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Abst rac t .  In this paper we present an algorithm for parameterfree 
information-preserving surface restoration. The algorithm is designed for 
2.5D and 3D surfaces. The basic idea is to extract noise and signal prop- 
erties of the data simultaneously by variance-component estimation and 
use this information for filtering. The variance-component estimation de- 
livers information on how to weigh the influence of the data dependent 
term and the stabifizing term in regularization techniques, and therefore 
no parameter which controls this relation has to be set by the user. 

1 I n t r o d u c t i o n  

The first step for gaining a description of a 3D scene is the measurement of 3D 
point coordinates. During the data aqcuisition errors occur. These errors include 
systematic and random errors. The systematic errors can often be eliminated by 
calibrating the measurement equipment. Then the result of the measurement is 
a noisy discrete data set. 

This data is the basis for the computation of the surface, on which the follow- 
ing first step of object recognition, i. e. feature extraction, is performed. Often 
features are related to some discontinuities in the data. Derivatives of the ini- 
tial surface are commonly used for their extraction. The computation of these 
derivatives as well as the computation of the surface are ill-posed problems (c. f. 
[14]). These ill-posed problems have to be reformulated as well-posed problems. 

Filters, surface approximations, or general regularization techniques are used 
to achieve this goal. Global techniques like linear filters or standard regulariza- 
tion (e.g. Tikhonov regularization) lead to a reduction of noise, but also affect the 
features and discontinuities, i. e. the information, by blurring the data. There- 
fore, the goal of surface restoration should be the regularization of the data 
including the suppression of noise with a minimal loss of information. 

In this contribution we formulate filtering for regularization and noise sup- 
pression as a minimization problem which depends on local features based on an 
explicit physical and/or  geometric model and the noise, and includes a proce- 
dure for estimating noise. Thus all parameters are estimated within a statistical 
framework. In this respect our approach differs significantly from other regular- 
ization techniques (cf. [13], [3], [7], [12]). 
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The basic idea is to extract signal and noise properties from the data and use 
this information for the filtering of the data. The extraction of these properties is 
based on generic prior knowledge about the surface. This a priori knowledge also 
puts constraints on the data and is used for the regularization via the stabilizing 
function. If the data  does not correspond to the a priori knowledge or the model 
respectively, the influence of regularization is weakened. 

In our approach the function 

\ O'kl, J \ o'k2, / 
(1) 

is to be minimized. The principal curvatures kl and k2 are used because they 
lead to a unique model surface and include directional information. Obviously 
the degree of regularization is made dependent on the variances of the data and of 
the true surface's smoothness. As both variances are derived from the data, this 
filter is a parameterfree information-preserving approach to surface restoration. 
The filter can be used for all applications in which surfaces are given by measured 
discrete points. The coordinates of these discrete points can be given either in 
a 3D coordinate sytem using arbitrary surface coordinates or in a 2.5D sensor 
coordinate system using a graph surface representation. 

The kind of the input data is not really fixed and not only includes geometric 
surfaces, but may also represent the density distribution of a material. The only 
requirements of the data are that an interpretation of the data as a surface is 
possible, that  the data is dense in order to have a sufficient redundancy, and, 
for ease of representation, that  the data is regularly located on a grid given by 
arbitrary surface coordinates (u, v). Additionally, the data must have properties 
suited for regularization. Though our approach is more general, we restrict to 
using curvatures in our implementation. 

In this paper we assume uncorrelated signal independent white Gaussian 
noise. This does not affect the presented approach as other knowledge about 
noise can be integrated easily in the estimation process via weights. Similarily, 
correlated noise could be taken into consideration. 

The basic idea is to simultaneously estimate the variance of noise and of 
appropriate smoothness. Estimation techniques for the noise only (c. f. [9]) do not 
solve the problem we deal with, as they do not take the variance of smoothness 
into account. In [4] it is shown that noise and signal in observed autoregressive 
processes are seperable, using both Fourier analysis and variance-component 
estimation. Here, variance-components estimation is used for the estimation of 
signal and noise properties. 

2 A l g o r i t h m  

The algorithm is based on a geometric model. It is assumed that  the expectations 
of the principal curvatures are zero, i. e. the surface can be locally approximated 
using planes. If the principal directions and the surface normats are known for 
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the 3D representation, the principal curvatures can be computed by convolution. 
Those convolution kernels are gathered in the matrix of coefficients X. 

The information about a surface's curvature properties is fully contained in 
the Weingarten map or shape operator W (c. f. [2]). The eigenvalues of W ~ = 
W W are the squared eigenvalues of W.  The eigenvectors of W 2 are equal 
to those of W.  We use the eigenvalues for estimating the local variance of the 
curvature of the surface. 

The algorithm is based on the assumptions that  

d = ( d  T d ~ d a T ) ~ = u + n ,  E ( d ) = u  and D ( d ) = ~ I  (2) 

with d l - - x ( u , v )  d 2 = y ( u , v )  d a = z ( u , v )  

E(kl )  = 0, D(kl)  = Diag(a~l~), E(k2) = 0, D(k2) = Diag(cr~2i) 

where Diag(pi) denotes a diagonal matrix with entries Pi. If the surface normal 
and the principal directions are given, the following linear model with m = 5 
groups of observations results (c. f. [6]): 

5 

E ( y ) = X u  D ( y ) = E V i a ~  (3) 
i = 1  

T T T with X = (X y X y X y X~l Xk2 ) , y = (d lT  ~.. d 5 ) T  8 4  : kl ,  ds = ks 

The matrix of coefficients, which describes the linear relation between the obser- 
vations and the unknown parameters u, splits into five submatrices, where the 
matrices Xx, Xy and Xz are identity matrices and the rows of the matrices Xkl 
and Xk2 contain the convolution kernels for the principal curvatures kl  and k2. 
The structure of Vi must be known in advance (c. f. [6]). Assuming indepen- 
dence of the obsvervations and equal variances for the coordinates simplifies (3) 
to 

2 E(y)  = X u D(y) = o'~Vd 4- (r~IV/a, q- cr/~2Vk2 (4) 

with Vd = r V~I = Diag(F~li) and Vk2 = Diag(-#~2i) 

where F~ denote a local estimate of the curvatures' variances. 
Based on this, the unknown parameters u, i. e. the coordinates, and the 

variances can be estimated using iterative estimatiom Details are given in [16]. 

3 R e s u l t s  

In this section we want to show the results of the parameterfree information- 
preserving filter and compare these results with the results of other restoration 
techniques. For this purpose we use synthetic test data sets. The advantage of 
synthetic data is that the values of the true signal z0 are known and can be used 
as reference. A reference is of importance because we do not only want to com- 
pare the results qualitatively by visual inspection, but also give a quantitative 
comparison. 
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Fig. 2. Test image: ~r = 2 [gr], range: 
Fig. 1. Test image 20-90 [gr] 

In order to derive such quantitative measures, the area of the surface S is 
derided into two components T~ and B, where • = {Bi} is the set of boundary 
regions, i.e. regions of discontinuities, and Tr = {7~i} is the set of mutally 
exclusive segments of continous regions, Based on this division, two quantities 
can be computed. 

The first quantity is the property of smoothing 

P S -  &~(z) with ~ = 1.4826*medi~Tr - zoil) (5) 

5"n is the robust estimate of the noise standard deviation in homogeneous regions 
7~ = {TEN} (cf. [11]) based on the restored surface, cry(z), which in case of 
synthetic data is known, is the standard deviation of the observed signal z. If all 
noise is removed, i. e. ~,~(~) = 0, PS is equal to zero. 

The second quantity is the property of preserving discontinuities 

p p _  O'as with EiEt31Si-Si[ and Si=(~r--[-g2c)i (6) = 

where S~ and Si, the local edge strength, are computed based on the restored 
image and the noiseless test image respectively using the Sobel-operator and IBI 
is the number of points in B. This quantity is equal to zero, if the information 
is maintained. 

The quantity P P  is related to the Sobel's standard deviation as of the oh- 
served signal and is computed based only using pixels within the boundary re- 
gions B. Therefore the two quantities for the quantitative evaluation are inde- 
pendent of each other. 

The test data set (Fig. 1) is similar to the image [1] used. For further exami- 
nation white Gaussian noise with standard deviation a = 2 [gr] has been added 
to the original data set (Fig. 2). 
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Fig. 3. Linearily filtered test image: 
3D-plot 

Fig. 4. Linearily filtered test image: 
plot of differences AS~(S) 
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Fig. 6. Restored test hnage: plot of 
Fig. 5. Restored test image: 3D-plot differences AS~(S) 

Qualitative effects of the restoration techniques can be easily seen in the 
3D-plots and the additional plots (Fig. 4, Fig. 6), where the mean differences of 
~'~ - Si are plotted against S. • signifies the extrema and o the mean difference. 
The tolerance of 3ors is represented by the lines, where ~rs is computed based on 
the estimated standard deviation ~,~(~). 

Figure 3 shows the result of restoration using a linear filter, the mean filter 
(MEAN(std),c. f. [17]). The changes of the signal are evident. The peak almost 
diminishes and the edges, corners and the tops of the roofs are smeared. The 
effect on the edges can also easily be seen in figure 4. The values of the quantities 
b~ are reduced, the differences are negative. This filter has the best smoothing 
properties in homogeneous regions, but also the worst information preserving 
properties (PS : 0.328; PP : 3.976). 

Figure 5 shows the result of the information-preserving filter. The smoothing 
properties of this filter applied to the noisy image are almost equal in the entire 
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A l g o r i t h m / A p p ~  P P  [[Algorithm/Approach ] P S  [ P P  ] 

Gaussian Filter 0.367 3.040 MEAN(std) [0.328 3.976 
MEAN(knn) 0.823 0.762 MEAN(sig) I 0.655 0.822 
MEAN(snn) 0.835 1.282 MEDIAN(std) 0.476 1.366 
MEDIAN(knn) 0.869 0.841 MEDIAN(sig) 0.714 0.75.5 
MEDIAN(snn) 0.935 1.421 Nagao/Matsuyama(1979)0.978 1.610 
GRIN 0.413 0.913 Perona/Malik(1990) 0.391 1.002 
Inform.Pres.Filter(IPF) 0.589 I 0.660 

Fig. 7. Evaluation of various filters on an artificial test image 

image. The peak and the tops of the roofs are maintained. Figure 6 indicates 
that the information is maintained because the mean differences Si - Si are 
close to zero. These properties are also evident in the quantities P o  e = 0.589 and 
P P  = 0.660. 

The results for other filters can only be given in Fig. 7 using the enchant- 
ments for the filters like [17]. Some of the results are also given in [15]. The 
trade-off between smoothing and preserving the information for non-adaptive 
techniques (Gaussian, mean and median using the entire neighbourhood of a 
point) is evident. Adaptive techniques which are based on selecting points from 
the neighbourhood using a criterion like the k-Nearest-Neighbourhood (knn), the 
Sigma-Neighbourhood (sig), and the Symmetric-Nearest-Neighhourhood (snn) 
have knobs to be tuned with. The tuning of these knobs depends either on the 
user or the information the user has in advance, e. g. the standard deviation for 
the Sigma-Neighbourhood. All techniques except the information-preserving fil- 
ter have no criteria, when iterations should be stopped. For the results of these 
techniques the knobs have been tuned in order to gain the optimal result for 
each technique. 

The disadvantage of the information-preserving filter is the high computa- 
tional effort due to solving a linear equation system of U x V unknowns, where 
U and V are the number of nodes in each surface coordinate direction. Further- 
more the convergence of the SOR-iteration is dependent on the degree of noise. 
The rigorous solution via least squares adjustment can be approximated for not 
too high noise efficiently yielding comparable results. (c. f. [5]). 

4 C o n c l u s i o n  

We presented an algorithm for parameterfree information-preserving surface 
restoration. The basic idea of this algorithm is to extract noise and signal prop- 
erties of the data, which are 2.5D or 3D surfaces, and to use these properties 
for filtering. The properties which are estimated within a statistical framework 
are the variances of the noise and the smoothness of the data. The ratio of these 
quantities determines the parameter A of standard regularization techniques for 
each point. Therefore this knob has been eliminated and no parameters have 
to be tuned by the user in order to obtain optimal results with regard to the 
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smoothness and the preservation of information. The minimization of the result- 
ing functional is done by least squares adjustment.  

The results of our algorithm for 2.5D surfaces have been quantitatively com- 
pared to those of wellknown filter techniques. The comparison outlines our ap- 
proach's property of preserving information. It also has been tested on images 
with signal-dependent noise and aerial images with similar results. 
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