
Q-Learning and Redundancy Reduction in
Classifier Systems with Internal State

Antonella Giani, Andrea Sticca, Fabrizio Baiardi, Antonina Starita

Universit~ di Pisa, Dip. di Informatica
Corso Italia 40 56125 Pisa, Italy

Abstract. The Q-Credit Assignment (QCA) is a method, based on Q-
learning, for allocating credit to rules in Classifier Systems with internal
state. It is more powerful than other proposed methods, because it cor-
rectly evaluates shared rules, but it has a large computational cost, due to
the Multi-Layer Perceptron (MLP) that stores the evaluation function.
We present a method for reducing this cost by reducing redundancy in
the input space of the MLP through feature extraction. The experimen-
tal results show that the QCA with Redundancy Reduction (QCA-RR)
preserves the advantages of the QCA while it significantly reduces both
the learning time and the evaluation time after learning.

1 Introduction

Classifier Systems (CSs) [4, 1] are adaptive Reinforcement Learning (RL) sys-
tems whose behavior is driven by a set of condition/action rules. This paper
addresses credit assignment in CSs that use a message list (ML) as internal
state (IS-CSs). While stimulus-response CSs [9] can only solve Markovian De-
cision Tasks (MDTs), internal messages allow IS-CSs to solve non-Markovian
tasks as well. The Q-Credit Assignment (QCA) [2, 3] is a method, based on
Q-learning [8], for allocating credit in IS-CSs. It is more powerful than other
proposed methods, because it correctly evaluates rules whose application may
have different outcomes depending on the context. However, the QCA has a large
computational cost, due to the Multi-Layer Perceptron (MLP) [6] that stores the
evaluation function. To reduce this cost, we introduce the Q-Credit Assignment
with Redundancy Reduction (QCA-RR), that reduces the size of the MLP by
reducing redundancy in its input space, through feature extraction.

2 Q-Credit Assignment

The behavior of a CS emerges from the cooperation of several simple rules.
Sharing rules among distinct situations allows both compact knowledge repre-
sentation and generalisation [1, 3]. Commonly used credit assignment methods,
such as the Bucket Brigade algorithm [4], allocate a single credit measure to
individual rules. This makes them fail in evaluating shared rules whose activa-
tion may result in different outcomes depending on the context. The QCA [2, 3]
has been devised to overcome this problem. It is based on Q-learning [8], a well

365

known on-line RL algori thm to solve MDTs. Q-learning incrementally est imates
the return Q(x, a) of doing an action a in s tate x, Q(x, a) = r + 7 maxb Q(y, b),
where r is the immediate reinforcement and 7 is the discount factor. The QCA
learns Q values of (state,action) pairs (x, a), where x is the contents of the ML
and a is a message specified by the action par t of a rule that matches x or a part
of it 1. In this way, the QCA estimates the return of activating a rule by taking
into account the whole contents of the ML, and it can correctly evaluate rules
tha t have distinct outcomes in different situations. The Q function is approxi-
mated through a MLP with one hidden layer and one linear output unit. Given
a (state,action) pair, i.e. a ML configuration {ml, • •., rnn } and a candidate mes-
sage rn, the corresponding input pat tern is the string rnl , . . . , m,~, rn. The MLP
is trained with the back-propagation algori thm [6] to reduce the Tempora l Dif-
ference error between two successive evaluations of each pattern.

3 Improving the QCA by reducing redundancy

The main drawback of the QCA is its large computat ional cost. The evaluation
and learning times depend on the number of satisfied rules at each cycle, as well
as on the size of the MLP, which grows with the size of the ML and with the
length of the messages. A IS-CS assumes tha t internal messages are as long as
detector (input) and effector (output) messages. However, the information to be
stored not always needs the same number of bits for each kind of message. Thus,
messages may include unuseful or redundant information. A proper feature ex-
tract ion process can reduce the size of the input pat terns and, as a consequence,
the size of the MLP, with minimal loss of information.

3.1 P r i n c i p a l c o m p o n e n t a n a l y s i s v i a H e b b i a n l e a r n i n g

Feature extraction is the process whereby a p-dimensional da ta space is mapped
onto a m-dimensional feature space, rn < p, so that the da ta set is represented by
a reduced number of features. Given a p-dimensional zero-mean random vector
x, let u l , • . . , up be the normalised eigenvectors of the correlation mat r ix R =
E[xxT], and let A1, . . . , Ap be the associated eigenvalues. Principal Component
Analysis (PCA) [5] states that, if A1, . . . , Am are the largest m eigenvalues of
R , the matr ix U = [u l , . . . , urn] maps x onto a m-dimensional feature vector
y = x T u With a loss of information which is opt imal in the mean-square error
sense. The yi = xTui are called principal components. Sanger [7] shows tha t a
generalised Hebbian algorithm (GHA) can be used to train a feed-forward neural
network with p inputs and a single layer of rn linear output units, so that the
output unit j computes the j - th principal component of the input distribution.
This means that the network performs PCA of size m directly on the input
patterns, without computing the eigenvectors and the eigenvalues of R.

1 The QCA uses Q-learning to solve a high-level decision task including both the ML
and the original task faced by the CS. The high-level task can be modelled as MDT,
even if the original task is non-Markovian, provided that the IS-CS owns the rules
to store the appropriate information. For a more complete discussion, see [3]

366

%1 9~ / Do"'=D,~-I 'A
Wl(k~) I / mn<n

W2(k) ~ ")~2

ro rl r~.l

% f " h

RAo: dA, dA/ea0

RAi: e#,eai-i/ea 0

i=l,...,k-i

RB0 : aS, aS/ebo
RBj: e#,ebj-i/eb j

J-I n-i

RAi: dAi,dAi/ea i

RBi: dB,e#/eai

i-l,...,k-I

RAik : dAl, d A i / e a k

i = 1 , . . . , 4 k - 0 , 1

RB k : d B, e # / e a k

k=O,l

RSI2 : dAl 2 , dAl2/m0

RS34 : dA34 ,dA34/ml

Fig. 1. NMFSW worlds and sets of rules used for the experiments. Initial states
have a short entering arrow, whereas final states are double circled.

3.2 QCA wi th r e d u n d a n c y reduc t ion : Q C A - R R

The Q-Credit Assignment with Redundancy Reduction (QCA-RR) reduces the
number of connections of the MLP by reducing the dimension of the evaluated
data space. The p-dimensional (state,action) patterns are pre-processed by an
unsupervised neural network with p inputs and m outputs, m < p, which com-
putes the m principal components of each pattern, as described in Sect. 3.1.
A preliminar exploration phase is needed to determine the training set of the
unsupervised network. During the exploration, no learning is performed and the
competition among rules is randomly solved. The length of this phase should be
tuned accordingly to the difficulty of the task, so that a meaningful sample of
the patterns is examined. After exploration, the unsupervised network is trained
with the GHA until it converges to a principal component extractor. Then, the
MLP can start estimating the Q function on the m-dimensional feature space of
the (state,action) space.

367

4 E x p e r i m e n t a l R e s u l t s

The QCA-RR has been tested in Non-Markovian Finite State World (NMFSW)
[3], an abstract domain that can model non-Markovian tasks. A world is mod-
elled as an absorbing Markov process, defined by a set of labelled states, a set
of actions, and a state-transition probability matrix. Each state may be paired
with a reward, detected as reinforcement by the agent. The label of a state is the
information that the agent detects about that state. If distinct states have the
same label, the world is non-Markovian. The experiments only concern credit
assignment. Any execution is run with a fixed set of rules, which includes both
rules leading to a reward and wrong ones. The QCA and the QCA-RR are com-
pared in several worlds, with sets of rules that present an increasing amount of
rule sharing. The performance measure, P, is the ratio of the reward obtained
in a trial to the possible maximum (0 < P <_ 1), where a trial is a step sequence
from an initial state to a final one. P is plotted versus the number of trials and
is averaged on the last n trials. The plotted values are averaged on 3 executions,
starting with a different seed of the random number generator. Probabili ty val-
ues based on the Boltzmann distribution, with decreasing exploration parameter
(temperature) Tb, are used to solve both conflicts on effectors and competitions
on the ML. Figure 1 shows three different (classes of) worlds, and the corre-
sponding set of rules. When the agent enters a final state, it gets the associated
reward, if any, and it is randomly reset to one initial state, dx is the condition
satisfied in any state labelled as 'X', e a is the effector message that specifies
the external action a, and e# is a general condition that matches any effector
message. In Wl(k , n, m), the states D o , . . . , Drn-1 (1 ___ m <: n) are detected as
'A', so that the rule RAo can be applied in m + 1 different situations. When a
message eb, has been posted at the previous step, RA0 leads to zero reward, oth-
erwise it leads to reward rl (rl/2 > r2). In W2(k), each one of the k rules I~B,
can be applied in k different situations, with different outcomes: when a state
'B' is detected, if the previous state was 'Aj', then RB, leads to the state 'Ch'
with reward rh, where h = (k - j + i) rood k, 0 < i , j < k. In W3, when a state
'B' is detected, the most rewarding action depends on the previous state. While
a ML of size 2 is sufficient to solve the tasks in Wl(k , n, m) and in W2(k), a ML
of size 3 is needed in W3. Figures. 2(a), 2(b), and 2(c) show the performance
of the CS, using QCA and QCA-RR, in the worlds Wl(3, 4, 3), W2(4) and W3,
respectively. For each graph, the value of following parameters is specified: the
length I of messages, the ML size, the discount factor 7, and the initial value of
the exploration parameter Tb. The learning rates are 7/= 0.01 for the MLP and
/? = 0.001 for the self-organising network (SON). The QCA-RR, like the QCA,
learns correct evaluations (fluctuations in the performance are due to stochastic
competitions among messages). In addition, dimensionality reduction of the in-
put space makes the task easier for the MLP, so that it needs a lower number of
trials to get a large performance. This is also shown in Table 1, which compares
the learning times of the QCA and the QCA-RR, measured in number of trials
across the task. Learning time is defined as the time taken by the CS to reach
and maintain a high performance level (P > 0.95). To highlight the improvement

368

0.9

D ~

O.B

0,75 I

Tdal

(a)

o.e

. . . .

O . 4 O ~

e~

O.8

o~

0~

: ~,4 i :

(b)
• . . + . + - ~

4oo

(c)

, , , ~ L , ~ - + - : - +

~ 1 ~ 0 0 ~ ~ 0 t o m

Fig. 2. QCA and QCA-RR performances in W1(3,4,3) (l = 14, ML size=2,
7 = 0.6, Tb = 100), in W2(4) (l = 14, ML size=2, 7 = 0.7 in QCA, 7 = 0.4 in
QCA-RR, Tb = 150), and in W3 (l = 10, ML size=3, 7 = 0.35, Tb = 100).

in execution time, the table also reports the relative CPU time of the QCA-RR,
measured with respect to the QCA, taken as 1. Relative CPU time is given both
for learning time, which includes the time taken by the SON to converge, and for
evaluation time. To measure the evaluation time, we stopped learning after the
CS had reached a high stable performance. Then we measured the CPU time the
CS takes to perform a fixed number of trials across the task. The improvement
in evaluation time shows that the pre-processing overhead of the QCA-RR is
fully balanced by the improvement obtained by reducing the size of the MLP.
Table 1 also shows the data compression rate, i.e. the dimensionality reduction
rate performed by the SON, and the number of weights of the neural networks
for each analysed task.

5 C o n c l u s i o n s

We propose a solution to reduce the large computational cost of the QCA
through feature extraction. The experimental results in tasks of increasing corn-

369

T a b l e 1. Comparison of QCA and QCA-RR in three worlds.

W1(3,4 ,3) W2(4) W3
QCA QCA-RR QCA QCA-RR ' "QCA QCA-RR

Learning t ime (trials) 160 120 960 450 2640 840
Learning t ime (CPU) 1 .667 1 .607 1 .307
Evaluation t ime (CPU) 1 .500 1 .750 1 .555
weights SON - 756 - 880 - 840
weights MLP 2025 381 1849 553 2025 463
weights tot 2025 1137 1849 1433 2025 1303
Da ta compression 57% 52% 45%

plexity show that the QCA-R]E, like the QCA, correctly evaluates rules whose ac-
t ivation may have different outcomes depending on the context. In addition, fea-
ture extraction dramatical ly reduces the number of weights of the MLP, thereby
reducing both learning t ime and evaluation t ime after learning. In particular,
the pre-processing overhead of the QCA-RR is fully balanced by the reduction
of the size of the MLP. Feature extraction also reduces the difficulty of the task
to be learned by the MLP, so that a CS using the QCA-RR reaches a high stable
performance in a lower number of trials with respect to a CS using the QCA.

R e f e r e n c e s

1. L. B. Booker, D. E. Goldberg, and J. H. Holland. Classifier systems and genetic
algorithms. In J. G. Carbonell, editor, Machine learning: paradigms and methods.
MIT Press, 1990.

2. A. Giani, F. Baiardi, and A. Starita. Q-learning in evolutionary rule based systems.
In Proceedings of the 3rd Parallel Problem Solving from Nature/International Con-
ference on Evolutionary Computing, LNCS 866. Springer-Verlag, 1994.

3. A. Giani, F. Baiardi, and A. Starita. Using Q-learning in classifier systems with
internal state and rule sharing. Submitted for pubblication, 1997.

4. J. H. Holland. Escaping brittleness: The possibilities of general-purpose learning al-
gorithm applied to parallel rule-based systems. In R. S. Michalski, J. G. Carbonell,
and T. M. Mitchell, editors, Machine learning: An artificial inteligence approach,
volume 2. Morgan Kaufmann, 1986.

5. M. Loire. Probability Theory. Van Nostrand, New York, 1963.
6. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representa-

tion by error propagation. In D. E. Rumelhart and J. McClelland, editors, Parallel
Distributed Processing, volume 1. MIT Press, 1986.

7. T. D. Sanger. Optimal unsupervised learning in a single-layer linear feedforward
neural network. Neural Networks, 12:459-473, 1989.

8. C. J. C. H. Watkins. Learning with delayed rewards. PhD thesis, University of
Cambridge, England, 1989.

9. S. W. Wilson. ZCS: A zeroth order classifier system. Evolutionary Computation,
2(1):1-18, 1994.

