1995.

12. Seungjoon Park and David L. Dill. Protocol verification by aggregation of dis-
tributed actions. In Rajeev Alur and Thomas A. Henzinger, editors, Computer-
Aided Verification, CAV '96, volume 1102 of Lecture Notes in Computer Science,
pages 300-310, New Brunswick, N J, July/August 1996. Springer-Verlag.

13. J. Sawada and W. A. Hunt, Jr. Trace table based approach for pipelined micropro-
cessor verification. In Orna Grumberg, editor, Computer-Aided Verification, CAV
'97, volume 1254 of Lecture Notes in Computer Science, pages 364-375, Haifa,
Israel, June 1997. Springer-Verlag.

14. Mandayam Srivas and Albert Camilleri, editors. Formal Methods in Computer-
Aided Design (FMCAD '96), volume 1166 of Lecture Notes in Computer Science,
Palo Alto, CA, November 1996. Springer-Verlag.

15. Mandayam K. Srivas and Steven P. Miller. Applying formal verification to the
AAMP5 microprocessor: A case study in the industrial use of formal methods.
Formal Methods in Systems Design, 8(2):153-188, March 1996.

