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Abs t r ac t .  We propose a color constancy algorithm suitable for robot 
vision under natural environments based on the C[E dayhght hypothesis. 
The algorithm can recover the illuminant color and the surface color in 
the scene from the R, G and B values observed on two color images, 
typically the current image and the past image. It utilizes the advantage 
of a robot which can exactly memorize images observed in the past. 
By employing the CIE daylight as a constraint, the stability and the 
accuracy of the color constancy algorithm based on multiple images, 
which we proposed previously, are remarkably improved. Effectiveness of 
the constraint is examined theoretically by analysing the behaviour of 
the algorithm under the existence of noise and also experimentally by 
using synthesized and real color images. 

1 I n t r o d u c t i o n  

Color is a useful information for a robot to recognize scenes. However, the color 
observed through images is often changed by the fluctuation of illumination. 
I t  is difficult to use such color as a stable feature in computer vision. On the 
other hand, human visual system has a function called color constancy and we 
can identify objects in the scene using color as an important  key under the 
variation in illumination. A computat ional  theory for color constancy has been 
an impor tan t  target  in computer  vision [2] [31 [4] [51 [6] [7] [8] [9]. By realizing 
a function similar to human color constancy on a robot, color can be used as a 
stable feature under the uncontrollable illumination in natural  environments. 

We think tha t  the realization of color constancy on a robot need not to follow 
the framework to which we human beings are constrained. A robot, or a com- 
puter,  can exactly memorize image information observed in the past. Therefore, 
it is reasonable to use not only the image information being observed currently 
but also the image information observed in the past. Tha t  is, the color constancy 
on a robot can use a framework using multiple images as illustrated in figure 
1. By utilizing this advantage, we can realize a computational  algorithm which 
is more general and more accurate than those which follow the restriction of a 
single image as in the human vision. 

We have proposed a color constancy algorithm using multiple images [1]. In 
this algorithm, when two pairs of objects are identified on two images observed 
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under different illuminations, the colors of illmninant aald the surface reflectance 
in the scene can be recovered from the R, G and B values observed on the two 
images. The algorithm does not require any specific assumption olt the true color 
in the scene. 

The problem of color constancy is ill-posed, in general, in the sense that  it 
is very difficult to determine the solution stably. The discrepancy between the 
assumed ideal models and the real data sometimes guides our previous algorithm 
to inaccurate solutions. In order to use the algorithm in practical situations, it is 
essential to make the algorithm tough. Based on an error analysis, we found that  
the major reason for the instability is the too large freedom in the illuminant 
color space. When the illuminant in a scene is a daylight, it should be close to 
the CIE daylight illuminant. By using the CIE daylight hypothesis to reduce the 
freedom in the illuminant color, we have developed a more stable algorithm for 
recovering colors of illuminant and surface reflectance b&sed on the R, G and B 
values of color images. 

 1 i .tcolo4 
[Recovery: & | 

Current Image 

Fig. 1. A framework of color constancy for robot vision 

2 Illuminant and Surface Colors from Multiple Images 

2.1 A M o d e l  for  Co lo r  I m a g e  Acquisition 

The process to acquire the three primary components of color image can be 
summarized as follows. First, the light fl'om the illuminant hits the surface of 
an object and it is reflected. This reflected light comes into the camera and is 
decomposed into three primary colors. Each of the three components is converted 
into an electric signal and is amplified to make the output  signal values R, G 
and B. Thus the R, G and B values of the object are obtained by multiplying 
the spectral power distribution E(A) of reflected light from the object with the 
spectral sensitivity of each channel Sn(),), $o(),) and SB (~), respectively. 
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B = f (1) 

where ), represents the wavelength and they are integrated over the range of 
visible spectrum. The reflected light E(A) is represented as, 

E(A) = I(A)R(A) (2) 

where I(A) is the spectral power distribution of the illuminant, and R(A) is the 
surface spectral reflectance of the object. When the illuminant changes, the R, 
G and B values observed on the image are changed even for a same object. 

2.2 Mode l s  for I l luminant  and Surface Reflectance 

In order to recover I(A) and R(A) from the R, G and B values in images, they 
should be modeled with a few parameters. A finite-dimensional linear model is 
often employed for the purpose [2] [3] [4] [6] [7] [8]. In the model~ the spectral 
property of the illuminant or the surface reflectance is described by a weighted 
summation of a fixed set of basis vectors. 

In order to obtain the basis vectors for surface reflectance, a large number of 
samples of spectral reflectance should be measured on various materials. Cohen 
[11] has computed the principal components of 150 samples of Munsell chips 
randomly selected from a total of 433 chips. In his analysis it turned out the 
mean and the first two components accounted for 99.18% of the variance of the 
samples. Parkkinen et al. [12] reported a similar result using 1257 samples. 

As for the basis vectors for illuminant, Judd eta/ .  [10] have examined the 
spectral distributions of 622 samples fi'om typical daylights. The study showed 
that the mean and the first two principal components accounted for almost 100% 
of the variance of the samples. 

We, therefore, describe /(A) and R(A) with weighted summation of three 
basis vectors. 

R(A) = blR~(~) + b~n~(~) + ~3R3(~) (3) 

We call the coefficients (al, a2, a3) and (bl, b2, b3) in equation (3) as the char- 
acteristic parameters representing spectral properties of illuminant and surface 
reflectance, respectively. 

2.3 Recovery of  Scene Color Using Multiple Images 

Equations representing the relations between the R, G and B values and the 
characteristic parameters of the spectral properties of illuminant and surface 
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reflectance can be obtained by substituting equations (2) and (3) into equation 
(i). 

3 3 

i=1 j = l  

3 3 

= Z Z a,b: {J S,,(A)S,(A)":(X)'X} 
i = l  j = l  

3 3 

c =  f s~(A) E'_a,S~(A) Zbjlt~(~)d~ 
i=1 j = l  

3 3 

i = l  j = l  

3 3 

B = f S.(a) Z ~,S~(X) Z bSRj(A)~X 
i----1 j = l  

" {i ) = ~Z'~bJ  S.(AlS,(A)R~.(A)dA 
i=1 j = l  

(4) 

We assume that  the spectral sensitivities SR(A), So(A) and SB(A) of the camera 
are a priori known. Since/i(A)s, Rj(A)s, SR(A), So(A) and SB(A) in equation 
(4) are known, we can compute each of the integral terms in advance. Thus 
equation (4) can be represented as a set of nonlinear quadratic equations of 
unknown characteristic parameters a = (al a2 a3) T and b = (bl b2 b3) T. 

R -- bTSRa 
G = bTSaa 
B = bmSBa 

(5) 

where SR, $6 and SB are 3 • 3 constant matrices, and their ijth element is 
the value of f SR(A)I,(A)Rj(A)dA, etc. Now we consider these three equations as 
the observation equation representing the relation between the six characteristic 
parameters of scene color and the R, G and B values observed on an image. Let 
denote them in a simpler form as, 

c = F ( a ,  b) (6) 

where C = (R G B) T, and Y 0 represents the set of three quadratic equations. 
Now the color constancy problem can be treated as a problem of solving the 

unknown variables a and b based on equation (6). According to the relationship 
between the number of equations obtained from images and the number of un- 
known parameters, the simplest case to solve the equations is that  two objects 
(bl and b2) are identified on two images observed under two different illuminants 
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(a~ and a~) as shown in equation (7) [1]. Figure 2 illustrates the situation. Both 
of the number of equations and the number of unknown parameters are twelye. 

C:t~ = .F(a~, b,) 
C12 =/t1(al ,  b2) 
C~, = F(a~, b,) 
C ~  = t"( ,~, b~) 

(7)  

where Cpq represents the (R G B) T of object q observed under illuminant p. 
All terms on the right hand side of equation (7) are the form of albj as shown 

in equation (4). This means that  unless one of the twelve unknown parameters in 
equation (7) is fixed, all unknown parameters can not be fixed. In other words, 
one of the twelve equations in equation (7) is redundant. Therefore we fix all  
of a l  to a constant and determine all unknown parameters using a least-square 
method based on equation (8). 

r a in  kp=l q=l  {Cpq -- F ( a p ,  bq)}  2 (8) 

Unknow/1111nrninant 1 Ullknown Illnmlnant 2 
ap(an a12 a13) a2=(a21 a22 a23) 

I / , ~ .I 

r: -" -" --" ] obj~tl i : " i 
/ @ /@*'l---b,-Co,,b,2b,~)----~K FSql 

C,j =F(a, ,  b ,? /  ~C2, =F(a2, bl : 

Cl2=F(al ' b2 ~ Equations : 12 "C22=F(a,~, i12 ) 

Unkaown Parameters : 12 

Fig. 2. Recovery of scene colors from two color images 

2.4 E r r o r  Ana lys i s  

The algorithm described in the previous section works fairly well in the "ideal" 
situation: i.e., the illuminants and the surface reflectances are exactly the sum- 
mation of three basis vectors and no noise is included in the image acquisition 
process. In real situations, however, the color information obtained fl'om images 
is not free of noise. As illustrated in figure 3, noise is included at every step of 
the image acquisition process. By the existence of such noise, the minimum of 
equation (8) becomes ambiguous and the stability of the algorithm is lost. In 
order to analyze the stability of the algorithm, we explicitly describe the noise 



240 

factors at each step in figure 3 as follows; illuminant modeling error /if(A), re- 
flectance modeling error AR(A), sensitivity measurement error ASR(A), ASG()O 
and ASB(1), and R, G and B values observation error AR, AG and AB. 

The non-linear simultaneous equation (7) can be converted to linear simul- 
taneous equations with six unknowns bl and b~ by fixing the characteristic 
parameters of illuminants a1 and a2. 

Y c  = (9) 
where Yc is a 6 x 2 matrix which has Rpq, Gvq and Bpq values observed for two 
objects on two images (p = 1,2; q = 1,2), A is a 6 x 3 matrix whose element is 
determined by the SR, SC, SB, al and a2, and xb is a 3 • 2 matrix composed of 
the unknown characteristic parameters of surface reflectances. When we describe 
the error explicitly, equation (9) can be written as follows. 

Yc + A Y c  = (A + aA)(x6 + a~b) (10) 

where zlYc represents errors in the observed data as stated, A A  is the variation 
in A caused by the fluctuation of the characteristic parameters al  and a2. The 
fluctuation in the solution is represented as 

1 ([[AYc[[+ [[AA[[ ] (11) 
IIAxb[_____~ [ < (~_!)( /~I-~IIAAII )~ IIYc]l IIAII " 

where ]]. [] represents norm, ch and G3 are the maximum and the minimum sin- 
gular values of matrix A, respectively, and ~rl/r is called the condition number 
of matrix A. Equation (11) shows that  the fluctuation in the bl and b2 caused 
by the ~Yc  and A A  is magnified by the condition number of matrix A. 

By fixing the characteristic parameters of surface reflectances hi and b2, 
equation (7) can be converted into linear simultaneous equations with six un- 
knowns a~ and a2. 

Yc : Bxa (12) 

B is a 6 x 3 matrix determined by the Sa,  SG, SB, bl and b~, and xa is a 
3 x 2 matrix composed of the unknown characteristic parameters of illuminants. 
Following the same steps as equation (11), we can obtain equation (13). 

 _llZizall < , ll,aB,1 )(llz Ycll  + ,IIZIBII  (13) 

where o~ and ~r~ are the maximum and the minimum singular values of matrix 
/ ! B,  respectively, and ~h/~r3 is the condition number of matrix B. 

We have examined the condition numbers of matrices A and B by setting 
the characteristic parameters a and b to various values observable in real scenes. 
Table 1 shows their maximum, minimum, and mean values. In this examination, 
we used the spectral sensitivities actually measured on a 3CCD-TV camera for 
the SR(A), SG(A) and SB(t).  The basis vectors by J u d d  a re  used for _r~(X)s. 
For Rj(A)s, basis vectors derived from the actual spectral reflectance of the 
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color chips on the Macbeth Color Checker [13], which are similar to the vectors 
by Cohen, are used. It will be clear from table 1 that equation (13) is far more 
sensitive to noise than equation (11). This means the characteristic parameters of 
illuminant easily become unstable under the existence of noise and it is necessary 
to introduce an additional constraint for the illuminant to make the algorithm 
more stable. 

lllm~fi~nt 

-,L J :  
[ I('1 ) =i  ~dd(,1 ) + 5I(2 ) 

C~mra 
S~('1)§ ASR ('1) 

S~(2)+ LxS~ ( J )  

S~(a)+ ASs (,I) Object ~ ~- R+ AR+NR 

R(,I.)=Rr~aM(2)§ AR('1) I ~t B+AB+NB 

Fig. 3. Noise factors 

Table 1. Condition numbers of matrix A and B 

max. mean mill. 
matrix A 2.62 1.54 1.27 
matrix B 291.35 89,23 50.62 

3 Recovery Based on the CIE Daylight Hypothesis 

3.1 T h e  C I E  D a y l i g h t  H y p o t h e s i s  

In order to improve the stability and the accuracy of the color constancy algo- 
ri thm by giving an additional constraint to the illuminant color, we introduce 
the CIE daylight hypothesis. 
T h e  C I E  d a y l i g h t  h y p o t h e s i s :  "When the illuminant is a daylight, its spec- 
tral power distribution should be close to the CIE daylight, at a certain color 
temperature."  

The CIE daylight is a model of typical daylights proposed by the CIE (Com- 
mission Internationaie de l'Eclairage) in 1966 [10], and its spectral distribution 
depends on a single parameter called color temperature. A relative power distri- 
bution Iday(,~) can be modeled by 

(14) 

where Iraean(&), Ifir~t()~) and Isr correspond to the mean, the first and 
the second components obtained by Judd, respectively. M1 and 114"2 are calculated 
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from the chromaticity coordinates x and y corresponding to the position on the 
CIE chromaticity chart where the color of the given light would appear. 

-1.3515 - 1.7703x + 5.9114y 

0.0241 + 0.2562x - 0.7341y 
0.0300 - 31.4424x + 30.0717y 

0.0241 + 0.2562x - 0.7341y 
(15) 

The chromaticity coordinates in turn can be calculated from a given correlated 
color temperature Tc as follows. 

6070109 2.9678106 ]o 3 
x = -4 .  T~ + T~ + 0.09911~c + 0.244063 

x : - 2 . 0 0 6 4 ~  + 1.90181-~026T~. + 0 . 2 4 7 4 8 ~  40.237040 

y = -3.000x 2 + 2.870x - 0.275 

(.for 4000K _< T c < 7000/<) 

(;'or 7000K <_ T C < 25000/<) 

(16) 

3.2 R e c o v e r y  Based  on T h e  CIE  Day l igh t  H y p o t h e s i s  

The basis vectors I1()~), [2(A) and I3(A) for illuminant color in equation (3) 
correspond to Imbue(A),/fi~.~t(A) and Ise~ond(A) in equation (14), respectively. 
When we assume al = 1, the characteristic parameters (a2, a3) correspond to 
(M1,M2) in equation (14). From the equations (15) and (16), the (a2, a3) of 
CIE daylights should be on the curve illustrated in figure 4. Then the difference 
between an illuminant and the CIE daylight can be measured by the distance 
E(a) on the (as, a3) plane as shown in figure 4. The illuminants recovered by 
the color constancy algorithm should minimize both of equation (8) and the 
distance E(a) simultaneously. Then we define equation (17) for the target of 
minimization. 

rain {C q - + 
p-~l q=l p--~l 

(17) 

where a is a weight. 
In order to find the set of parameters which minimize equation (8) and equa- 

tion (17), we employed the non-linear simplex method [14]. In oder to find a set 
of 11 parameters which minimizes the objective function, the simplex method 
generates a general simplex with 12 vertices in the 11 dimensional parameter 
space. Comparing the function values at the 12 vertices, the vertex with the 
largest value is replaced with a new vertex by one of the three operations, re- 
flection, contraction and expansion. A unit genera/simplex with 12 vertices, one 
of which is located at the origin, is set for the initial simplex and the replace- 
ment repeats until the simplex converges. The coefficients for the reflection, the 
contraction and the expansion are set to 1.0, 0.5 and 2.0, respectively. 
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4 Experiments 

In order to demonstrate the validity of our new algorithm proposed in this paper, 
experiments using synthesized color images and real color images have been 
performed. The Macbeth Color Checker was used in both experiments as the 
color object. 

4.1 Experiments with Synthesized Images 

The color images used in this experiment are synthesized in the following condi- 
tion. The two illuminants are the CIE daylights at the color temperatures 4800K 
and 10000K. In order to simulate the modeling error in the illuminant, the fourth 
basis vector of Judd, i.e., the vector corresponding to the third component, is 
added to the ideal CIE daylight. The weight for the fourth vector is controlled 
to make the error between the synthesized illuminant and the CIE daylight to 
be 0.1 in the definition of equation (18). The spectral reflectances of objects are 
the actual measurements from the color chips on the Macbeth Color Checker. 
The spectral sensitivities of camera are the actual measurements of a 3CCD-TV 
camera. Two color images which simulate the appearance of the Macbeth Color 
Checker under the daylights of 4800K and 10000K are generated. Then four 
sets of R, G and B values, two color chips on two images, are supplied to the 
recovering algorithm. 

Figure 5 shows a result obtained by using "orange" and "blue" color chips. 
Figure 5(a) shows the spectral distribution of illuminant at 4800K and figure 
5(b) shows the spectral reflectance of the "orange" color chip. In each figure, 
"with" / "without" means the result obtained with / without the CIE daylight 
hypothesis. In order to quantitatively evaluate the performance of the results, 
we define the error measure of a spectral function X(A) compared to its true 
value Xt~e()~) as equation (18). 

fr 
Error = V J4~176 7-~-~4-00 (18) 

~ K  

E(a}, "'" 

4' 

CIE D~ht C~-~ 

Fig. 4. The CIE daylight curve on the (a2, a3) plane and the distance E(a) 
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The results shown in figure 5(a) indicate 0.26 and 0.10 for "without" and "with" 
cases, respectively. The results shown in figure 5(b) indicate 0.13 and 0.05. In 
order to examine the influence of the selection of two color chips to the accuracy 
of the recovered scene colors, the recovery experiments were performed for all 
the combinations of selecting two color chips from the nineteen chips on the 
Macbeth Color Checker, i.e., 171 cases. Figure 6 shows the error distribution for 
recovered colors of illuminant and surface reflectance. 

4.2 Experiments with Real Images 

We used a monochrome CCD camera with "y = 1 for the acquisition of R, G and 
B images. Three color separating filters, No.25, No.58 and No.47, are used for 
color separation. In order to obtain a good linearity between the input irradiance 
to the camera and the output R, G and B values, images observed by changing 
the iris size are combined into an image with a wide dynamic range. We used a 
lamp which has a spectral power distribution close to a daylight at 6500K for 
the illuminant. An optical filter for color conversion is used to change the color 
temperature from 6500K to 10000K. The Macbeth Color Checker is illuminated 
by the lamp with and without the color conversion filter and two sets of RGB 
images are digitized. 

It should be noted that obtaining two images with and without the color 
conversion filter is a convenience for the experiment and it never means that our 
algorithm needs more than three different sensor channels as Maloney [8]. The 
true spectral properties of the lamp, the color conversion filter, and the Macbeth 
Color Checker are blind to the recovering process, of course, and they are only 
used to evaluate the accuracy of the results obtained by the color constancy 
algorithm. 

Figure 7 shows the results obtained by using "blue flower" and "moderate 
red" color chips. Figure 7(a) shows the results for illuminant color at 0500K and 
figure 7(b) shows the results for surface color of "blue flower". The results shown 
in figure 7(a) have errors of 0.50 and 0.10 defined by equation (18) for "without" 
and "with" cases, respectively. The results shown in figure 7(b) indicate 0.13 
and 0.06. Figure 8 shows the error distribution for recovered illuminant colors 
and surface colors for the 171 pairs. 

5 C o n c l u s i o n  

We proposed a new color constancy algorithm suitable for robot vision based 
on the CIE daylight. The algorithm uses multiple color images considering the 
advantage of the robot to the human. The algorithm requires no assumption 
on the true value of the scene color as the algorithms which use a single image 
following the human color constancy. By employing the CIE daylight hypothesis 
for a constraint on the illmninant, the stability and the accuracy of the color 
constancy algorithm were remarkably improved. We think that the algorithm is 
effective to recover the scene colors in natural environments. 
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