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Abstract. The Q-Credit Assignment (QCA) is a method, based on Q- 
learning, for allocating credit to rules in Classifier Systems with internal 
state. It is more powerful than other proposed methods, because it cor- 
rectly evaluates shared rules, but it has a large computational cost, due to 
the Multi-Layer Perceptron (MLP) that stores the evaluation function. 
We present a method for reducing this cost by reducing redundancy in 
the input space of the MLP through feature extraction. The experimen- 
tal results show that the QCA with Redundancy Reduction (QCA-RR) 
preserves the advantages of the QCA while it significantly reduces both 
the learning time and the evaluation time after learning. 

1 Introduction 

Classifier Systems (CSs) [4, 1] are adaptive Reinforcement Learning (RL) sys- 
tems whose behavior is driven by a set of condition/action rules. This paper 
addresses credit assignment in CSs that use a message list (ML) as internal 
state (IS-CSs). While stimulus-response CSs [9] can only solve Markovian De- 
cision Tasks (MDTs), internal messages allow IS-CSs to solve non-Markovian 
tasks as well. The Q-Credit Assignment (QCA) [2, 3] is a method, based on 
Q-learning [8], for allocating credit in IS-CSs. It is more powerful than other 
proposed methods, because it correctly evaluates rules whose application may 
have different outcomes depending on the context. However, the QCA has a large 
computational cost, due to the Multi-Layer Perceptron (MLP) [6] that stores the 
evaluation function. To reduce this cost, we introduce the Q-Credit Assignment 
with Redundancy Reduction (QCA-RR), that reduces the size of the MLP by 
reducing redundancy in its input space, through feature extraction. 

2 Q-Credit Assignment 

The behavior of a CS emerges from the cooperation of several simple rules. 
Sharing rules among distinct situations allows both compact knowledge repre- 
sentation and generalisation [1, 3]. Commonly used credit assignment methods, 
such as the Bucket Brigade algorithm [4], allocate a single credit measure to 
individual rules. This makes them fail in evaluating shared rules whose activa- 
tion may result in different outcomes depending on the context. The QCA [2, 3] 
has been devised to overcome this problem. It is based on Q-learning [8], a well 
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known on-line RL algori thm to solve MDTs. Q-learning incrementally est imates 
the return Q(x, a) of doing an action a in s tate  x, Q(x, a) = r + 7 maxb Q(y, b), 
where r is the immediate  reinforcement and 7 is the discount factor. The  QCA 
learns Q values of (state,action) pairs (x, a), where x is the contents of the ML 
and a is a message specified by the action par t  of a rule that  matches x or a part  
of it 1. In this way, the QCA estimates the return of activating a rule by taking 
into account the whole contents of the ML, and it can correctly evaluate rules 
tha t  have distinct outcomes in different situations. The Q function is approxi- 
mated  through a MLP with one hidden layer and one linear output  unit. Given 
a (state,action) pair, i.e. a ML configuration {ml,  • •., rnn } and a candidate mes- 
sage rn, the corresponding input pat tern is the string rnl , . . . ,  m,~, rn. The MLP 
is trained with the back-propagation algori thm [6] to reduce the Tempora l  Dif- 
ference error between two successive evaluations of each pattern.  

3 Improving the QCA by reducing redundancy 

The main drawback of the QCA is its large computat ional  cost. The evaluation 
and learning times depend on the number  of satisfied rules at each cycle, as well 
as on the size of the MLP, which grows with the size of the ML and with the 
length of the messages. A IS-CS assumes tha t  internal messages are as long as 
detector (input) and effector (output)  messages. However, the information to be 
stored not always needs the same number  of bits for each kind of message. Thus, 
messages may include unuseful or redundant information. A proper feature ex- 
tract ion process can reduce the size of the input pat terns and, as a consequence, 
the size of the MLP, with minimal loss of information. 

3.1 P r i n c i p a l  c o m p o n e n t  a n a l y s i s  v i a  H e b b i a n  l e a r n i n g  

Feature extraction is the process whereby a p-dimensional da ta  space is mapped  
onto a m-dimensional feature space, rn < p, so that  the da ta  set is represented by 
a reduced number  of features. Given a p-dimensional zero-mean random vector 
x, let u l ,  • . . ,  up be the normalised eigenvectors of the correlation mat r ix  R = 
E[xxT],  and let A1, . . . ,  Ap be the associated eigenvalues. Principal Component  
Analysis (PCA) [5] states that,  if A1, . . . ,  Am are the largest m eigenvalues of 
R ,  the matr ix  U = [ u l , . . . ,  urn] maps  x onto a m-dimensional feature vector 
y = x T u  With a loss of information which is opt imal  in the mean-square error 
sense. The yi = xTui  are called principal components. Sanger [7] shows tha t  a 
generalised Hebbian algorithm (GHA) can be used to train a feed-forward neural 
network with p inputs and a single layer of rn linear output  units, so that  the 
output  unit j computes the j - th  principal component  of the input distribution. 
This means that  the network performs PCA of size m directly on the input 
patterns,  without computing the eigenvectors and the eigenvalues of R. 

1 The QCA uses Q-learning to solve a high-level decision task including both the ML 
and the original task faced by the CS. The high-level task can be modelled as MDT, 
even if the original task is non-Markovian, provided that the IS-CS owns the rules 
to store the appropriate information. For a more complete discussion, see [3] 
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Fig. 1. NMFSW worlds and sets of rules used for the experiments. Initial states 
have a short entering arrow, whereas final states are double circled. 

3.2 QCA wi th  r e d u n d a n c y  reduc t ion :  Q C A - R R  

The Q-Credit Assignment with Redundancy Reduction (QCA-RR) reduces the 
number of connections of the MLP by reducing the dimension of the evaluated 
data space. The p-dimensional (state,action) patterns are pre-processed by an 
unsupervised neural network with p inputs and m outputs, m < p, which com- 
putes the m principal components of each pattern, as described in Sect. 3.1. 
A preliminar exploration phase is needed to determine the training set of the 
unsupervised network. During the exploration, no learning is performed and the 
competition among rules is randomly solved. The length of this phase should be 
tuned accordingly to the difficulty of the task, so that a meaningful sample of 
the patterns is examined. After exploration, the unsupervised network is trained 
with the GHA until it converges to a principal component extractor. Then, the 
MLP can start estimating the Q function on the m-dimensional feature space of 
the (state,action) space. 
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4 E x p e r i m e n t a l  R e s u l t s  

The QCA-RR has been tested in Non-Markovian Finite State World (NMFSW) 
[3], an abstract domain that  can model non-Markovian tasks. A world is mod- 
elled as an absorbing Markov process, defined by a set of labelled states, a set 
of actions, and a state-transition probability matrix. Each state may be paired 
with a reward, detected as reinforcement by the agent. The label of a state is the 
information that  the agent detects about  that  state. If distinct states have the 
same label, the world is non-Markovian. The experiments only concern credit 
assignment. Any execution is run with a fixed set of rules, which includes both 
rules leading to a reward and wrong ones. The QCA and the QCA-RR are com- 
pared in several worlds, with sets of rules that  present an increasing amount  of 
rule sharing. The performance measure, P,  is the ratio of the reward obtained 
in a trial to the possible maximum (0 < P <_ 1), where a trial is a step sequence 
from an initial state to a final one. P is plotted versus the number of trials and 
is averaged on the last n trials. The plotted values are averaged on 3 executions, 
starting with a different seed of the random number generator. Probabili ty val- 
ues based on the Boltzmann distribution, with decreasing exploration parameter  
( temperature) Tb, are used to solve both conflicts on effectors and competitions 
on the ML. Figure 1 shows three different (classes of) worlds, and the corre- 
sponding set of rules. When the agent enters a final state, it gets the associated 
reward, if any, and it is randomly reset to one initial state, dx is the condition 
satisfied in any state labelled as 'X', e a is the effector message that  specifies 
the external action a, and e# is a general condition that  matches any effector 
message. In Wl(k ,  n, m), the states D o , . . . ,  Drn-1 (1 ___ m <: n) are detected as 
'A', so that the rule RAo can be applied in m + 1 different situations. When a 
message eb, has been posted at the previous step, RA0 leads to zero reward, oth- 
erwise it leads to reward rl (rl/2 > r2). In W2(k), each one of the k rules I~B, 
can be applied in k different situations, with different outcomes: when a state 
'B' is detected, if the previous state was 'Aj',  then RB, leads to the state 'Ch' 
with reward rh, where h = ( k -  j + i) rood k, 0 < i , j  < k. In W3, when a state 
'B'  is detected, the most rewarding action depends on the previous state. While 
a ML of size 2 is sufficient to solve the tasks in Wl(k ,  n, m) and in W2(k), a ML 
of size 3 is needed in W3. Figures. 2(a), 2(b), and 2(c) show the performance 
of the CS, using QCA and QCA-RR, in the worlds Wl(3,  4, 3), W2(4) and W3, 
respectively. For each graph, the value of following parameters is specified: the 
length I of messages, the ML size, the discount factor 7, and the initial value of 
the exploration parameter Tb. The learning rates are 7/= 0.01 for the MLP and 
/? = 0.001 for the self-organising network (SON). The QCA-RR, like the QCA, 
learns correct evaluations (fluctuations in the performance are due to stochastic 
competitions among messages). In addition, dimensionality reduction of the in- 
put space makes the task easier for the MLP, so that  it needs a lower number of 
trials to get a large performance. This is also shown in Table 1, which compares 
the learning times of the QCA and the QCA-RR, measured in number of trials 
across the task. Learning time is defined as the time taken by the CS to reach 
and maintain a high performance level (P  > 0.95). To highlight the improvement 
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Fig. 2. QCA and QCA-RR performances in W1(3,4,3) (l = 14, ML size=2, 
7 = 0.6, Tb = 100), in W2(4) (l = 14, ML size=2, 7 = 0.7 in QCA, 7 = 0.4 in 
QCA-RR, Tb = 150), and in W3 (l = 10, ML size=3, 7 = 0.35, Tb = 100). 

in execution time, the table also reports the relative CPU time of the QCA-RR, 
measured with respect to the QCA, taken as 1. Relative CPU time is given both 
for learning time, which includes the time taken by the SON to converge, and for 
evaluation time. To measure the evaluation time, we stopped learning after the 
CS had reached a high stable performance. Then we measured the CPU time the 
CS takes to perform a fixed number of trials across the task. The improvement 
in evaluation time shows that the pre-processing overhead of the QCA-RR is 
fully balanced by the improvement obtained by reducing the size of the MLP. 
Table 1 also shows the data compression rate, i.e. the dimensionality reduction 
rate performed by the SON, and the number of weights of the neural networks 
for each analysed task. 

5 C o n c l u s i o n s  

We propose a solution to reduce the large computational cost of the QCA 
through feature extraction. The experimental results in tasks of increasing corn- 
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T a b l e  1. Comparison of QCA and QCA-RR in three worlds. 

W1(3,4 ,3)  W2(4) W3 
QCA QCA-RR QCA QCA-RR ' "QCA QCA-RR 

Learning t ime (trials) 160 120 960 450 2640 840 
Learning t ime (CPU) 1 .667 1 .607 1 .307 
Evaluation t ime (CPU) 1 .500 1 .750 1 .555 
# weights SON - 756 - 880 - 840 
# weights MLP 2025 381 1849 553 2025 463 
# weights tot  2025 1137 1849 1433 2025 1303 
Da ta  compression 57% 52% 45% 

plexity show that  the QCA-R]E, like the QCA, correctly evaluates rules whose ac- 
t ivation may  have different outcomes depending on the context. In addition, fea- 
ture extraction dramatical ly reduces the number  of weights of the MLP, thereby 
reducing both learning t ime and evaluation t ime after learning. In particular,  
the pre-processing overhead of the QCA-RR is fully balanced by the reduction 
of the size of the MLP. Feature extraction also reduces the difficulty of the task 
to be learned by the MLP, so that  a CS using the QCA-RR reaches a high stable 
performance in a lower number of trials with respect to a CS using the QCA. 
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