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Abs t rac t .  A method for detecting and segmenting accurately moving 
objects in monocular image sequences is proposed. It consists of two mo- 
dules, namely a motion estimation and a motion segmentation module. 
The motion estimation problem is formulated as a time varying motion 
parameter estimation over multiple frames. Robust regression techniques 
are used to estimate these parameters. The motion parameters for the dif- 
ferent moving objects are obtained by successive estimations on regions 
for which the previously estimated motion parameters are not valid. The 
segmentation module combines a]] motion parameters and the gray level 
information in order to obtain the motion boundaries and to improve 
them by using time integration. Experimental results on real image se- 
quences with static or moving camera in the presence of multiple moving 
objects are reported. 

1 Introduction 

Detecting and segmenting moving objects in image sequences have been given a 
large attention in the research community. Most of the early research has been 
concentrated on the estimation of optical flow computed between image pairs. 
Such a flow field assigns to each pixel of one image a translational vector con- 
taining local motion information. The classical pixelwise classification based on 
the optical flow can be employed to detect multiple motions (see for example 
[1] and [11]). However, these methods are very sensitive to the quality of the 
optical flow, and as small spatial and temporal  regions do not always carry suf- 
ficient motion information, the optical flow computat ion can be very inaccurate. 
Another approach is the use of parametric  motion estimators,  which describe 
the motion over a larger spatial region in terms of a parametr ic  model. In this 
case, a model is used in order to constrain the flow field computat ion,  so tha t  the 
flow field does not vary in an uncontrolled fashion. However, when the region of 
analysis contains multiple moving objects, one is compelled to use an est imation 
method that  can recover simultaneously the model parameters  and the motion 
discontinuities. To achieve this goal, several ideas have been proposed, among 
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which we can discriminate those based on line process (discontinuities detection) 
[5] and outlier detection [9, 7]. 

In this paper, we propose a new method for time-varying motion analysis 
and segmentation which uses both a large spatial region and a large temporal 
support. The motion estimation problem is formulated as one of time-varying 
parameter estimation over multiple frames. A robust regression technique [12] is 
used to estimate the motion parameters. As these techniques are resistant to a 
given percentage of outliers in the data, they allow us to overcome the problem 
of multiple moving objects inside the region of analysis. Such techniques have 
recently been used in computer vision [10], e.g. motion parameter estimation 
and segmentation in a pair of images [3, 6, 7], detection of moving objects [16]. 
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Fig. 1. Block diagram of the system 

The different blocks of the method are shown in Fig. 1. Note that, in this 
paper, we assume that the number of moving objects does not change in the 
image sequence. The motion estimation algorithm is first applied to an entire 
region of the image (here the whole image). By means of a segmentation algo- 
rithm [13], we then obtain subregions with similar gray level and determine in 
which of these regions the estimated parameters are not valid. Further motion 
estimations are applied to these regions. Thus, by successive application of the 
robust motion estimation algorithm, the number of regions for which the previo- 
usly estimated motion parameters could not explain the motion well is reduced 
to zero. Then, the motion segmentation algorithm combines the motion para- 
meters coming from the multiple estimations and the gray level information in 
order to obtain the motion boundaries and to improve them by using time in- 
tegration. The pixels within a statically segmented subregion are constrained to 
follow the same motion allowing us to classify correctly pixels with low gradient 
information. 

Experimental results indicate that the proposed scheme is robust to the pre- 
sence of different moving objects and is also general enough to deal with scenes 
with moving or static cameras, with objects close to or far from the camera, and 
in a stationary or non-stationary environment. 

The time-varying robust motion estimation algorithm is presented in the next 
section. Section 3 describes how moving objects are segmented by using multiple 
frames. Finally, experimental results are reported in Sect. 4 and concluding re- 
marks are given in Sect. 5. 
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2 M o d e l - B a s e d  T i m e - V a r y i n g  M o t i o n  E s t i m a t i o n  

The motion estimation problem is here formulated as one of time-varying para- 
meter estimation. In Fig. 2, we give an overview of the different basic operations 
which are involved in the implementation of the algorithm. 
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.Fig. 2. General framework of the robust motion estimator 

Laplacian imagees 
from time 1 toM 

In our method, the estimation is performed in a hierarchical and iterative 
way. In our implementation, we use the Laplacian image pyramid as input to 
the algorithm. The estimation process begins at the coarsest resolution level, 
using zero initial estimates. An estimation step consists of two operations: the 
image sequence warping (using bicubic interpolation) and the estimation of the 
motion parameter increments. As it will be explained in Sect. 2.1 and 2.2, the 
incremental motion parameters are estimated by using using a robust linear 
regression procedure and an outlier detection technique. 

Using the final time-varying motion parameter estimates (obtained at reso- 
lution level 0), a region-based goodness of fit is computed for each frame. The 
goal of this operation is to classify regions into two classes: the regions where the 
estimated parameters are valid and those where they are not. This point will be 
explained in more details in Sect. 2.3. 

The result of the multiple motion estimation algorithm is a set of time-varying 
parameter vectors pj (t). As explained in Sect. 3, these vectors are used together 
with gray level information in order to obtain an accurate segmentation of the 
moving objects. 

2.1 From pa rame t r i c  to  t ime-vary ing  pa rame t r i c  e s t ima t ion  

If we consider only two frames in the sequence and assume intensity constancy 
(i.e. the brightness of a small surface patch is not changed by motion), the 
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problem of motion model fitting can be posed as the minimization over the 
region of analysis of a function of 

I (x ,  t) - / ( x  - u(x,  p), t - 1), (1) 

where p denotes the model parameters, u(x,  p) the flow field in that  region (e.g. 
translational, affine or planar), and I (x  - u(x,  p), t - 1) the image at t ime t - 1 
warped towards t [2, 3, 4]. 

With this formulation, the use of several frames for motion estimation would 
lead to several distinct estimations between consecutive pairs of images. In this 
case, the parameter evolutions can be described as a time series. However, for 
robustness and efficiency purposes, we want here to integrate more measure- 
ments into a single estimation process. Since the motion to be modeled is time- 
varying, the model parameters to be estimated should also be time-varying. In 
our method, each coefficient in the model is allowed to change in time by defining 
it as a linear combination of some known time functions. This approach has been 
inspired by methods of time-varying parametric modeling in speech processing 
[s] 

By limiting our attention to such a time-varying model, we are clearly cons- 
training the possible types of time variations that  can be allowed. However, 
constraints on the nature of the time variations are essential in order to li- 
mit  the degrees of freedom of the time-varying parameters, so that incoherent 
and noisy estimations can be avoided. A judicious choice of the basis functions 
can provide a good approximation of a wide variety of motion parameter time 
variations with only a few coefficients. In our experiments, we used the trigono- 
metric (Fourier) functions, as well as the Legendre and Hermite polynomials. A 
very important  point is also that this method can make use of the spatial mul- 
tiresolution for determining the degree of freedom of the time-varying motion 
parameter estimation. 

With a model of this form, the coefficients in the linear combination are to 
be estimated from the image sequence and the problem of motion estimation is 
posed as the minimization of a function of 

I(X, ta)- / ( X - - t l ( X , p ( t a ) ) , t a - 1 ) ,  j = 1 , . . . , M  (2) 

over the region of analysis and over M + 1 frames. In this formulation, p(t~) 
denotes the motion parameter vector at t ime t~, whose components are modeled 
as linear combinations of some known functions of time f~(t): 

F - 1  

pi(t) = ~ ,  ai+p~ f~(t), i = 0 , . . . ,  P - 1 (3) 
k=0 

where P is the number of motion parameters (e.g. translational model (P  = 2), 
affine model (P  = 6)) and F the number of time functions. 

The problem of estimating the parameter vector a from equation (2) is non- 
linear, and this system of non-linear algebraic equations has no closed form 
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solution. Consequently, one is compelled to solve the system of equations nu- 
merically in order to find an estimate of the parameter vector a. Suppose that 
an initial estimate fi is available (in our case, it will be the parameter vector 0 
at the coarsest resolution level and the projected estimates at the other levels). 
The problem may be linearized using & and the first order Taylor expansion of 
equation (2) leads to 

where 

A I ( u ( x , P ) ) l a = / t  = [ (VI (x  - u(x ,p ) ,G_ l ) )  T 5P ] la=fi. (a - -  fi) (4) 

AI(u(x, p)) = I(x, ta) -- I(x -- u(x, p(ta)), ta-1). 

In equation (4), ~TI(x--u(x, p), t--1) denotes the spatial gradient vector [~ ,  ~X]T ~J 
of the warped image, 6u the 2 • P Jacobian matrix of the vector field u, and ~p 
~P the P x P F  Jacobian matrix of the motion parameter vector p. ~ a  

Equation (4) shows that, after linearization of the model, the problem of 
time-varying model-based motion estimation can be reformulated to one of pa- 
rameter estimation. Standard or robust linear regression methods may be used 
to estimate the parameters ~a (see Sect. 2.2). 

2.2 Robus t  l inear regression es t imators  

The LS estimator is known to be optimal for Gaussian noise distribution. How- 
ever, more recently attention has been given to the fact that LS analysis is very 
sensitive to minor deviations from the Gaussian noise model and to the presence 
of outliers in the data. In order to reduce the impact of these negative influences, 
robust methods that are much less affected by outliers have been developed (e.g. 
LMedS and LTS [12]). In computer vision the problem of regression analysis is 
an important statistical tool and recently the interest for robust estimators has 
increased [10]. 

In this paper, we discuss the application of two robust estimators to the 
problem of time-varying motion estimation, namely the least median of squares 
(LMedS) and the least-trimmed squares (LTS) given by 

h 

In in med ian(ry) and m in E (r2)i:n (5) 
@ ~ @ i=1 

where (r~)l:,~ _< . . .  < (r2)n:n are the ordered squared residuals. 
In the case of motion estimation, the sensitivity of LS estimators to the 

presence of outliers may be exhibited by the following example. In Fig. 3, we 
show a 3-D plot of the translational model objective function for the TAXI se- 
quence (see Fig. 5). In these plots, dx (not shown) and dy axes represent the two 
translational motion parameters (dx, dy) and the z axis represents the objective 
function to be minimized by the motion estimation algorithm. In this case, the 
minimum objective function value should be at (dz, dy) = 0 (zero background 
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Fig. 3. Objective function plots for the TAXI sequence (translational model): (left) 
mean square error (right) median square error 

motion). These plots exhibit the resistance of the LS and LMedS estimators to 
outliers, which are caused by the multiple motions present in the image sequence. 
The biases introduced in the LS estimates make their use difficult for outlier 
detection and for segmentation purposes. 

2.3 R e g i o n - b a s e d  g o o d n e s s  o f  fi t  m e a s u r e s  

In order to detect the different moving objects present in the scene, we need 
to find the regions where the estimated parameters are not valid, onto which 
further motion estimations should be applied. For this purpose, we compute a 
goodness of fit measure in each region obtained from the static segmentation 
[13]. Note that  the first computed motion is obtained generally by applying the 
motion estimation algorithm on the whole image. 

As the robust linear regression estimators are combined with a least-squares 
procedure, the value minimized by the motion estimation algorithm may be 
expressed as 

= (AI (u (x ,  p)))T A I (u (x ,  p)) (6) 

which is the sum of the residuals. With the Gaussian noise assumption, this 
sum is the sum of the squares of M N  independent scalar random variables with 
zero mean and unity variance (assuming that the errors are normalized), that  
is "f has a chi-square distribution with n - P F  degrees of freedom. Here, M N  

is the number of points in the image sequence and P F  is the dimension of the 
parameter  vector a. 

Based on this, 7 is a measure of the goodness of fit. This measure is computed 
over each statically segmented region of each original frame of the sequence and 
the parameters are considered as not valid if 

> c (7) 

where the threshold c is obtained such that the probability of a n - P F  degree 
of freedom chi-square random variable exceeding it is a (here 5 %). 
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Once the regions have been classified as valid or not valid, connected regions 
are merged. In Fig. 5 (row 1, left), we show the results of this computation 
obtained for the TAXI sequence after the first robust motion estimation, which 
returns estimated parameters very close to zero. In this figure, the black regions 
stands for not valid regions. In order to remove tiny regions, a median filtering 
is applied (Fig. 5 (row 1, right)). 

At this stage we need to find masks for further motion estimation. For this 
purpose, correspondences have to been found between the different valid regions. 
Due to the assumption of unchanged object configuration and to the fact that the 
motion estimation behaves very consistently over time, this is not a very compli- 
cated correspondence problem. Methods such that presented in [14] can be used 
for this purpose. The final result of the region-based goodness of fit estimator is 
a set of mask sequences that can be used for further motion estimations. 

3 S e g m e n t a t i o n  o f  m u l t i p l e  m o v i n g  o b j e c t s  

This section describes a method that combines motion and luminance for an 
accurate segmentation of multiple moving objects. An attempt in this direction 
was proposed in [15]. A different approach (based only on motion) consists in 
computing the prediction error pixelwise or in a small neighborhood and then 
segmenting the resulting error image [3, 9]. In our experiments, this approach 
worked well with sequences containing textured moving objects but failed for 
objects where the gradient information is low. Here, we propose to overcome 
this problem by constraining the pixels within a spatially segmented subregion 
to follow the same motion. 

First, we apply a static segmentation algorithm [13] on the last frame of an 
image sequence in order to obtain the subregions with similar gray-level. This 
static segmentation is embedded in a multiresolution framework using quadtrees 
[17]. Multiple resolutions are very useful because at lower resolutions the noise is 
:'educed, allowing the class-centers to be better defined, whereas higher resolu- 
lions are needed to obtain accurate borders. Here the boundary refinement step 
will be applied only once the motion labeling is done. 

The estimates of the different motions are used to classify each subregion, 
thus merging the subregions with the same motion. This can be done by com- 
puting the prediction errors corresponding to the different detected motions for 
all the subregions, and to assign them a motion label corresponding to the mi- 
nimum error. We also propose to use more frames to increase the certainty that. 
a subregion is correctly classified. If a subregion is detected as having the same 
motion in successive frames then its classification certainty increases. 

Figure 4 shows the block diagram of the motion segmentation algorithm. 
Suppose that we have a set of M + 1 successive frames at times ta, a = 0 , . . . ,  M. 
Time-varying motion parameter vectors, pj(ta) are first estimated by the mul- 
tiple motion estimation algorithm (Sect. 2). The image sequence is then war- 
ped towards the last frame with the composition of all motions C ( p j ( t ~ ) ,  a = 
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Fig. 4. Block diagram of the motion segmentation algorithm 

M - 1 , . . . , b ) ,  for b = M - 1 , . . . , 0 .  For example, assume that  we have only 
translational parameters and 3 frames (M = 2): 

b = 1: C ( p j ( t ~ ) , a  = 1 , . . . ,  1 ) =  p j ( t l )  

b = 0 :  a = 1 , . . ,  0) = + p (t0) (s )  

This results in M x Arm warped images where Nm is the number of detected 
motions. 

Starting from b = M -  1 (until b = 0), the prediction errors are computed, at 
the coarsest level of the pyramid, by using the following robust objective function 

N,/2 

= (rij)k:N,, j = 0 , . . . ,  Nm - 1, i = 0 , . . . ,  N~ - 1 (9) 
k=l 

where 

r i j  = I ( x i k , t M )  -- I(x/k -- u ( x i + , C ( p j ( t a ) , a  = M - 1 , . . . , b ) ) , t b )  (10) 

and (ri2j)l:Ni __' ' '< _< (V2j)Ni:Ni . Here, I represents the original frames, Ni is the 
size of region Si, xik E Si, N~ the number of subregions and u(xik,  C ( p j ( t a ) ,  a = 

M - 1 , . . . ,  b)) is the flow field obtained with the composition of the parameter 
vectors. A robust objective function (like in equation (5)) is used because a small 
fraction of pixels of a subregion with high residuals can have a strong influence 
on the motion labeling and can even cause a false classification of a subregion. 

The motion labeling is computed by means of a measure of classification 
certainty that  evolves with the number of frames. For each subregion i and for 
each motion j ,  the certainty c~j(tb) is obtained by computing the normalized 
difference between products of prediction errors: 
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Pd2 - Pdt 0 <_ j'  ~ j < Nm 
cij(tb) -- Pd2 + Pdl 

M - 1  M - 1  (11) 

= H = l-I 
a~-b a=b 

where elj, (ta) is the closest prediction error at time ta (corresponding to motion 
j ' )  smaller than eij (ta) if it exists, or the closest prediction error greater than 
eij (ta) otherwise. Note that  cij(tb) may take negative values when Pd2 < Pdl. 
If the motion label j corresponding to the minimum error of prediction remains 
the same (i.e. eij,(ta) > e~j(ta) for all ta) then the certainty cij(tb) will tend to 
increase. However, if the motion labels change with time or if more than one 
motion is present within a subregion (i.e. eij,(t~) .~ eij(t~)), cij(tb) will be close 
to or smaller than zero. 

After all frames have been considered (i.e. b = 0), the subregions can be 
classified according to the maximum certainty, resulting in a motion label image 
L(xik) at the coarsest level of the quadtree: 

L ( x i k ) = a r g m a x c i j ( t b = 0 )  O < i < N s ,  O<_j<Nrn,  1 < k < N i  
3 

(12) 
The tiny subregions of L(xik) can then be reassigned to their neighborhood. 
Here, we assume that  a small subregion enclosed in a larger subregion must 
have the same motion than the larger one. Finally, the boundary refinement [13] 
is applied only on the boundaries corresponding to motion boundaries of L(xik). 

4 R e s u l t s  

The method described in the previous sections has been applied to different 
sequences. The first one, called the BBC sequence, shows a car moving to the 
left and tracked by the camera inducing a motion of the background to the 
right. The difficulties of this sequence are due to the fact that  the car is close 
to the camera and that  the car motion is not parallel to the image plane. For 
simplicity, we used here a translational model but the affine model yields, in 
this case, similar results. Figure 5 (row 3, right) shows the last frame of the 
sequence (M = 4) and its static segmentation (row 3, left) computed with c = 4 
classes at the second level of the quadtree, yielding 251 subregions. In order to 
prevent subregions having different motions from being merged, different values 
of c (c = 4, 5 or 6 typically) can be used in the clustering algorithm, causing 
only slight changes in the final segmentation result. 

Figure 5 (row 2) shows the evolution of the motion labeling. Black labels 
correspond to subregions that are classified with certainty under a threshold 
of 0.9. We can observe that the number of such subregions is reduced as the 
number of frames increases. Only tiny subregions remain unclassified after the 
last iteration partly because of unrecovered areas caused by the warping ope- 
ration. Figure 5 (row 3) shows the final motion labeling after the reassignment 
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of the tiny unclassifed (or misclassified) subregions and boundary refinement. 
Accurate boundaries can be observed and it can be seen that  small details like 
most parts of the antenna are preserved. As the shade underneath the car is mo- 
ving with the same motion as the car, the segmentation at this place is correct. 
However, the back window of the car is misclassified because it is merged to the 
background by the static segmentation algorithm. 

The same procedure (with the same parameters) was applied to the TAXI 
sequence that  contains three moving cars on a static background. The final 
segmentation results and the superimposed boundaries can be seen in Fig. 5 (row 
4). First, it can be noticed that  the three cars are correctly classified and that  
the white taxi boundaries are accurate. On the left car, the gray level of part of 
the roof was merged to the background by the static segmentation. On the right, 
the car is passing behind a tree disturbing the motion segmentation. Results for 
a sequence (SAL) where only the camera is moving and where different motions 
are induced due to depth discontinuities is also shown in Fig. 5 (row 4). 

5 C o n c l u s i o n  

In this paper, we presented a method that combines motion and gray level in- 
formation in a set of successive frames in order to detect and segment multiple 
moving objects. We showed that  robust regression methods allow us to estimate 
accurate motion parameters where the standard least squares estimation scheme 
fails. Unlike two-frames based motion estimation, our scheme estimates time va- 
rying motion parameters over a set of successive frames by defining them as 
linear combinations of a set of known time functions. This approach constra- 
ins tempora l ly  the motion parameters in order to avoid incoherent and noisy 
estimations. Here, we assume that the number of different moving objects does 
not change in the considered sequence. A strategy to detect the appearance or 
disappearance of moving objects still needs to be investigated. More attention 
should also be devoted to the automatic choice of the motion model to be used 
and of the degree of freedom of the time-varying parameter estimation. 

The second part of the algorithm finds accurate boundaries between the mo- 
ving objects by combining all the detected motions over the successive frames 
and the gray level information. Subregions with similar gray levels are given a 
motion label according to the a motion certainty that  increases with the number 
of frames. Here, we first find the different subregions of a frame by means of a 
clustering algorithm which constrains the pixels of a subregion to move with the 
same motion. This approach allows to assign a motion label to pixels where the 
motion information alone is not sufficient for a correct motion labeling. However, 
problems might arise if a statically segmented subregion contains two or more 
different motions. In this case, some pixels of such a subregion will be misclas- 
sifted. With robust objective functions we already reduced the risk of subregion 
misclassification. We are currently investigating a method that  re-segments (into 
more classes) subregions with low motion certainty. This operation should further 
reduce the number of misclassified pixels. 
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Fig.  5. (Row 1 from top) Region-based goodness of fit masks for the TAXI sequence 
after the first motion estimation (increasing time from left to right and from top to 
bottom) (Row 2) Evolution of the motion labefing by using 2, 3, 4 and 5 frames. Black 
labels correspond to subregions that are classified with certainty under a threshold 
of 0.9. (Row 3) (left) Static segmentation of the last frame (middle) Segmentation 
result using 5 frames after the reassignment of tiny subregions. (right) Boundaries 
superimposed on the fifth frame. (Row 4) (left) Segmentation result on the TAXI 
sequence (right) Segmentation result on the SAL sequence. 
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