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A b s t r a c t .  We discuss the advantages and limitations of the main proof- 
based approaches to the formal verification of cryptographic protocols. 
We show possible routes for addressing their limitations by combin- 
ing them with model-checking techniques. More precisely we argue that 
proof-based techniques can be used for providing a general framework, 
model-checking techniques for mechanization and invariant techniques 
for bringing precise understanding of protocol strengths and weaknesses. 

1 I n t r o d u c t i o n  

Three different basic research directions have been adopted for the formal verifi- 
cation of cryptographic protocols: one is based on the use a specific modal logic 
(e.g. a logic of authentication); another is based on the use of general purpose 
formal methods; the third is uses of model-checking techniques [13, 11]. The two 
first approaches use proof-based techniques for the verification phase. 

We believe that  neither of these approaches provides a complete solution to 
the verification problem, and we t ry  here to discuss the benefits of integrating 
the various techniques, taking general formal methods based techniques as a 
framework. As an illustration we use the integration achieved for this purpose in 
[6]. Of course the adequacy of the integration clearly depends on the objectives 
that  are assigned to the use of formal methods. In the following discussion we 
basically assume, based on our experience in applying formal methods in the 
design of large secure systems, that  no potentially unsafe approximation or sim- 
plification should be allowed, neither in the modelization of the protocol, nor in 
the expression of properties, or in the verification itself. We further believe that  
verification should be a vehicle to bringing precise understanding of the protocol 
strengths and weaknesses. We argue that  these objectives are not necessarily 
conflicting with automatization.  

Typical modal logic approaches such as the BAN logic [7] provide a very 
elegant way of proving authentication properties, but  the modeling is in some 
way wired and corresponds to a high level of abstraction. They are thus the 
most efficient when the objective of the verification is to identify major  flaws (as 
opposed to proving the absence of flaws). Some other modal logics have been 
proposed to achieve more precision, but this is often done at the expense of a 
loss in conciseness or simplicity (see [3] for a more detailed discussion). 
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Model checking techniques on the other hand perform a verification on a 
finite model. The verification is thus automatic. Typically this model is not the 
specification itself b u t  only corresponds to an abstraction of the specification. 
As a result, nothing can be formally inferred from the verification when it is 
successful. To this respect they are very similar to modal logic approaches. A 
discussion on this issue can be found in [6]. As compared to BAN-like modal 
logics they provide more automatization capabilities. But since the verification 
is a black-box process it also provides less insight into the precise understanding 
of the strength and weaknesses of a protocol. 

The use of general purpose formal methods has the advantage of relying 
on largely used techniques. The main approaches are the approach of Kemmerer 
[12] based on the formal specification language Ina Jo, the approach of Chen and 
Glicor [9] also based on the Ina Jo specification language, but using the BAN 
logic [7] to model belief, Bieber's approach [2] based on the formal specification 
language B and finally the approach of Meadows [14], based on communicating 
processes and which builds upon the approach of Millens [15] and the approach 
of Dolev and al. [10]. More recently two other approaches have been presented. 
The first approach defined in [3] uses general purpose formal methods as a frame- 
work but it also relies on abstract interpretation and model-checking techniques 
for achieving automatization, while the second one [16] is a pure proof-based 
technique which, as we will see, imposes a few constraints. 

The main challenge with general purpose formal methods is to achieve preci- 
sion and conciseness at the same time. It is also of prime importance to achieve 
significant automatization to keep the approach efficient and workable. An added 
but very important potential benefit of formal methods is to provide a very 
precise understanding of the protocol design issues (weaknesses, strengths, hy- 
potheses, etc.). We will use three of the most recent accounts on these issues 
[14], [16] and [6], and use the formalism proposed in the latter one as a means 
of illustration of our discussion. 

2 F o r m a l i z i n g  t h e  P r o t o c o l  

Following the approach of [3] we first have to identify the different principals 
involved in a protocol. Principals receive messages at one end and emit other 
messages at another end. Some principals will be considered to be "trustable" 
(i.e. to work according to their role in the protocol) and some not. Commu- 
nication media are typically considered to be non-trustable, because messages 
can usually be intercepted, replayed, removed, or created by intruders. We will 
consider that  this is the case in the following discussion. The set of untrustable 
principals is modeled as a single (black box) agent which is called the "external 
world" or, more concisely, the intruder. The intruder is modeled as a principal 
that  may know some data  initially and that  will store and try to decrypt all 
data  passed to him and thus in particular all information circulating on the 
communications media. The intruder will also be able to encrypt data  to create 
new messages that  will be sent to mislead other principals. But the intruder will 
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be able to decrypt and encrypt data  only with keys he knows. This modeling 
will in particular allow us to determine at any time which data are potentially 
known to the intruder under the chosen "trustability" hypothesis. The same 
protocol can be studied in terms of many different hypotheses. According to [3], 
the knowledge of the intruder is formalized as a set of data  components. Data 
components range over domain C and sets of da ta  components over domain S. 
Data components can be basic data, which may be cryptographic keys which 
take their values in domain K A  (for asymmetric keys) or K S  (for symmetric 
ones), or other basic data  which take their values in domain D. Data components 
can also be obtained by composition using the pair operator which takes some 
data  Cl and some c2 and returns the pair (cl, c2), or by encryption of some data  
c using key k which is noted ck. The domains S and C are formalized as: 

C S = CtoS[O B Z  ~ I D  I K = K A I K S I h  "-~ = (c ,  c )  B j 

modulo a few axioms 1 (tO is for example an ACUI operator with neutral $). 
For illustration purposes, we use the Needham-Schroeder protocol which al- 

lows two principals, A and B, to perform mutual authentication. The protocol is 
initiated by one of the principals. This principal is A in our case. The protocol re- 
quires the use of a certification authority, S, in order to distribute public keys to 
principals requesting them. The protocol is composed of seven message exchanges 
between A, B and S: (1) A --~ S :  (A,B);  (2) S --+ A : (KB,B)Ksl; (3) A -+ 

B : (NA,A)KB; (4) B--+ S :  (B,A); (5) S--+ B : (KA,A)Ksl  ; (6) B--+ A : 

(NA,Ns)Ka;  (7) A -+ B :  (NB)KB. 
It is assumed here that  the principals A and B both know the public key 

Ks,  and that  S knows the public keys KA and KB. The keys KA 1, KB 1, K s  1 
are the corresponding private keys. They are respectively known by A, B and 
S, and only by them. NA and NB are fresh nonces. 

The two first messages can for example be read as follows : (1) A sends a 
message to S to tell him or her that  he or she is the principal A and wants to 
start  an authentication procedure with B; no encryption is used; (2) S replies 
to the request by sending A the public key KB of B; this message is encrypted 
with the private key K s  1 which S is the only one to know and which thus 
authenticates the producer. 

The formal specification of the protocol consists in the description of the 
role of each trustable agent and is given as a set of atomic actions. Sending 
and reception of a message are not synchronous. Consequently the transmission 
of a message is considered as two atomic actions, one for sending and one for 
receiving. Our modeling of the NS protocol will thus distinguish 14 different 
kinds of atomic actions. These actions will be identified using the labels drawn 
from £ = {la,  ls, 2s, 2a, 3a, 3b, ..., 7a, 7b}. Each of the 14 labels nx  of .A stands 
for one action: principal X sends or receives message n. 

1 See [3] for a more precise definition. 
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The system is defined as a pair (So, r) where so is the initial global state, and 
r is a relation binding the global state before applying an action to the global 
state after applying the action. The relation r is defined using a predicate or 
logic formula p, defined on (S x (/2 x C) x S) where the domain for global states 
S is the Cartesian product, SA x SB x SS x Ss, of local state domains, i.e. SA, SB 
and Ss for the three trustable principals, A, B and S, and SI for the intruder. 
By definition p(s, (I, m),  s') is true if and only if the global state s is modified 
into s ~ upon firing the action labelled l for sending or receiving of message m. 
The set St is the domain S of data  components defined in the previous section. 
Intuitively the state of the intruder is the set of data  components that  have been 
listened to on the communication line and that  the intruder may use to build 
new messages. The state of a trustable principal is defined as an aggregate or 
a tuple describing the value of each local state variable. Here the states for the 
three trustable principals are defined as the following aggregates: 

SA ~ SB -~ 

S S  

slave : Pr incipal  mas ter  : Pr incipal  
na : Nonce na : Nonce 
n b  : Nonce n b : Nonce  
kb : K kA : K 
nonces : set o f  Nonce  nonces : set o f  Nonce 
at : P r o g r a m A d d r e s s  at : P r o g r a m A d d r e s s  

key : Principal  --~ K 
at : P r o g r a m A d d r e s s  

Fields at are used in each state to hold the value of the abstract program 
counter for the algorithm executed by the corresponding principal. The field 
slave is used by principal A to store the identifier of the supposed requested 
principal. The field master  is used in the same way to store the identifier of 
the supposed requester. The public and private keys of A, B, and S which are 
constant values will be noted K a ,  KB,  K s ,  K A 1, K[~ 1 and K s 1 

The predicate p((sA, SB, SS, sl) ,  (l, m),  (S~A, S~B, SIS, S))) that  formalizes the 
protocol is defined as the disjunction of 14 predicates, i.e. one for each atomic ac- 
tion (1) action(sa .at, la,  s'a.at)hs ~ = s iU(A,  s'~.slave); (2) action(ss.at,  ls ,  s's.at) 

! A (dl,d2) known_in si; (3) action(s~.at ,2s,  s's.at ) A s i = si U 
(s, .key(d3),  d3); (4) action(sa.at,  2a, s~.at) A (s~.kb, sa.slave)Ksl  known_in si; 
(5) action(sa.at,  3a, s'~.at) A s~ = si U (s~.n~,A),~.Kb A s'~.n~ 
s~.nonces A S'a.nonces = s~.nonces U {s' .na}; (6) action(sb.at,3b, s'b.at ) 
A (s~.na,s~b.master)KB known_in(si);  (7) action(sb.at,4b, S~b.at) A s~ = 
sl U (B,  Sb.master); (8) action(s~.at ,4s,  s's.at) A (d4, ds) known_in 

! o si (9) aetion(s~.at,5s,  s',.at) A s i = si U (ss .key(d6) ,d6)Ksl ,  (10) 

action(sb.at, 5b, Stb.at) A(s~b.k~, B)KT¢I known_in si; (11) action(so.at, 6b, s'b.at)A 
! = u (sb.no, S' .nb) B A A S'b.nb sb.nonces A 4 . n o n c e s  = sb.nonces U 

{S'b.nb}; (12) action(s~.at ,6a,  s~.at) A (s~.n~,s~.nb)KA known_in(si);  (13) 
action(sa.at,  7a, s'a.at) A s~ = si U (Sa.na)sA.KB; (14) aetion(sb.at, 7b, Jb.at) A 
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(Sb.nb)Ks k n o w n _ i n  si, where by convention state variables that  are not explic- 
itly changed are supposed to be unchanged. Predicate action is used to specify 
sequencing constraints, i.e. control structure for each role. Here we assume that 
A (resp. B) is repeating an infinite loop la,  2a, 3a, 6a, 7a (i.e. lb, 3b, 4b, 5b, 6b, 7b). 
This complete formalization can be found in [3]. 

The first action (i.e. 1A) describes A sending a pair composed of the iden- 
tification of A and of the identification of the principal id for which the public 
key is requested. Each sending of a message m increases the knowledge of the 
intruder, i.e. s~ = si tO m.  The value of id is not constrained in any way. This al- 
lows A to request any public key he wishes. The second action (i.e. l s )  describes 
S receiving a pair of data. This pair can be the pair just sent by A or any pair 
of da ta  known by the intruder. The second situation is meaningful if this can go 
undetected by A: here, there is no particular checking other than on the form of 
the message. Receiving a message m does not change the state of the intruder 
(i.e. s~ = si), but the message should be deducible from the knowledge of the 
intruder (i.e. m k n o w n _ i n  si). The third action (i.e. 2s) describes S sending a 
pair composed of the public key of d and of the identifier d stored previously. 
The fourth action (i.e. 2A) implicitly specifies that  the received message is to be 
signed using K7  1 . 

Describing the protocol with as much accuracy as required is a quite difficult 
problem for modal logic approaches where the problem is known as the ide- 
alization problem: the modelization of the protocols requires some abstraction 
or adaptation of the protocol at hand in order to fit within the chosen logical 
framework. This problem is difficult to avoid as the formalism has to satisfy at 
the same time conflicting logical and practical properties. 

The situation is less problematic for proof-based approaches relying on gen- 
eral purpose formal methods, because the logical constraints imposed by these 
formalisms are much weaker: it is typically possible and easy in these approaches 
to use as many variables as required, to describe control or sequencing con- 
straints. The main problem is that  the use of these features has a very negative 
impact on the size and automatization of the proof process. 

Most recent approaches based on general purpose formal methods [14], [3] 
and [16] allow for the description of the protocol at a level of detail that  is 
comparable to the approach illustrated here. The two main differences concern 
the way the intruder is modeled and the way the control structure of the protocol 
is described. 

The intruder knowledge is here implictly modeled and axiomatized once for 
all, whereas in other approaches such as [14] the internal behavior of the in- 
truder needs to be explicitly formalized and analyzed. This is typically done by 
describing the actions that  the intruder can perform to exploit data. Paulson's 
approach lies somewhat in between (intruder actions are still explicitly modeled 
but some already proven theorems can be used during the verification). 

Control structure is specified in the previous section by the means of the 
action predicate and the presence in the principal states of a control field, namely 
the at field. It is thus for example possible, by just changing the definition of 
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the action predicate to specify a version of the same protocol that  would allow 
for multi-session either for the master (i.e. A is allowed to start  a new session 
before having completed a previous one), the slave or the both of them. But 
adding such a control structure adds more complexity and this has a cost when 
proof-based techniques are used. Thus in most approaches, such as Panlson's 
one or Meadows's one, this control structure is not specified which basically 
amounts to specifying a multi-session version of the protocol (i.e. taking the 
action predicate to be defined as t rue  in our approach). Of course if the multi- 
session version works, it is likely that  a single version will also work, but  the 
converse is not true. 

The situation is similar for modal logics: the control structure is wired in the 
formalism. Parallel multi-role for trusted principals is not supported by most 
modal logics. It is supported in [17], but it is then the only possible choice. 

3 Expressing security properties 

The way security properties are expressed is an even greater area of differentia- 
tion among various approaches. In this section we briefly present the approach 
described in [6]. In this approach a security property is described using a filter- 
ing funct ion characterizing the visible actions and an automaton specifying the 
required sequencing of these visible actions. The filtering allows to focus on any 
particular session and on the relevant actions expected for this session: unex- 
pected actions or actions carrying non coherent values will be abstracted away, 
and the security property can be more concisely and more simply expressed 
on remaining actions, which are called the visible actions. The automaton is 
to express constraints on visible actions. Here we consider one of the security 
properties expressed in [3] and referred to as the master authentication property. 
This property is expressed using the following filtering function: 

! ! 
f fN~ (((Sa, Sb, ss, si), (l, msg) ,  (sa, s~, ss, s~))) = 

3a i f  1 = 3a A s~.slave = B A s'~.n~ = N~ 
3b i f  l = 3b A #b.master  = A A Slb.na -~ N a 
6b i f  l = 6b A sb .mas ter  = A A sb.na = N~ 
6a i f l = 6a A sa.slave = B A sa.na = Na 
c otherwise 

This filtering function uses here only one parameter,  N~, which intuitively stands 
for a nonce characterizing the particular session of interest. This function identi- 
fies four visible actions, 3a, 3b, 6b, 6a, which correspond to the situation where 
the action is fired with the correct session parameter (e.g. the master is going 
through action 3a, believes he is talking to B and uses the nonce that  character- 
izes the particular session of interest). The automaton just states that  the visible 
action should be seen (by the global observer) always in the same order: 3a, 3b, 
6b, 6a. The automaton thus corresponds to the regular expression 3a 3b 6b 6a 

By definition the property is satisfied iff Vx.Vt.t  E T ~ f f , ( t )  E P where f f 
is the extension of f f  to traces, T is the set of possible traces and P is the prefix 
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closure of the language recognized by the automaton. Thus, if for some trace 
t of T, it is possible for the slave to answer to A using the correct nonce Na, 
but in believing that  he is talking to another (potentially corrupted) principal 
C with A not being aware of this (even after receipt of message 6) then we have 
f f ~  (t) = 3a 6a which is not a prefix of 3a 3b 6b 6a. This is exactly the situation 
for the flaw described in [3] for the same protocol (but for another authentication 
property). This property is then transformed automatically into a very simple 
invariant property. This invariant can be proven using proof-based techniques or 
can be automated as will be seen in the next section. 

The problem of precisely expressing security properties using a modal logic 
is very similar to the problem of describing a protocol with adequate precision: 
basic modal operators are typically not general enough to cover all potential 
needs (e.g. the expression of freshness). But the problem is even more complex 
for more elaborate properties that  are found in electronic commerce protocols 
and no modal logic has yet be proposed for this class of cryptographic protocols. 

For general purpose formal methods the situation is quite different. Very few 
approaches laid down the basis for expressing sophisticated security properties: 
most approaches only provide for the expression of confidentiality; only a few 
provide for the expression of authentication properties; the first at tempt to ex- 
press more elaborate properties such as those found in electronic commerce was 
done in [4] using the approach just illustrated; another tentative has just been 
presented very recently in [8]. We nevertheless believe that the use of a filtering 
function and of an automaton as illustrated previously could be adapted to fit 
with most approaches. The only negative side-effect being that  it would then 
possibly conflict with the corresponding proof automatization. 

4 Bringing automatization 

Now that  we have discussed the ability to describe the protocols and secu- 
rity properties with adequate accuracy, we consider automatization of the ver- 
ification. Most general purpose formal methods based approaches use proof- 
techniques for bringing some automatization: term-rewriting based techniques 
are for example used in Meadow's approach, and induction in Paulson's ap- 
proach. As discussed in the previous section, using such an automatization has 
the drawback of puting some constraints on the formalization itself. Here we 
show that  the various features used in the previous section (control structures, 
variables, etc.) do not necessarily prevent automatization. 

Following [5] we first define an abstraction function h : B --+ B0 where B is 
the set of basic data  (keys, nonces, numbers and identifiers), and B0 is a finite 
subset of B which is to be proposed by the user when willing to verify a particular 
property. In practise this comes down to selecting a few values of interest (a few 
keys, a few nonces, etc.) and defining h to leave these values unchanged (i.e. 
h(x) = x) and to collapse other elements into one representative for each basic 
type, i.e. one for keys, one for nonces, etc. An abstract interpretation based 
technique is then applied where the abstraction function is derived from h and 
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the verification is performed in an automat ic  and safe way using model-checking 
techniques on the abstract  model. An algori thm is also provided for trying to 
compute  the abstract  model and the abstract  properties in an automat ic  way. In 
fact the algori thm tries to prove that  the same specification can be used for both 
the general protocol and its finite abstraction. The algorithm may  fail to show 
that  a part icular  sub-expression meets the associated sub-goal. In this situation, 
which is very rare in practice the user should then either prove manually using 
a proof tool tha t  the problematic sub-expression indeed meets an automatical ly  
generated proof-obligation, or should provide a new sub-expression by himself. 

With  the current protocol specification the algori thm will in fact fail for 
action 3a and 65 on sub-expressions s~a.n~ ~ Sa.nonces and S~b.nb ~ sb.nonces. 
We first notice that  the algorithm would succeed for the first sub-expression 
if the value of ' let us say a, would be such tha t  ]~-l(a) {a}. This is 8 a .ha, -~ 
clearly not always true, but  we can easily notice that  s~.n~ ~ s~.nonces is the 
equivalent to (s~.n~ = N~As~.n~ ~ sa.noncesVs~.n~ • NaAJa.n~ ~ s~.nonces) 
and can thus be replaced by the weaker proposition s~.n~ = N~ A S~a.na 
s~.nonces V s~.na • N~. The problem is similar with the second sub-expression 
and is handled in the same way. The algori thm then completes on this revised 
version. By construction, the specification of the abstract  model is thus identical 
to the specification of the protocol itself but for the two relations describing the 
actions 3a and 6b. The  new relation for 3a is for example adion(sa.at,  3a, s~a.at) 

i n A s~i = Sl U (s~.na,A)sA gb A s a. ~ = N~ A sPa.na ~ s~.nonces V s~.n~ ~ g~ A 
s~ .nonces = sa.nonces U { s~a.na }. 

The same algori thm is then applied to the authenticat ion property and suc- 
ceeds without any user intervention. Now we are in a position to verify the 
abstract  property on the abstract  model using model-checking techniques. The 
verification succeeds 2. Since the abstract ion is safe, we can conclude that  the 
protocol also meets the expressed authenticat ion property. Typically since only 
a few distinct keys, nonces and identifiers need to be distinguinshed to provh a 
particular property on a given protocol, the number  of states used during the 
verification is very small according to model-checking standards (a few hundred 
for current real life protocols). Thus by integrating model-checking techniques 
it is possible to automat ize  a significant par t  of the verification process without 
any compromise on the precision of the protocol modeling and of security prop- 
erty expression. By keeping to pure proof-based techniques this would have been 
very difficult to achieve if not impossible. 

In fact the verification shows that B can apparently repeat the sequence of visible 
action 3b 6b more that once. This is due to the fact that the abstraction function 
transforms nonces in a way that does not preserve freshness property of nonces 
generated by B. It would be easy to avoid this situation by revisiting h to distinguish 
one more nonce, let say Nb. But this situation is clearly not problematic from the 
master perspective: what is important is that B answers at least once in a coherent 
manner. Thus we could as an alternative revisit the automaton by allowing a few 
more transitions that seem acceptable. This is what we assume in the following to 
simplify presentation. 
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5 Bringing understanding into the protocol design 

The verification process can be used to generate a set of reachable global states, 
G. This set is very small according to model-checking standards but it is quite big 
for human standards. The verification thus does not provide a lot of insight into 
understanding in a very precise manner protocol correctness. We believe that  this 
understanding is very important  in many respects. First the verification is based 
on some hypotheses, and it is of prime importance to understand the precise 
impact of each one. Of course it is still possible to do the verification for all 
set of possible hypotheses but the number of such combinations is typically too 
big. Second, bringing such insight is very useful for designing or improving the 
protocol itself. It is furthermore a way of assessing the adequacy of the modeling 
of the protocol. 

In order to achieve this, it is suggested in [6] to transform the abstract model 
by applying a second abstraction. The main advantage of the second model 
is that  it is much easier to understand. This bears some similarities with the 
situation using invariant proof-based techniques: an invariant does not need to 
be precise enough to characterize the set of reachable states; it should be only 
precise enough for the proof to work. 

For this we proceed as follows : (1) for each trustable principal x we propose 
a set E x = { E ~ , E ~ , . . . , E ~ x  } such that  ~JE, e ~  C L~ where L~ is the set of 

2 reachable states for principal x; (2) we propose a finite set Si = {s~, s i , . . .  , s~'} 
where each element of Si is some potential intruder knowledge (i.e. a value drawn 
from domain S); (3) we finally identify a subset G' of E *~ × E *~ × ... × E *~ × Si 
where {xl,  x2, ..., x~} is the set of trustable principals (i.e. {A, B, S)  for the 
protocol at hand) such that for each reachable global state (s,~, s,~,.. . ,  s , . ,  si) 
of G there exists a corresponding element (E,1, E,~, ..., Ex~, s~) of G' where 
s~  E Exl,  s ,  2 E E~ 2, ..., s,n E E , ~  and s~ _C s~. Intuitively, G ~ which has to be 
a very small set in order to achieve its objective, represents in a structured way 
the basic dependence between local states. The similarity with an invariant is 
more then just  apparent and is discussed in [6]. 

Each subset E~, E~, E * of E ~ can be described by extension or more 
likely by intension. A particularly concise way is to characterize each of them 
using two logic formulae that  apply respectively on states and transitions. The 
generated subset is then by definition the one that  can be reached from the set 
of states characterized by the first logic formula without firing transitions drawn 
from a set of transitions characterized by the second one. Here for example we 
propose to use three subsets for A and three for B. For A we have (1) the subset of 
states characterized by s~.at  = 71 A s ~ . n o n c e s  = {N} 3, and l = 3a A s~ . s lave  = 

B A s~a.na = Na; (2) the subset characterized by sa.at  = 36 A Sa .nonces  = 

{N, N a }  A (Sa .s lave  = B A sa.kb = Kb)  A Sa.na = Na and l = 6a A s~ . s lave  = 
B A S~a.n~ = Na ; (3) and the subset characterized by s~.a t  = 67 A s a . n o n c e s  = 

{N, N a )  A ( S a . s l a v e  : B A s a .k  b : Kb) A sa .na : No A s a .n b : Y and f a l s e .  

3 Label nm stands by convention for the control point of principal x between the firing 
of action nx and m~ (e.g. 71 is the control point of A between 7a and la). 
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For B we have the subset characterized by the state condition sb.at = 73 A 
sb.nonces = {N}, and I = 3b A s~.no = No; the subset characterized by the 
state condition sb.at = 36 A sb.nonces = {N} A So.no -: N o ,  and 1 = 6b; and 
a third subset characterized by the state condition sb.at ---- 67 A sb.nonces ---- 
{N} A (sb.master = A A sb.ko = Ko) A so.no = No and false.  The three 
first sets of states will be called respectively A1,A2,A3 and the three other 
ones B1, B2, Bs. For the intruder we use three different knowledge values s~ = 

2 1UNU(No  A)gb Iis U K j  1 V (Ka, A)K71 U (K5, B)KTI U (Kc, C)K71 U N, s i = s i 
2 (Na,N)K~.  and , s 3 = s i U 

The set G' is {(A1,BI,s~),  (A2,BI,s~),  (A2,Bs, s~), (As,B3, s~), 
(As, B3,s~)}. The initial state of the abstract model is corresponding to 
(A1, B1, s~). All moves from states corresponding to this element lead to states 
that are still associated to the same element, but for the visible action 3a, which 
leads to an element corresponding to (As, B1, s~): the intruder knowledge has 
increased by (No, A)Kb ; principal A is just after the sending of visible action 3a; 
it cannot proceed because he would need some data  of the form (No, n)K~, but 
the intruder is unable to produce such a value (either by replay or construction). 
The only possible move is the visible action 3b which leads to a state correspond- 
ing to (As, B2, s~). The only possible move now is visible action 6b which leads 
to the sending of (No, N)K~ and to a state corresponding to (As, B3, s~). Now 
moves either lead to a state that  corresponds to the same element (A2, B3, s~), 
either a visible action 6a is performed and the new states that  is reached corre- 
sponds to (As, B3, s~) and all subsequent moves lead to states that  correspond 
to the same object. 

The element of G ~ thus represent the five different phases that  correspond 
to a particular session. This number would have been unchanged also in the 
event where a more discriminating abstraction function had been changed in the 
previous step (i.e. an abstraction function distinguishing one more nonce). For 
each of the five phases the element of G ~ precisely characterize the corresponding 
global states. A simple invariant expressed as the disjunction of five different 
sub-formulae could in fact be derived from this set. Another benefit here is that  
the correctness of the invariant can be checked automatically by using model- 
checking techniques. 

6 C o n c l u s i o n  

Thus we have tried to show that  by integrating various verification techniques 
it is possible to achieve at the same time automatizat ion and precision in mod- 
eling. In particular we have used modal logic style to achieve conciseness in the 
description of the intruder knowledge, general purpose formal methods for pro- 
viding a general framework and for applying abstract interpretation techniques, 
and model-checking based techniques for automatizing the verification process. 
Finally we have used a second abstraction to achieve better  understanding of the 
protocol design. But the formalism that  is used here is in some way over-killing: 
it is typically possible to verify the same properties using model-checking tech- 
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niques or alternatively using pure proof-based techniques, filtering functions are 
more general then required, etc. The main objectives here was to show that the 
various objectives were achievable within a same framework. This framework is 
currently used for the verification of large protocols. We nevertheless believe that 
there is some room and need for designing a more dedicated formalism (i.e. typ- 
ically a modal logic) that  would achieve the same needs. This formalism would 
be more elegant and its theoretical properties could be studied more easily. 
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