
Integrating Proof-Based and Model-Checking
Techniques for the Formal Verification of

Cryptographic Protocols

Dominique Bolignano

Dyade, B.P.105 78153 Le Chesnay Cedex France, Dominique.Boliguano@dyade.fr

A b s t r a c t . We discuss the advantages and limitations of the main proof-
based approaches to the formal verification of cryptographic protocols.
We show possible routes for addressing their limitations by combin-
ing them with model-checking techniques. More precisely we argue that
proof-based techniques can be used for providing a general framework,
model-checking techniques for mechanization and invariant techniques
for bringing precise understanding of protocol strengths and weaknesses.

1 I n t r o d u c t i o n

Three different basic research directions have been adopted for the formal verifi-
cation of cryptographic protocols: one is based on the use a specific modal logic
(e.g. a logic of authentication); another is based on the use of general purpose
formal methods; the third is uses of model-checking techniques [13, 11]. The two
first approaches use proof-based techniques for the verification phase.

We believe that neither of these approaches provides a complete solution to
the verification problem, and we t ry here to discuss the benefits of integrating
the various techniques, taking general formal methods based techniques as a
framework. As an illustration we use the integration achieved for this purpose in
[6]. Of course the adequacy of the integration clearly depends on the objectives
that are assigned to the use of formal methods. In the following discussion we
basically assume, based on our experience in applying formal methods in the
design of large secure systems, that no potentially unsafe approximation or sim-
plification should be allowed, neither in the modelization of the protocol, nor in
the expression of properties, or in the verification itself. We further believe that
verification should be a vehicle to bringing precise understanding of the protocol
strengths and weaknesses. We argue that these objectives are not necessarily
conflicting with automatization.

Typical modal logic approaches such as the BAN logic [7] provide a very
elegant way of proving authentication properties, but the modeling is in some
way wired and corresponds to a high level of abstraction. They are thus the
most efficient when the objective of the verification is to identify major flaws (as
opposed to proving the absence of flaws). Some other modal logics have been
proposed to achieve more precision, but this is often done at the expense of a
loss in conciseness or simplicity (see [3] for a more detailed discussion).

78

Model checking techniques on the other hand perform a verification on a
finite model. The verification is thus automatic. Typically this model is not the
specification itself b u t only corresponds to an abstraction of the specification.
As a result, nothing can be formally inferred from the verification when it is
successful. To this respect they are very similar to modal logic approaches. A
discussion on this issue can be found in [6]. As compared to BAN-like modal
logics they provide more automatization capabilities. But since the verification
is a black-box process it also provides less insight into the precise understanding
of the strength and weaknesses of a protocol.

The use of general purpose formal methods has the advantage of relying
on largely used techniques. The main approaches are the approach of Kemmerer
[12] based on the formal specification language Ina Jo, the approach of Chen and
Glicor [9] also based on the Ina Jo specification language, but using the BAN
logic [7] to model belief, Bieber's approach [2] based on the formal specification
language B and finally the approach of Meadows [14], based on communicating
processes and which builds upon the approach of Millens [15] and the approach
of Dolev and al. [10]. More recently two other approaches have been presented.
The first approach defined in [3] uses general purpose formal methods as a frame-
work but it also relies on abstract interpretation and model-checking techniques
for achieving automatization, while the second one [16] is a pure proof-based
technique which, as we will see, imposes a few constraints.

The main challenge with general purpose formal methods is to achieve preci-
sion and conciseness at the same time. It is also of prime importance to achieve
significant automatization to keep the approach efficient and workable. An added
but very important potential benefit of formal methods is to provide a very
precise understanding of the protocol design issues (weaknesses, strengths, hy-
potheses, etc.). We will use three of the most recent accounts on these issues
[14], [16] and [6], and use the formalism proposed in the latter one as a means
of illustration of our discussion.

2 F o r m a l i z i n g t h e P r o t o c o l

Following the approach of [3] we first have to identify the different principals
involved in a protocol. Principals receive messages at one end and emit other
messages at another end. Some principals will be considered to be "trustable"
(i.e. to work according to their role in the protocol) and some not. Commu-
nication media are typically considered to be non-trustable, because messages
can usually be intercepted, replayed, removed, or created by intruders. We will
consider that this is the case in the following discussion. The set of untrustable
principals is modeled as a single (black box) agent which is called the "external
world" or, more concisely, the intruder. The intruder is modeled as a principal
that may know some data initially and that will store and try to decrypt all
data passed to him and thus in particular all information circulating on the
communications media. The intruder will also be able to encrypt data to create
new messages that will be sent to mislead other principals. But the intruder will

79

be able to decrypt and encrypt data only with keys he knows. This modeling
will in particular allow us to determine at any time which data are potentially
known to the intruder under the chosen "trustability" hypothesis. The same
protocol can be studied in terms of many different hypotheses. According to [3],
the knowledge of the intruder is formalized as a set of data components. Data
components range over domain C and sets of da ta components over domain S.
Data components can be basic data, which may be cryptographic keys which
take their values in domain K A (for asymmetric keys) or K S (for symmetric
ones), or other basic data which take their values in domain D. Data components
can also be obtained by composition using the pair operator which takes some
data Cl and some c2 and returns the pair (cl, c2), or by encryption of some data
c using key k which is noted ck. The domains S and C are formalized as:

C S = CtoS[O B Z ~ I D I K = K A I K S I h "-~ = (c , c) B j

modulo a few axioms 1 (tO is for example an ACUI operator with neutral $).
For illustration purposes, we use the Needham-Schroeder protocol which al-

lows two principals, A and B, to perform mutual authentication. The protocol is
initiated by one of the principals. This principal is A in our case. The protocol re-
quires the use of a certification authority, S, in order to distribute public keys to
principals requesting them. The protocol is composed of seven message exchanges
between A, B and S: (1) A --~ S : (A,B); (2) S --+ A : (KB,B)Ksl; (3) A -+

B : (NA,A)KB; (4) B--+ S : (B,A); (5) S--+ B : (KA,A)Ksl ; (6) B--+ A :

(NA,Ns)Ka; (7) A -+ B : (NB)KB.
It is assumed here that the principals A and B both know the public key

Ks, and that S knows the public keys KA and KB. The keys KA 1, KB 1, K s 1
are the corresponding private keys. They are respectively known by A, B and
S, and only by them. NA and NB are fresh nonces.

The two first messages can for example be read as follows : (1) A sends a
message to S to tell him or her that he or she is the principal A and wants to
start an authentication procedure with B; no encryption is used; (2) S replies
to the request by sending A the public key KB of B; this message is encrypted
with the private key K s 1 which S is the only one to know and which thus
authenticates the producer.

The formal specification of the protocol consists in the description of the
role of each trustable agent and is given as a set of atomic actions. Sending
and reception of a message are not synchronous. Consequently the transmission
of a message is considered as two atomic actions, one for sending and one for
receiving. Our modeling of the NS protocol will thus distinguish 14 different
kinds of atomic actions. These actions will be identified using the labels drawn
from £ = {la, ls, 2s, 2a, 3a, 3b, ..., 7a, 7b}. Each of the 14 labels nx of .A stands
for one action: principal X sends or receives message n.

1 See [3] for a more precise definition.

80

The system is defined as a pair (So, r) where so is the initial global state, and
r is a relation binding the global state before applying an action to the global
state after applying the action. The relation r is defined using a predicate or
logic formula p, defined on (S x (/2 x C) x S) where the domain for global states
S is the Cartesian product, SA x SB x SS x Ss, of local state domains, i.e. SA, SB
and Ss for the three trustable principals, A, B and S, and SI for the intruder.
By definition p(s, (I, m), s') is true if and only if the global state s is modified
into s ~ upon firing the action labelled l for sending or receiving of message m.
The set St is the domain S of data components defined in the previous section.
Intuitively the state of the intruder is the set of data components that have been
listened to on the communication line and that the intruder may use to build
new messages. The state of a trustable principal is defined as an aggregate or
a tuple describing the value of each local state variable. Here the states for the
three trustable principals are defined as the following aggregates:

SA ~ SB -~

S S

slave : Pr incipal mas ter : Pr incipal
na : Nonce na : Nonce
n b : Nonce n b : Nonce
kb : K kA : K
nonces : set o f Nonce nonces : set o f Nonce
at : P r o g r a m A d d r e s s at : P r o g r a m A d d r e s s

key : Principal --~ K
at : P r o g r a m A d d r e s s

Fields at are used in each state to hold the value of the abstract program
counter for the algorithm executed by the corresponding principal. The field
slave is used by principal A to store the identifier of the supposed requested
principal. The field master is used in the same way to store the identifier of
the supposed requester. The public and private keys of A, B, and S which are
constant values will be noted K a , KB, K s , K A 1, K[~ 1 and K s 1

The predicate p((sA, SB, SS, sl) , (l, m), (S~A, S~B, SIS, S))) that formalizes the
protocol is defined as the disjunction of 14 predicates, i.e. one for each atomic ac-
tion (1) action(sa .at, la, s'a.at)hs ~ = s iU(A, s'~.slave); (2) action(ss.at, ls , s's.at)

! A (dl,d2) known_in si; (3) action(s~.at ,2s, s's.at) A s i = si U
(s, .key(d3), d3); (4) action(sa.at, 2a, s~.at) A (s~.kb, sa.slave)Ksl known_in si;
(5) action(sa.at, 3a, s'~.at) A s~ = si U (s~.n~,A),~.Kb A s'~.n~
s~.nonces A S'a.nonces = s~.nonces U {s' .na}; (6) action(sb.at,3b, s'b.at)
A (s~.na,s~b.master)KB known_in(si); (7) action(sb.at,4b, S~b.at) A s~ =
sl U (B, Sb.master); (8) action(s~.at ,4s, s's.at) A (d4, ds) known_in

! o si (9) aetion(s~.at,5s, s',.at) A s i = si U (ss .key(d6) ,d6)Ksl , (10)

action(sb.at, 5b, Stb.at) A(s~b.k~, B)KT¢I known_in si; (11) action(so.at, 6b, s'b.at)A
! = u (sb.no, S' .nb) B A A S'b.nb sb.nonces A 4 . n o n c e s = sb.nonces U

{S'b.nb}; (12) action(s~.at ,6a, s~.at) A (s~.n~,s~.nb)KA known_in(si); (13)
action(sa.at, 7a, s'a.at) A s~ = si U (Sa.na)sA.KB; (14) aetion(sb.at, 7b, Jb.at) A

81

(Sb.nb)Ks k n o w n _ i n si, where by convention state variables that are not explic-
itly changed are supposed to be unchanged. Predicate action is used to specify
sequencing constraints, i.e. control structure for each role. Here we assume that
A (resp. B) is repeating an infinite loop la, 2a, 3a, 6a, 7a (i.e. lb, 3b, 4b, 5b, 6b, 7b).
This complete formalization can be found in [3].

The first action (i.e. 1A) describes A sending a pair composed of the iden-
tification of A and of the identification of the principal id for which the public
key is requested. Each sending of a message m increases the knowledge of the
intruder, i.e. s~ = si tO m. The value of id is not constrained in any way. This al-
lows A to request any public key he wishes. The second action (i.e. l s) describes
S receiving a pair of data. This pair can be the pair just sent by A or any pair
of da ta known by the intruder. The second situation is meaningful if this can go
undetected by A: here, there is no particular checking other than on the form of
the message. Receiving a message m does not change the state of the intruder
(i.e. s~ = si), but the message should be deducible from the knowledge of the
intruder (i.e. m k n o w n _ i n si). The third action (i.e. 2s) describes S sending a
pair composed of the public key of d and of the identifier d stored previously.
The fourth action (i.e. 2A) implicitly specifies that the received message is to be
signed using K7 1 .

Describing the protocol with as much accuracy as required is a quite difficult
problem for modal logic approaches where the problem is known as the ide-
alization problem: the modelization of the protocols requires some abstraction
or adaptation of the protocol at hand in order to fit within the chosen logical
framework. This problem is difficult to avoid as the formalism has to satisfy at
the same time conflicting logical and practical properties.

The situation is less problematic for proof-based approaches relying on gen-
eral purpose formal methods, because the logical constraints imposed by these
formalisms are much weaker: it is typically possible and easy in these approaches
to use as many variables as required, to describe control or sequencing con-
straints. The main problem is that the use of these features has a very negative
impact on the size and automatization of the proof process.

Most recent approaches based on general purpose formal methods [14], [3]
and [16] allow for the description of the protocol at a level of detail that is
comparable to the approach illustrated here. The two main differences concern
the way the intruder is modeled and the way the control structure of the protocol
is described.

The intruder knowledge is here implictly modeled and axiomatized once for
all, whereas in other approaches such as [14] the internal behavior of the in-
truder needs to be explicitly formalized and analyzed. This is typically done by
describing the actions that the intruder can perform to exploit data. Paulson's
approach lies somewhat in between (intruder actions are still explicitly modeled
but some already proven theorems can be used during the verification).

Control structure is specified in the previous section by the means of the
action predicate and the presence in the principal states of a control field, namely
the at field. It is thus for example possible, by just changing the definition of

82

the action predicate to specify a version of the same protocol that would allow
for multi-session either for the master (i.e. A is allowed to start a new session
before having completed a previous one), the slave or the both of them. But
adding such a control structure adds more complexity and this has a cost when
proof-based techniques are used. Thus in most approaches, such as Panlson's
one or Meadows's one, this control structure is not specified which basically
amounts to specifying a multi-session version of the protocol (i.e. taking the
action predicate to be defined as t rue in our approach). Of course if the multi-
session version works, it is likely that a single version will also work, but the
converse is not true.

The situation is similar for modal logics: the control structure is wired in the
formalism. Parallel multi-role for trusted principals is not supported by most
modal logics. It is supported in [17], but it is then the only possible choice.

3 Expressing security properties

The way security properties are expressed is an even greater area of differentia-
tion among various approaches. In this section we briefly present the approach
described in [6]. In this approach a security property is described using a filter-
ing funct ion characterizing the visible actions and an automaton specifying the
required sequencing of these visible actions. The filtering allows to focus on any
particular session and on the relevant actions expected for this session: unex-
pected actions or actions carrying non coherent values will be abstracted away,
and the security property can be more concisely and more simply expressed
on remaining actions, which are called the visible actions. The automaton is
to express constraints on visible actions. Here we consider one of the security
properties expressed in [3] and referred to as the master authentication property.
This property is expressed using the following filtering function:

! !
f fN~ (((Sa, Sb, ss, si), (l, msg) , (sa, s~, ss, s~))) =

3a i f 1 = 3a A s~.slave = B A s'~.n~ = N~
3b i f l = 3b A #b.master = A A Slb.na -~ N a
6b i f l = 6b A sb .mas ter = A A sb.na = N~
6a i f l = 6a A sa.slave = B A sa.na = Na
c otherwise

This filtering function uses here only one parameter, N~, which intuitively stands
for a nonce characterizing the particular session of interest. This function identi-
fies four visible actions, 3a, 3b, 6b, 6a, which correspond to the situation where
the action is fired with the correct session parameter (e.g. the master is going
through action 3a, believes he is talking to B and uses the nonce that character-
izes the particular session of interest). The automaton just states that the visible
action should be seen (by the global observer) always in the same order: 3a, 3b,
6b, 6a. The automaton thus corresponds to the regular expression 3a 3b 6b 6a

By definition the property is satisfied iff Vx.Vt.t E T ~ f f , (t) E P where f f
is the extension of f f to traces, T is the set of possible traces and P is the prefix

83

closure of the language recognized by the automaton. Thus, if for some trace
t of T, it is possible for the slave to answer to A using the correct nonce Na,
but in believing that he is talking to another (potentially corrupted) principal
C with A not being aware of this (even after receipt of message 6) then we have
f f ~ (t) = 3a 6a which is not a prefix of 3a 3b 6b 6a. This is exactly the situation
for the flaw described in [3] for the same protocol (but for another authentication
property). This property is then transformed automatically into a very simple
invariant property. This invariant can be proven using proof-based techniques or
can be automated as will be seen in the next section.

The problem of precisely expressing security properties using a modal logic
is very similar to the problem of describing a protocol with adequate precision:
basic modal operators are typically not general enough to cover all potential
needs (e.g. the expression of freshness). But the problem is even more complex
for more elaborate properties that are found in electronic commerce protocols
and no modal logic has yet be proposed for this class of cryptographic protocols.

For general purpose formal methods the situation is quite different. Very few
approaches laid down the basis for expressing sophisticated security properties:
most approaches only provide for the expression of confidentiality; only a few
provide for the expression of authentication properties; the first at tempt to ex-
press more elaborate properties such as those found in electronic commerce was
done in [4] using the approach just illustrated; another tentative has just been
presented very recently in [8]. We nevertheless believe that the use of a filtering
function and of an automaton as illustrated previously could be adapted to fit
with most approaches. The only negative side-effect being that it would then
possibly conflict with the corresponding proof automatization.

4 Bringing automatization

Now that we have discussed the ability to describe the protocols and secu-
rity properties with adequate accuracy, we consider automatization of the ver-
ification. Most general purpose formal methods based approaches use proof-
techniques for bringing some automatization: term-rewriting based techniques
are for example used in Meadow's approach, and induction in Paulson's ap-
proach. As discussed in the previous section, using such an automatization has
the drawback of puting some constraints on the formalization itself. Here we
show that the various features used in the previous section (control structures,
variables, etc.) do not necessarily prevent automatization.

Following [5] we first define an abstraction function h : B --+ B0 where B is
the set of basic data (keys, nonces, numbers and identifiers), and B0 is a finite
subset of B which is to be proposed by the user when willing to verify a particular
property. In practise this comes down to selecting a few values of interest (a few
keys, a few nonces, etc.) and defining h to leave these values unchanged (i.e.
h(x) = x) and to collapse other elements into one representative for each basic
type, i.e. one for keys, one for nonces, etc. An abstract interpretation based
technique is then applied where the abstraction function is derived from h and

84

the verification is performed in an automat ic and safe way using model-checking
techniques on the abstract model. An algori thm is also provided for trying to
compute the abstract model and the abstract properties in an automat ic way. In
fact the algori thm tries to prove that the same specification can be used for both
the general protocol and its finite abstraction. The algorithm may fail to show
that a part icular sub-expression meets the associated sub-goal. In this situation,
which is very rare in practice the user should then either prove manually using
a proof tool tha t the problematic sub-expression indeed meets an automatical ly
generated proof-obligation, or should provide a new sub-expression by himself.

With the current protocol specification the algori thm will in fact fail for
action 3a and 65 on sub-expressions s~a.n~ ~ Sa.nonces and S~b.nb ~ sb.nonces.
We first notice that the algorithm would succeed for the first sub-expression
if the value of ' let us say a, would be such tha t]~-l(a) {a}. This is 8 a .ha, -~
clearly not always true, but we can easily notice that s~.n~ ~ s~.nonces is the
equivalent to (s~.n~ = N~As~.n~ ~ sa.noncesVs~.n~ • NaAJa.n~ ~ s~.nonces)
and can thus be replaced by the weaker proposition s~.n~ = N~ A S~a.na
s~.nonces V s~.na • N~. The problem is similar with the second sub-expression
and is handled in the same way. The algori thm then completes on this revised
version. By construction, the specification of the abstract model is thus identical
to the specification of the protocol itself but for the two relations describing the
actions 3a and 6b. The new relation for 3a is for example adion(sa.at, 3a, s~a.at)

i n A s~i = Sl U (s~.na,A)sA gb A s a. ~ = N~ A sPa.na ~ s~.nonces V s~.n~ ~ g~ A
s~ .nonces = sa.nonces U { s~a.na }.

The same algori thm is then applied to the authenticat ion property and suc-
ceeds without any user intervention. Now we are in a position to verify the
abstract property on the abstract model using model-checking techniques. The
verification succeeds 2. Since the abstract ion is safe, we can conclude that the
protocol also meets the expressed authenticat ion property. Typically since only
a few distinct keys, nonces and identifiers need to be distinguinshed to provh a
particular property on a given protocol, the number of states used during the
verification is very small according to model-checking standards (a few hundred
for current real life protocols). Thus by integrating model-checking techniques
it is possible to automat ize a significant par t of the verification process without
any compromise on the precision of the protocol modeling and of security prop-
erty expression. By keeping to pure proof-based techniques this would have been
very difficult to achieve if not impossible.

In fact the verification shows that B can apparently repeat the sequence of visible
action 3b 6b more that once. This is due to the fact that the abstraction function
transforms nonces in a way that does not preserve freshness property of nonces
generated by B. It would be easy to avoid this situation by revisiting h to distinguish
one more nonce, let say Nb. But this situation is clearly not problematic from the
master perspective: what is important is that B answers at least once in a coherent
manner. Thus we could as an alternative revisit the automaton by allowing a few
more transitions that seem acceptable. This is what we assume in the following to
simplify presentation.

85

5 Bringing understanding into the protocol design

The verification process can be used to generate a set of reachable global states,
G. This set is very small according to model-checking standards but it is quite big
for human standards. The verification thus does not provide a lot of insight into
understanding in a very precise manner protocol correctness. We believe that this
understanding is very important in many respects. First the verification is based
on some hypotheses, and it is of prime importance to understand the precise
impact of each one. Of course it is still possible to do the verification for all
set of possible hypotheses but the number of such combinations is typically too
big. Second, bringing such insight is very useful for designing or improving the
protocol itself. It is furthermore a way of assessing the adequacy of the modeling
of the protocol.

In order to achieve this, it is suggested in [6] to transform the abstract model
by applying a second abstraction. The main advantage of the second model
is that it is much easier to understand. This bears some similarities with the
situation using invariant proof-based techniques: an invariant does not need to
be precise enough to characterize the set of reachable states; it should be only
precise enough for the proof to work.

For this we proceed as follows : (1) for each trustable principal x we propose
a set E x = { E ~ , E ~ , . . . , E ~ x } such that ~JE, e ~ C L~ where L~ is the set of

2 reachable states for principal x; (2) we propose a finite set Si = {s~, s i , . . . , s~'}
where each element of Si is some potential intruder knowledge (i.e. a value drawn
from domain S); (3) we finally identify a subset G' of E *~ × E *~ × ... × E *~ × Si
where {xl, x2, ..., x~} is the set of trustable principals (i.e. {A, B, S) for the
protocol at hand) such that for each reachable global state (s,~, s,~,.. . , s , . , si)
of G there exists a corresponding element (E,1, E,~, ..., Ex~, s~) of G' where
s~ E Exl, s , 2 E E~ 2, ..., s,n E E , ~ and s~ _C s~. Intuitively, G ~ which has to be
a very small set in order to achieve its objective, represents in a structured way
the basic dependence between local states. The similarity with an invariant is
more then just apparent and is discussed in [6].

Each subset E~, E~, E * of E ~ can be described by extension or more
likely by intension. A particularly concise way is to characterize each of them
using two logic formulae that apply respectively on states and transitions. The
generated subset is then by definition the one that can be reached from the set
of states characterized by the first logic formula without firing transitions drawn
from a set of transitions characterized by the second one. Here for example we
propose to use three subsets for A and three for B. For A we have (1) the subset of
states characterized by s~.at = 71 A s ~ . n o n c e s = {N} 3, and l = 3a A s~ . s lave =

B A s~a.na = Na; (2) the subset characterized by sa.at = 36 A Sa .nonces =

{N, N a } A (Sa .s lave = B A sa.kb = Kb) A Sa.na = Na and l = 6a A s~ . s lave =
B A S~a.n~ = Na ; (3) and the subset characterized by s~.a t = 67 A s a . n o n c e s =

{N, N a) A (S a . s l a v e : B A s a .k b : Kb) A sa .na : No A s a .n b : Y and f a l s e .

3 Label nm stands by convention for the control point of principal x between the firing
of action nx and m~ (e.g. 71 is the control point of A between 7a and la).

86

For B we have the subset characterized by the state condition sb.at = 73 A
sb.nonces = {N}, and I = 3b A s~.no = No; the subset characterized by the
state condition sb.at = 36 A sb.nonces = {N} A So.no -: N o , and 1 = 6b; and
a third subset characterized by the state condition sb.at ---- 67 A sb.nonces ----
{N} A (sb.master = A A sb.ko = Ko) A so.no = No and false. The three
first sets of states will be called respectively A1,A2,A3 and the three other
ones B1, B2, Bs. For the intruder we use three different knowledge values s~ =

2 1UNU(No A)gb Iis U K j 1 V (Ka, A)K71 U (K5, B)KTI U (Kc, C)K71 U N, s i = s i
2 (Na,N)K~. and , s 3 = s i U

The set G' is {(A1,BI,s~), (A2,BI,s~), (A2,Bs, s~), (As,B3, s~),
(As, B3,s~)}. The initial state of the abstract model is corresponding to
(A1, B1, s~). All moves from states corresponding to this element lead to states
that are still associated to the same element, but for the visible action 3a, which
leads to an element corresponding to (As, B1, s~): the intruder knowledge has
increased by (No, A)Kb ; principal A is just after the sending of visible action 3a;
it cannot proceed because he would need some data of the form (No, n)K~, but
the intruder is unable to produce such a value (either by replay or construction).
The only possible move is the visible action 3b which leads to a state correspond-
ing to (As, B2, s~). The only possible move now is visible action 6b which leads
to the sending of (No, N)K~ and to a state corresponding to (As, B3, s~). Now
moves either lead to a state that corresponds to the same element (A2, B3, s~),
either a visible action 6a is performed and the new states that is reached corre-
sponds to (As, B3, s~) and all subsequent moves lead to states that correspond
to the same object.

The element of G ~ thus represent the five different phases that correspond
to a particular session. This number would have been unchanged also in the
event where a more discriminating abstraction function had been changed in the
previous step (i.e. an abstraction function distinguishing one more nonce). For
each of the five phases the element of G ~ precisely characterize the corresponding
global states. A simple invariant expressed as the disjunction of five different
sub-formulae could in fact be derived from this set. Another benefit here is that
the correctness of the invariant can be checked automatically by using model-
checking techniques.

6 C o n c l u s i o n

Thus we have tried to show that by integrating various verification techniques
it is possible to achieve at the same time automatizat ion and precision in mod-
eling. In particular we have used modal logic style to achieve conciseness in the
description of the intruder knowledge, general purpose formal methods for pro-
viding a general framework and for applying abstract interpretation techniques,
and model-checking based techniques for automatizing the verification process.
Finally we have used a second abstraction to achieve better understanding of the
protocol design. But the formalism that is used here is in some way over-killing:
it is typically possible to verify the same properties using model-checking tech-

87

niques or alternatively using pure proof-based techniques, filtering functions are
more general then required, etc. The main objectives here was to show that the
various objectives were achievable within a same framework. This framework is
currently used for the verification of large protocols. We nevertheless believe that
there is some room and need for designing a more dedicated formalism (i.e. typ-
ically a modal logic) that would achieve the same needs. This formalism would
be more elegant and its theoretical properties could be studied more easily.

References

1. J.R. Abrial. The B-method for large software specification, design and coding. In
VDM'91. Springer Verlag, 1991.

2. P. Bieber and N. Boulahia-Cuppens. Formal development of authentication pro-
tocols. In BCS-FACS sixth Refinement Workshop, 1994.

3. D. Bolignano. Formal verification of cryptographic protocols. In Proceedings of the
third ACM Conference on Computer and Communication Security, 1996.

4. D. Bolignano. Towards the Formal Verification of Electronic Commerce Protocols.
In Proceedings of the 10 th IEEE Computer Security Foundations Workshop. IEEE,
June 1997.

5. D. Bolignano. Towards the Mechanization of Cryptographic Protocol Verification.
In Proceedings of the 9th International Conference on Computer-Aided Verification
(CAV'97), June 1997.

6. D. Bolignano. Using abstractions for automatizing and simplifying the verification
of cryptographic protocols. Technical report, Dyade, 1998.

7. M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Trans-
actions on Computer Systems, 8, 1990.

8. P. Syverson C. Meadows. A formal specification of requirements for payment
transactions in the set protocol. In Finacial Cryptography, 1998.

9. P.C. Chen and V.D. Gligor. On the formal specification and verification of a
multiparty session protocol. In Proceedings of the IEEE Symposium on Research
in Security and Privacy, 1990.

10. D. Dolev and A. Yao. On the security of pubfic key protocols. IEEE Transactions
on Information Theory, IT-29(2):198-208, 1983.

11. G.Leduc, O. Bonaventure, E. Koerner, L. L~onard, C. Pecheur, and D. Zanetti.
Specification and verification of a ttp protocol for the conditional access to services.
In Proceedings of the 12th Workshop on the Application of Formal Methods to
System Development (Univ Montreal), 1996.

12. R.A. Kemmerer. Analyzing eucryption protocols using formal verification tech-
niques. In IEEE Journal on Selected Areas in Communications, volume 7(4), 1989.

13. G. Lowe. An attack on the needham-schroeder public-key protocol. In Information
Processing Letters, 1995.

14. C. Meadows. Applying formal methods to the analysis of a key management
protocol. In Journal of Computer Security, 1992.

15. J. K. Millen, S.C. Clark, and S.B. Freedman. The interrogator: Protocol security
analysis. IEEE Transactions on Software Engineering, 13(2), 1987.

16. L. Paulson. The inductive approach to verifying cryptographic protocols. J. Com-
puter Security, 1998.

17. E. Snekkenes. Roles in cryptographic protocols, tn Proceedings of the IEEE Sym-
posium on Research in Security and Privacy, pages 105-119. IEEE, 1992.

