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A b s t r a c t .  Scope classification is a new instance-based learning (IBL) 
technique with a rule-based characterisation. Within the scope approach, 
the classification of an object o is based on the examples that are closer to 
o than every example labelled with another class. In contrast to standard 
distance-based IBL classifiers, scope classification relies on partial pre- 
orderings <o between examples, indexed by objects. Interestingly, the 
notion of closeness to o that is used characterises the classes predicted 
by all the rules that cover o and are relevant and consistent for the 
training set. Accordingly, scope classification is an IBL technique with 
a rule-based characterisation. Since rules do not have to be explicitly 
generated, the scope approach applies to classification problems where 
the number of rules prevents them from being exhaustively computed. 

1 I n t r o d u c t i o n  

In this paper ,  we are interested in supervised learning. Given a training set T 
and a set of objects o to be  classified, our goal is to derive a classifier that  best 
approximates  in the best way the target function, i.e., the function that  maps  
every object to its right class. Because only the classes class(e) of the training 
examples e (also called instances) are known, this classifier must  be induced from 
examples. This requires some additional knowledge, tha t  typically has the form 
of a similarity assumption. Such an assumption states tha t  "every object belongs 
to the class of its nearest neighbours in the training set" or "every object shares 
the properties relevant to class membership that  every example exhibits". 

Instance-based learning (IBL) is based on a straightforward interpretat ion 
of the similarity assumption.  In the simplest case, every object  o is classified 
according to its nearest  instance, according to some similarity measure or to  
some distance measure.  The  k-nearest neighbours of o can also be used; in this 
case, the class of o is computed as the major i ty  class of its k nearest  neighbours 
from T. 
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Another approach to learning a classifier from examples is rule-based classifi- 
cation. A rule e -~ (y = vy) is said to classify (to cover, or to be satisfied by) an 
object  o if o ~ e, i.e., c is a logical consequence of o. A rule r l  -- el --~ (y = vu) 
is said at least as general as a rule r2 = e2 -+ (y = vy) if and only if c2 ~ cl. 
Given a training set T, a rule r = c --~ (y = vy) is consistent for T if and only if 
for every example e of T, if r classifies e then class(e) = vy. A rule r is relevant 
for T if and only if r is satisfied by at least one example from T. 

The  number  of relevant and consistent rules for a training set can be huge 
(exponential in the number  of attr ibutes).  As a consequence, many  rule induction 
algorithms only generate some of these rules, typically the most  discriminating 
ones. Because the most discriminating rules are not always sufficient to approxi- 
ma te  the target  function in a satisfying way, SE-Learn [Rymon, 1993] completes 
them with the second most discriminating ones, and so on, until all the (most  
general) relevant and consistent rules for the training set are generated. [Rymon, 
1996b] shows tha t  SE-Learn is more robust  to noise than  decision trees. 

In the following, a new approach to learning from examples, called scope 
classification, is introduced. The scope approach is a point where IBL and rule- 
based techniques meet.  Roughly, the scope algorithm classifies every object  o 
according to the examples of T that  are "closer" to o than any example labelled 
with another  class. Since every object can be classified by comparing it to the 
stored instances (no rules have to be generated), the scope approach is instance- 
based. However, quite unconventionally, the scope approach: 

- relies on part ial  pre-orderings <_o between examples, indexed by objects. In 
particular,  the number  of neighbours of o that  are kept is not fixed in the 
scope approach. 

- has a rule-based characterisation: the notion of closeness to o tha t  is used 
charaeterises the classes predicted by all the relevant and consistent classifi- 
cation rules for T that  cover o. 

The  scope approach achieves an interesting trade-off between accuracy and 
efficiency. First, scope classification usually considers more neighbours than  stan- 
daxd k-nearest neighbours. This makes it less sensitive to noise than  these tech- 
niques. The price to be paid is a higher but  still t ractable t ime complexity 
(quadratic in the number of examples in the worst case). Second, since every 
relevant and consistent rule for T covering o is associated with a neighbour of 
o w.r.t. T in the scope approach, scope classification can prove more accurate  
than  techniques where only a few classification rules are induced. Since rules do 
not have to be explicitly generated, it can be practical in situations where the 
number  of rules tha t  are relevant and consistent for T prevents them from being 
exhaustively computed.  

The rest of this paper  is organised as follows. The scope approach to classifi- 
cation is presented in Section 2. Its performance is compared with s tandard  IBL 
and rule-based algorithms on many s tandard benchmarks  from many domains 
in Section 3. Somer related research is discussed in section 4. The conclusions of 
our s tudy are drawn in Section 5. 



270 

2 S c o p e  C l a s s i f i c a t i o n  

In this section, the rule-based characterisation of the scope approach to classi- 
fication is formally established. The scope algorithm is then presented and its 
efficiency is analysed. Finally, we show how the logical biases considered in the 
scope approach can be relaxed to allow it to deal with real-world (noisy) data.  

2.1 Basics o f  the scope approach 

Let us introduce the basic definitions of scope classification through an example. 
Let us consider a set of patients who suffer or not from a disease (y). Each 
individual is described by its sex s (Man or Woman),  weight w in kilos and 
appet i te  a (Good, Average, Little). 

Pat ient  s w a ly 
el M 7 0 G T  
e2 W 55 A F 
e3 M 50 L T 

Given a patient o described by (s = M) A (w = 75) h ( a = A), the aim of the 
classifier is to help the physician to detect whether o suffers or not from disease 
y. In this case, the classifier has to suggest a class for o given o and the training 
set T = {el, e2, e3}. 

We are interested in the relevant and consistent rules for T covering o. Let R 
be such a rule. If R is relevant for T, then there exists at least one example eR 
tha t  satisfies R. Let us assume that  eR = el. Let us consider R(o, el) the most  
specific rule covering o and el. 

D e f i n i t i o n  1. Let C(ol, o2) be the least general genera]isation of ol and 02, i.e., 
C(ol, o2) denotes the smallest hyper-rectangle containing the objects. C(ol, 02) 
is defined as the conjunction of conditions (selectors) Ci(ol, 02) on each a t t r ibute  
i: 

- if the value of a t t r ibute  i is missing in ol or in 02 then C~(ol,o2) = True, 
- i f / i s  nominal, i fv  °1 = v °2 then C~(Ol, o2) = (a = v °1) else Ci(ol, 02) = True, 

• 0 1  0 2  O l  0 2  - i f / i s  numerical or ordered, C~(Ol, 02) = [mm(v~ , v i ),max(v~ , v~ )]. 

where a t t r ibute  i is valued v °1 in Ol and v~ 2 in 02. 
Let o be an object  and e be an example labelled with class(e). The most  

specific rule covering o and e is: 

R(o, e) = C(o, e) (y = class(e)) 

For instance, C(o, el)  = (s = M)  A (w 6 [70; 75]) A (a 6 [A; G]). 
By definition, every rule R = c ~ (y = class(el)) covering o and el is more 

general than  R(o, el). Hence, if R is consistent for T then R(o, el) is consistent for 
T. To check whether R(o, el) is consistent for T,  we just  have to check whether 
no example labelled with another  class satisfies C(o, el). In order to s tate  it 
formally, let us define a partial  pre-ordering _<o between objects: 
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D e f i n i t i o n  2. For every object o, let <o denote the partial  pre-ordering defined 
by, for every ol and o2, ol is closer to o than 02, denoted ol _<o 02, if and only 
if ol satisfies C(o, o2), i.e., Ol ~ C(o, 02). 

The rule R(o, e) is consistent for T if and only if no example labelled with a 
class different from class(e) is closer to o than e according to _<o. Formally, let 
us define the neighbours of o w.r.t. T as: 

D e f i n i t i o n  3. Let e be an example o f T  and o be an object. Let CE(e,  T) denote 
the set of examples e t of T s.t. class(e') ~ class(e), e is a neighbour of o w.r.t. 
T, denoted e E cons(T, _<o), if and only if Ve ~ E CE(e, T), e ~ go e. 

Stepping back to our example, e2 does not satisfy C(o, el), so e2 2~o el. 
Since C E ( e l , T )  = {e2}, el is a neighbour of o w.r.t. T; in other words, the rule 
R(o, el) is consistent and (obviously) relevant for T. 

Let us emphasise tha t  e is not required to be closer to o than  all examples 
labelled with a class different from class(e) to belong to cons(T, <_o). What  is 
needed is tha t  no "counter-example" ce is closer to o than  e. This means tha t  
either e is closer to o than ce, or tha t  e and ce are not comparable  w.r.t. _<o, 
tha t  is the most  frequent case. For instance, el is not closer to o than e2, but  e2 
is not closer to o than el (el and e2 are not comparable).  

Let us also stress the fact that  the number  of neighbours of an object o 
tha t  are considered in the scope approach is not fixed. This contrasts  with the 
k-nearest  neighbours techniques. Moreover, the notion of neighbourhood within 
scope classification is less restrictive than the ones considered within s tandard 
distance-based approaches. For example, if e is as close as possible to o w.r.t. 
Hamming  distance (or w.r.t Minkowski distance Lq (el, e2) = ~V/Za(v~ 1 - vg 2)q), 
then it belongs to cons(T, <_o) but the converse is not necessarily true. Roughly, 
a t t r ibutes  are considered as incomparable dimensions in the scope approach while 
they are only viewed as numbers tha t  can be added and averaged in distance- 
based approaches. Results on every "dimensions" are dealt with not numerically 
as in [Demiroz and Guvenir, 1997], but  logically. 

2.2 T h e  r u l e - b a s e d  c h a r a c t e r i s a t i o n  o f  the  scope approach 

As an immediate consequence of the definition of cons(T, _<o), each t ime an 
example labelled with vy belongs to cons(T, <o), a relevant and consistent rule 
for T labelling o with class vy exists. Furthermore,  the converse is t rue as well. 
Thus,  the scope approach has a rule-based characterisation: 

T h e o r e m  4. Let T be a set of examples and o be an object. There exists a 
consistent and relevant rule c --~ (y = Vy) for T that covers o if and only if there 
exists e in cons(T, <_o) such that class(e) = Vy, and C(o, e) ~ c. 

Based on this theorem, the scope algorithm prevents relevant and consistent 
rules from being generated by computing cons(T, <_o) instead. Accordingly, scope 
classification requires no learning phase and no special types of abstract ions (like 
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decision trees, rules) have to be derived. However, rules can be easily derived, 
on a as-needed basis: For every e in cons(T, <o), the rule R(o, e) = (C(o, e) -+ 
(y = class(e))) is a relevant and consistent rule for T. 

In our running example, el is a neighbour of o w. r . t .T .  If required, the rule 
(s = M) A (w e [70; 75]) A (a e [A; G]) -+ (y = T) can be generated. 

2.3 The scope algorithm 

A naive algorithm for generating cons(T, <o) consists in checking for every e 
whether no example from another class is closer to o than  e. This algorithm re- 
quires O(d x ITI 2) comparisons between values of attributes, where d is the num- 
ber of attributes 1. A more efficient algorithm can take advantage of the "divide 
and conquer" paradigm and computes cons(E1 U E2, <_o) as cons(cons(El, <_o) 
Ucons(E2, <_o), <o)- Unfortunately, the former set is only a proper subset of the 
latter in the general case. Hence, each element resulting from the "divide and 
conquer" search must be compared with the examples of T labelled with other 
classes. 

cons(T, <o) may contain examples labelled with different classes. It could 
easily be used to return a probability distribution over all classes. Since we are 
interested in predicting one class only, a resolution criterion must be used in the 
general case. Many criteria can be considered, including user-defined criteria that  
may incorporate some domain knowledge into classification. When no domain 
knowledge is available, simple majority voting is used: class(o) is computed as 
the class value occurring the most frequently in cons(T, go); quadratic majority 
voting is a variant where each example e is weighted by the square length of 
C(o,e). 

Analytically, the space complexity of the search of cons(T, <_o) is in O(d x IT1) 
in every case. Its time complexity is in O(dx C(ITI)), where C(ITI) is the number 
of comparisons w.r.t. <o that  are performed. In the worst case, C(ITI) = 0(2 * 
ITI2). Such a quadratic time complexity (in the worst case) is higher than the 
time complexity of the simplest distance-based IBL techniques (O(d x ITI)). In 
the best case, C(T) is linear in the number of examples of T. Since a part of the 
algorithm is based on the "divide and conquer" paradigm, this time complexity 
is expected to be in O(d x ITt × log2(ITI)). We checked it empirically on several 
benchmarks and we also observed that  the worst case situation occurred only 
rarely. 

2.4 Tuning consistency~ generality and relevance 

Dealing with real data  requires the logical basements of scope classification to be 
relaxed. A tuning of consistency and a tuning of generality inspired from [Sebag, 
1996] are presented and a tuning of relevance is introduced. 

Actually, a rule that  covers a few counter-examples must not be systemati- 
cally dropped. Hence, the consistency requirement must be relaxed in order for 
a rule to accept at  most e counter-examples. 

1 For any set E, IEI denotes its caxdinality. 
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D e f i n i t i o n  5. Let NI(e ,  T) be the number of examples ce s.t. class(ce) 
class(e) and ce is closer to o than e: 

N I ( e , T )  = I{ce E CE(e ,T) lce  <_o e}l 

An example e is an e-neighbour of o w.r.t. T if and only if NI(e ,  T) <_ ~ x tTI. 

Some at t r ibutes  may be of no interest in some part  of the universe, thus 
forgetting some of them (at most M) can prove valuable. 

D e f i n i t i o n  6. An object ol is closer to an object o than an object o2 except 
on (at most) M attr ibutes,  denoted ol <M 02, if and only if I{attribute il(i = 
v °~) ~£ Ci(o, o2)}1 < M. An example e is an M-neighbour  of o w.r.t. T,  denoted 
e E M - cons(T, <_o), if and only if e E cons(T, <M). 

The relevance requirement can also be strengthened in order to only consider 
rules satisfied by at least 7 examples. 

D e f l n i t i o n  7. Let NC(e ,  T) lm IJm numlmr ol'examl~les f s.t. c / ass ( f )  = class(e) 
and f is closer to o than e: 

N C ( e , T )  : l{f  e Tlelass( f )  = class(e)and f <_o e}l 

An example e is an 7-neighbour of o w.r.t. T if and only if NC(e ,  T) > V x ITI. 

These three parameters  can be incorporated all together within the scope 
approach (the notion of neighbour becomes the notion of (e, M, @-neighbour).2 
Their  values and the resolution criterion are automatical ly assessed; we keep 
the values and criterion for which the accuracy of the corresponding classifier 
measured by a 10-fold cross-validation on a randomly chosen subset S of T 3 is 
maximal.  Values of ~ and 7 range from 070 to 3070 using an increment of 570 and 
M ranges from 0 to the number of at tr ibutes d. Simple and quadratic major i ty  
voting are considered as resolution criteria. This is analogous to the wrapper  
method of [Kohavi and John, 1995]. However, while parameters  e, M and )' and 
the resolution criterion should depend on the distribution of the training set, we 
assume they depend on the domain only. Thus they are only computed once for 
a given domain: they are not re-assessed when different Ts  are considered over 
the same domain. 

3 A n  E m p i r i c a l  E v a l u a t i o n  

The performance of scope classification has been compared to some usual instance- 
based and rule-based classifiers, in the empirical framework described below. 
Both accuracy and execution t ime have been considered. 

2 Note that the relation <o M is no longer a pre-ordering since transitivity is lost. 
However this does not question the correctness of the scope algorithm. 

3 IS l _ 0.1 x ITI whenever ITI >_ 100, 0.9 x IT1 otherwise. 
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3.1 T h e  e m p i r i c a l  f r a m e w o r k  

Experiments have been carried out to compare scope classification with some of 
the most famous rule-based or instance-based approaches to classification. Thus, 
PEBLS 3.0 [Cost and Salzberg, 1993], a state-of-the art IBL system has been 
used. Three rule-based learning algorithms have been considered: two of them 
generate only some rules, CN2 [Clark and Niblett, 1989] and C4.5 [Quinlan, 
1993], while the third one, SE-Learn [Rymon, 1996a], builds up all relevant and 
consistent rules for the training set when possible. We also compare our approach 
empirically with RISE [Domingos, 1996], an approach unifying rule-based and 
instance-based learning. The default classifier (always choosing the most frequent 
class) has also been included in the study as a baseline. 

While Kohavi and John [Kohavi and John, 1995] showed that an automatic 
assignment of parameters could entail a better accuracy (with the drawback of 
a longer training time), none of those programs incJudes it. We simply used the 
latest versions distributed by their authors, using default values except when 
some other values are known to give better results. In particular, the exemplar 
weighting "used_correct" as described in [Cost and Salzberg, 1993], with ten 
trials, was used for PEBLS. Default values of the latest version of CN2 (6.1) 
were used. C4.5 was used with rules generation and windowing (growing ten 
trees, the default), requiring a minimum of four examples (instead of two) in the 
two branches of a test, and using a confidence level of 37.5% (instead of 25%) for 
rule pruning. Simple majority voting has been chosen as a resolution criterion 
for both SE-trees. SE-Learn has been run without pruning and has also been 
run with significance-based statistical pruning at the p < 0.05 level. 

We have compared the classification accuracies obtained by the classification 
techniques described above on many domains. The domains datasets used in our 
experiments have been drawn from the UCI repository [Merz and Murphy, 1996]: 
audiology (AD), annealing (AN), credit (CE), pima diabetes (DI), echocardio- 
gram (EC), glass (GL), heart disease (Cleveland HDc, Hungarian HDh, Switzer- 
land HDs and V.A. medical center HDv databases), hepatitis (HE), horse colic 
(HO), iris (IR), labor negotiation (LA), lung cancer (LC), liver disease (LD), 
contact lenses (LE), LED (LI), post-operative (PO), DNA promoters (PR), so- 
lar flares (common SFc, moderate SFm and severe SFx), soybean (SO), splice 
junctions (SP),voting records (VO), wine (WI) and zoology (ZO). 

3.2  A c c u r a c y  a n d  e x e c u t i o n  t i m e  

Accuracy is measured by 10-fold cross-validation. Table 1 reports accuracy and 
standard deviation measured for each dataset, and the confidence level in the 
hypothesis H1 = "the difference of accuracy between this classifier and scope 
classification is significant" using a one-tailed paired t test. 

Results of table 1 are summarized on table 2 according to five measures that 
can be used to compare classifiers: 

- N u m b e r  of  wins. It counts the number of datasets where scope classifica- 
tion achieves higher accuracy than the other algorithm and those where the 
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T a b l e  1.  A v e r a g e  a c c u r a c i e s  a n d  s t a n d a r d  d e v i a t i o n s .  S u p e r s c r i p t s  d e n o t e  c o n f i d e n c e  l eve l :  1 is 
9 9 . 5 % ,  2 is 9 9 % .  3 is 9 7 . 5 % ,  4 is 9 5 % ,  5 is  90% a n d  6 is b e l o w  9 0 % .  - s t a n d s  fo r  d a t a s e t s  w h e r e  
S E - L e a r n  h a s  b e e n  i n t e r r u p t e d  ( m o r e  t h a n  o n e  C P U  d a y  o r  t o o  m u c h  m e m o r y  w a s  r e q u i r e d ) .  

Dora  S C O P E  R I S E  P E B L S  C 4 . 5  C N 2  SE  S E  0 . 0 5  D e f a u l t  
A D  66 .54- I0 .5  80 .0+11 .1  ~ 71.8=]=0.1' 70 ,34-I0 ,4  ~ 77,0=[=12.1 ~ ......... 18,0-I-9.8 ' 
A N  94.24-2.7 9 8 . 4 i l . 6  1 99.24-0.01 93.24-1.7 6 85.74-3.7 1 - 76.24-4.0 ~ 
C E  86.24-4.9 82.24-5.0 1 83.34-0.13 83.74-5.I  2 82.64-4.7 I 86.34-.I.5 8 89.04-5.1 3 55.54-4.7 l 
DI  74.74-4.7 70.34-3.4 o 73.84-0.0 ° 72.94-4.6 e 73.84-3.1 o 72.74-4.3 6 75.94-2.4 o 65.14-5.6 1 
E C  69.34-13.0 62.74-11.96 63.74-0.26 68.04-12.46 70.14-10.16 67.84-11.56 68.54-13.56 67.14-14.74 
G L  74.34-13.7 72.04-7.6 6 69.74-0.14 63.34-7.0 ~ 62.14-13.11 71.44-10.66 58.24-10.51 30.34-13.91 

I iDc[  83.84-4.5 79.24-6.5 I 80.14-0.15 74.94-3.8 I 77 .2+6 .1  6 82.84-5.6 o 88.7=I=5.3 1 54.04-7.7 1 
l l D h ;  82,94-4,4 76.44-8.0 2 77.34-0.11 78.7=k5.0 I 75.14-6.3 1 81.64-7.0 o 86~64-6.7 2 64.14-10.11 
l i d s  93,54-3,3 92.64-4. ' /  6 90.9-t-0.16 90.94-2.0 ~ 92.64-2.6 o 93.54-3.5 t; 82.14-19.04 93.54-3.4 2 
l I D v  75.94-11.4 71.44-9.0 5 64.24-0.11 75.24-12.9 o 7,1.84-11.10 75.3_t_12.7 o 79,04-13.20 74.44-11.25 
l I E  78.7=[=13.3 76.9=1=14.6 ~ 82.44-0.1 ~ 81.6=[=10.16 81.24-11.16 79.44-14.36 
l [ O  82.1=[=6.l 82.64-6.0 o 82,54-0.0 ~ 84,34-5,3 o 82.14-6.5 6 63.14-8.1 1 
l i t  9.1.7=l:5.g 95.3:1=7. t o 95.5i{}.1 ° 95.g. t :5.5 0 9.1.{}:t=5.8 0 l}(L04-5.~; o l t 0 J } i 7 . 2  :~ 21.34-5.3 l 
LA 87.3:]=14.4 87.34-23.00 8(1.84-0.26 78.44-1(l.85 78.7=t=11.45 89 .0+20 .50  8 3 . 0 ~ 3 3 . 3  ° 64.34-29.41 
L C  48.34-28.1 4'.1.3-i-32.8 ° 42.34-0.2 ~ 59.94-21.1 ° 44.24-16.7 ~ 40.8-t- t5 .0 u 
LD 75.8:t:8.1 75.84-4.9 6 71.44-0.18 74.8:{=5.6 6 78.24-6.0 ~ 78.54-8.5 ~ 81.54-7.8 ~ 74.74-8.8 *~ 
LE  70.04-26.7 78.34-29.5 ° 72.04-0.36 87.7=t=19.04 711.04-28.1 ~ 70 .0+28 .1  ~ 93.34-21.13 63.34-27.08 
LI 59.04-15.8 55.04-13.55 51.64-0.15 55.7:t:8.5 0 63.04-14.26 67.14-23.26 60A4-17.4o  18.04-14.0 J 

l>O 71 . 14 - I I . 3  63.34-21.66 57.{14-0.21 67.94-11.04 63.3=[=14.94 63.84-14.11 2(L74-14.11 71.14-11.91 
P R  82.0:t :14.4 84.04-8.6 u 87.54-0.15 84.34-9.7 0 79.84-7.7 a 37.74-5.9 1 
S F c  88.9=[=3.2 89.24-3.4 6 83.04-0.01 87.94-3.4 1 88.84-3.4 6 86.84-4.4 4 88.44-8.3 6 88.84-3.4 6 

S l "m 90.14-5.9 89.14-5.8 a 83.54-0.11 88.d=t=6.1 a 89.14-6.8 6 89.14-6.7 6 92.24-6.2 5 90.14-6.2 6 
S F x  97.84-2.4 97.84-2.5 a 96.24-0.01 97.8=[=2.5 3 97.54-2.8 6 97.44-3.0 6 47.14-35.61 97.84-2.5 6 
S O  100.04-0.0 100.04-0.0 6 t00.04-0.06 96.84-7.4 6 97.54-7.9 6 10O.O±0.O 6 100.04-0.0 0 37.54-26.41 
S P  95.34-1.5 92.74-1.3 i 94.04-0.0 z 93.74-1.4 i 91.24-2.0 i 51.94-2.4 1 
V O  93.64-4.2 95.94-3.2 4 94.84-0.08 95.14-3.1 6 9.1.74-3.3 6 01.4=[=7.0 1 
W t  95.54-4.3 98.94-2.4 4 97.74-0.04 94.94-3.7 6 92.74-4.6 6 9 8 . 8 ~ 3 . 7  a 96.54-4.1 6 39.84-10.11~ 
Z O  94.04-9.2 96.04-7.0 6 95.54-0.1 ° 88.6=[=14.03 90.04-15.6 ~ 95.04-9.7 6 95.8=t=6.8 6 40.44-16.01 

converse happens (draws are not counted either way). For instance, scope 
algorithm performed bet ter  than RISE in 14 datasets and worse in 10. 

- N u m b e r  o f  s ign i f ican t  wins.  It only counts a dataset when the confidence 
level in the difference of accuracy is greater than 95%. 

- W i l c o x o n  t e s t .  This is a non-parametric approach to paired t test. We give 
the confidence level in hypothesis H1. 

- A v e r a g e .  It reports the average accuracy over all domains. 
- R a n k s .  For each dataset,  accuracies are ranked and are given values from 

0 (the worst one) to 1 (the best one) in a uniform way. The global rank is 
averaged over all domains. 

Experiments show that  SE-Learn has a better accuracy than scope classifica- 
tion which has a better  accuracy than RISE. These three algorithms have bet ter  
accuracies than PEBLS, C4.5, CN2 and the default classifier. 

We have also compared the efficiencies of both approaches. Results are sum- 
marized on table 3. In all the experiments, the execution time is the time required 
by each technique to complete the 10-fold cross-validation from scratch. Thus, 
for the scope approach, it is the time required to assess the parameters plus the 
t ime required to classify the ten test sets (parameters are only assessed once for 
the ten test sets). For the other approaches, the execution time is the learning 
time plus the classification time. 
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Table 2. Comparison of accuracies according to five measures. 

Measure SCOPE RISE PEBLS C4.5 CN2 SE SE 0.05 Default 
No. wins - 14-10  17-10 18-8 19-7 10-7 6-11 23-1 
No. signif, wins - 5-4 9-3 9-1 8-1 2-1 3-6 18-0 
Wilcoxon test - 80 98 92.5 99.5 <80 80 100 
Average 82.3 81.7 80.3 81.6 79.9 83.1 83.9 58.6 
Rank 0.67 0.58 0.47 0.55 0.47 0.69 0.75 0.20 

Table 3. Comparison of execution times according to three measures. 

Measure SCOPE RISE PEBLS C4.5 CN2 SE SE 0.05 
No. wins - 19-9 3-25 11-17 6-22 10-10 2-18 
Wilcoxon test - 95.5 100 89 100 <80 99.9 
Rank 0.34 0 . 2 1  0.79 0.52 0.59 0.41 0.67 

We used the following measures: 

- N u m b e r  o f  wins .  It counts the number of datasets where scope classifica- 
tion had a smaller execution time than the other algorithm and those where 
the converse happens (draws are not counted either way). 

- W i l c o x o n  tes t .  It is the confidence level in hypothesis /-/1 = "the dif- 
ference of execution time between this classifier and scope classification is 
significant". 

- R a n k s .  For each dataset, execution times are ranked and are given values 
from 0 (the worst one) to 1 (the best one) in a uniform way. The global rank 
is averaged over all domains. 

We can observe that the execution time of scope classification measured 
during this evaluation is on average smaller than the one of RISE, but greater 
than those of PEBLS, C4.5 and CN2. On some benchmarks, the execution time 
of SE-Learn without pruning is similar to the one of scope classification, and 
with pruning, it is quite better. However, all the relevant and consistent rules 
for T must be considered in SE-Learn. Since their number is exponential in the 
number of attributes d in the worst case, the time required by SE-Learn on a 
classification task can be much higher than those of the other approaches. For 
example, SE-Learn had to be interrupted in 8 cases out of 28, namely whenever 
the number of attributes exceeds 16 (unless the number of examples N was very 
small). 

4 R e l a t e d  R e s e a r c h  

In this section, the scope approach is shown to closely relate to approaches 
where the logical biases of relevance and consistency are considered, in par- 
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ticular the disjunctive version space approach [Sebag, 1996] and the SE-Learn 
framework [Rymon, 1996a]. Differences between the scope approach and previous 
approaches combining IBL and rule-based learning are emphasized. 

4.1 T h e  disjunctive version space approach 

The disjunctive version space (DiVS for short) of T is the disjunction of the 
version spaces H(e) for every example e E T. The version space H(e) of e is 
the conjunction of the hypotheses D(e, ce) that  discriminate e from its counter- 
examples ce E CE(e, T). D(e, ce) is the disjunction of the maximally discrimi- 
nant selectors SEL~(e, ce) for each attribute i. 

In DiVS,  an example e is a (e, M)-neighbour of an object o w.r.t. T if and 
only if 

]{ce C CE(e,T)ll{ilv ° e SELi(e, ce)}l ~ M}I < ~ × ITI. 

Stepping back to the patient example, H(el) = D(el, e2) = (w > 55) V (a > 
A). This hypothesis is clearly different from the left-hand sides of rules considered 
in scope classification: C(o, el) = (s = M) A (w E [70;75]) A (a E [A;G]). 
Whereas the M parameter seems different, the (e, M)-neighbourhoods of an 
object coincide in both approaches: 

T h e o r e m  8. Let o be an object and e an example from T. 
o e (e, M) - H(e) if and only if e E (e, M) - cons(T, <o). 

Thus, for the same resolution criterion and parameters ~ and M, scope classi- 
fication and the DiVS  approach lead to the same neighbourhood. The generality 
parameter M can be considered from at least two points of view. In scope clas- 
sification, a counter-example ce may satisfy a rule R(o, e) except on at most M 
attributes (i.e., ce <o M e). In DiVS,  an object o must satisfy at least M selectors 
D(e, ee) discriminating ce from e. 

A parameter similar to 7 could be used in DiVS,  but since the hypotheses 
considered in DiVS  (a version space) and in the scope classification (a rule) 
differ, the neighbourhoods are no longer equivalent. For instance, if we consider 
the following example in R2: o(0; 0) an object, el( l ;  1) and e2(-1; 1) two positive 
examples, and eel(l;  2) and ce2(2,-1) two negative examples then e2 E H(el) 
but e2 ¢ C(o, el). Thus an example is more likely to be kept in DiVS  than in 
the scope classification. Finally, since it combines IBL with rule-based learning, 
scope classification allows for extensions that  cannot be envisioned in the current 
version of DiVS; for instance, examples could be easily generalized into rules in 
a learning phase within the scope approach. 

4.2 SE-Learn 

SE-Learn is a rule-based approach based on the same logical biases of relevance 
and consistency used in the scope approach. It generates all the (most general) 
relevant and consistent rules for T. If no statistical bias (including the resolution 
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criterion) were used, scope classification and SE-Learn would be closely related, 
according to Theorem 4. Indeed, for every object o, there exists a (most general) 
relevant and consistent rule R for T that covers o iff there exists an example e in 
T s.t. e E cons(T, <_o) and the class value of e is the class value of the right-hand 
side of R. But there is no quantitative side in Theorem 4. Thus, the number of 
most general rules that are relevant and consistent for T and cover an object 
o may easily differ from the number of neighbours of o w.r.t. T in the scope 
approach. Accordingly, equipped with the same resolution criterion, the two 
approaches do not give rise to the same classifiers. Moreover, the other statistical 
bias used in both approaches (parameters e, M, 7 in scope classification and 
statistical pruning p in SE-Learn) do not coincide. Finally, scope classification is 
an IBL technique while SE-Learn is a rule-based one. As mentioned in Section 
3.2, the computational complexity of SE-Learn makes it impractical for problems 
with many attributes and examples. 

4.3 O t h e r  re la ted  works  

Several approaches combine instance-based and rule-based learning, including 
NGE [Salzberg, 1991], BNGE [Wettschereck and Dietterich, 1995] and RISE 
[Domingos, 1996]. These approaches generalize the examples from the training 
set into rules in a learning phase, then classify every object according to its 
closest rule (w.r.t. some distance). Thus, the rules used to classify an object o 
do not depend on the object itself (they are fixed during the learning phase). 
In any case, only one rule is elected to classify o; for instance, the most specific 
rule among the closest to o [Salzberg, 1991], or the one with the best Laplace 
accuracy [Domingos, 1996]. 

Clearly enough, these approaches are very different from scope classification. 
First, they use rules as instances, while no rules have to be generated within the 
scope approach (no learning phase is mandatory). Second, they are distance- 
based while scope classification is not. Third, all the examples e of the training 
set s.t. R(o, e) is consistent for T are considered in scope classification when o 
is to be classified. Such rules R(o, e) are different from those considered in the 
approaches mentioned above in the general case. In particular, they depend on 
o (every R(o, e) must cover o). Finally, the resolution criteria used in all these 
approaches differ. 

5 C o n c l u s i o n  

The scope approach is an IBL technique with a rule-based characterization. 
Since it is a bottom-up approach, continuous attributes do not need to be dis- 
cretized within scope classification. Since the scope algorithm does not focus on 
a fixed number of neighbours, it appears empirically more accurate than PEBLS 
where the number of neighbours is constrained. Since every rule associated with 
a neighbour is implicitly considered in the scope approach, it appears empirically 
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as more accurate than techniques where only a few classification rules are in- 
duced, in particular decision trees (C4.5) and CN2. While the whole set of (most 
general) relevant and consistent rules for T is often too huge to be computed 
explicitly, the scope approach does not require this set to be generated. Hence 
it can be practical in many situations where SE-Learn is not. 
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