
Combining Classifiers by Constructive Induction

JoS~o Gama

LIACC, FEP - University of Porto
Run Campo Alegre, 823

4150 Porto, Portugal
Phone: (+351) 2 678830 Fax: (+351) 2 6003654

Emaih jgama~ncc.up.pt
WWW: http://www.up.pt/liacc/ML

Abstract . Using multiple classifiers for increasing learning accuracy is
an active research area. In this paper we present a new general method
for merging classifiers. The basic idea of Cascade Generalization is to se-
quentially run the set of classifiers, at each step performing an extension
of the original data set by adding new attributes. The new attributes are
derived from the probability class distribution given by a base classifier.
This constructive step extends the representational language for the high
level classifiers, relaxing their bias. Cascade Generalization produces a
single but structured model for the data that combines the model class
representation of the base classifiers. We have performed an empirical
evaluation of Cascade composition of three well known classifiers: Naive
Bayes, Linear Discriminant, and C~.5. Composite models show an in-
crease of performance, sometimes impressive, when compared with the
corresponding single models, with significant statistical confidence levels.

1 Introduct ion

Given a learning task which algorithm should we use? Previous empirical stud-
ies have shown that there is no overall bet ter algorithm. The ability of a chosen
algorithm to induce a good generalization depends on how appropriate the class
model underlying the algorithm is for the given task. An algorithm class model
is the representation language it uses to express a generalization of the examples.
The representation language for a standard decision tree is the DNF formalism
that splits the instance space by axis-parallel hyper-planes, while the represen-
tat ion language for a linear discriminant function is a set of linear functions that
split the instance space by oblique hyper-planes.

In statistics, Henery[12] refers Rescaling as a method used when some classes
are over-predicted leading to a bias. Rescaling consists on applying the algo-
ri thms in sequence, the output of an algorithm being used as input to another
algorithm. The aim would be to use the estimated probabilities Wi = P(Ci]X)
derived from a learning algorithm, as input to a second learning algorithm the
purpose of which is to produce an unbiased estimate Q(CilW) of the conditional
probability for class Ci.

179

Since different learning algorithms employ different knowledge representa-
tions and search heuristics, different search spaces are explored and diverse re-
sults are obtained. The problem of finding the appropriate bias for a given task
is an active research area. We can consider two main lines: on one side methods
that select the most appropriate algorithm for the given task, for example Schaf-
fer's selection by Cross-Validation, and on the other side, methods that combine
predictions of different algorithms, for example Stacked Generalization [21].

The work that we present here follows the second research line. Instead of
looking for methods that fit the data using a single representation language,
we present a family of algorithms, under the generic name of Cascade Gener-
alization, whose search space contains models that use different representation
languages. Cascade generalization performs an iterative composition of classi-
fiers. At each iteration a classifier is generated. The input space is extended by
the addition of new attributes. Those new attributes are obtained in the form of
a probability class distribution given, for each example, by the generated base
classifier. The language of the final classifier is the language used by the high
level generalizer. But it uses terms that are expressions from the language of low
level classifiers. In this sense, Cascade Generalization generates a unified the-
ory from the base theories. The experimental work shows that this methodology
usually improves the accuracy with significant statistical levels.

The next section of the paper presents the framework of cascade general-
ization. In section 3, we present an illustrative example. In section 4 we review
previous work in the area of multiple models. In section 5, we perform an em-
pirical study using UCI data sets. The last section presents an analysis of the
results and concludes the paper.

2 C a s c a d e G e n e r a l i z a t i o n

Consider a learning set D = (xn, Yn) n = 1, ...,N, where xn = Ix1, ...,xm] is a
multidimensional input vector, and Yn is the output variable. Since the focus
of this paper is on classification problems, Y, takes values from a set of pre
defined values, that is Yn E Cll,...,Clc, where c is the number of classes. A
classifier ~ is a function that is applied to the training set in order to construct
a predictor ~(x, D) of y values. This is the traditional framework for classification
tasks. Nevertheless, our framework requires that the predictor ~(x, D) outputs
a vector of conditional probability distribution [pl, ...,pc], where p~ represents
the probability that the example x belongs to class i, this is P(y = Cl~lx). The
class that is assigned to the example x, is that one that maximizes this last
expression.

Most of the commonly used classifiers, such as Naive Bayes and Discriminant,
classify each example in this way. Other classifiers, for example C~.5, have a
different strategy for classifying an example, but it requires small changes in
order to obtain a probability class distribution.

We define a constructive operator ~(D ~, ~(x, D)). This operator has two in-
put parameters: a data set D' and a classifier ~(x, D). The classifier ~ generates

180

a theory from the training data D. For each example x E D ~, the generated the-
ory outputs a probability class distribution. The operator ~5 concatenates both
the input vector x with the output probability class distribution. The output of
4~(D', 9(x, D)) is a new data set D". The cardinality of D" is equal to the cardi-
nality of D' (they have the same number of examples). Each example in x E D"
has an equivalent example in D', but augmented with c new attributes. The
new attributes are the elements of the vector of probability class distribution
obtained when applying classifier 9(x, D) to the example x.

Cascade generalization is a sequential composition of classifiers, that at each
generalization level applies the • operator. Given a training set L, a test set T,
and two classifiers 91, and 92, Cascade generalization proceeds as follows:
Using classifier 9z, generates the Levell data:

Levelttrain = 4~(L, ~1 (x, L))
Levelltest = ~(T, 91 (x, L))

Classifier 92 learns on Level1 training data and classifies the Level1 test data:

~2(x, Levelltrain) for each x E Levelltest

Those steps perform the basic sequence of a cascade generalization of classifier
92 after classifier 91. We represent the basic sequence by the symbol V.

The previous composition could be shortly represented by:

92V~1 = 92(x, $(L, 91(x ~, L))) for each x' E $(T, 91(x", L))

This is the simplest formulation of Cascade Generalization. Some possible
extensions include the composition of n classifiers, and the parallel composition
of classifiers.

A composition of n classifiers is represented by:

9nVgn- lVgn-2 . . .V91

In this case, Cascade Generalization generates n-1 levels of data. The high level
theory, is that one given by the 9n classifier.

A variant of cascade generalization, which include several algorithms in par-
allel, could be represented in this formalism:

~n+z V[~I, ..., ~n] = 9n+1 (x, ¢(L, [91 (x ~, L), ..., ~n(x', L)]))
for each x e ~5(T, [91 (x', L), ..., 9n(x' , L)])

The algorithms 91, .., 9n run in parallel. The operator ~(L, [91 (x', L), ..., 9n(x', L)])
returns a new data set L ~. L ~ contains the same number of examples of L. Each
example on L ¢ contains n * c new attributes, where c is the number of classes.
Each algorithm in the set [91,..., 9hi contributes with c new attributes.

181

3 An Illustrative Example

In this example we will consider the UCI data set Monks-2 [20]. The Monk's
problems are an artificial robot domain, well known in the Machine Learning
community. The robots are described by six different attributes and classified
into one of two classes. We have chosen the Monks-2 problem because it is known
that this is a difficult task for systems that learn decision trees in an attribute-
value logic formalism. The decision rule for the problem is: " T h e r o b o t is O .K.
if exac t ly two o f the six a t t r i b u t e s have the i r first va lue" . This problem is
similar to parity problems. It combines different attributes in a way which makes
it complicated to describe in DNF or CNF using the given attributes only.

Using ten fold Cross Validation, the error rate of C~.5 is 32.9%, and of Naive
Bayes is 49.5%. The composite model C4.5 after Naive Bayes, C4.5VNaiveBayes,
operates as follows: the Level1 data was generated, using the Naive Bayes as the
classifier. C4.5 was used for the Level1 data. The composition C4.5VNaiveBayes,
obtains an error rate of 17.8%, which is substantially lower than the error rates
of both C4.5 and Naive Bayes. None of the algorithms in isolation can capture
the underlying structure of the data. In this case, Cascade was able to achieve
a notable increase of performance. Figure 1 presents one of the trees generated
by C4.5VNaiveBayes.

>0,6

Fig. 1. Tree generated by C4.5 VBayes

The tree contains a mixture of
the original attributes (a3, a6) and
the new attributes constructed by
Naive Bayes (pO). At the root of
the tree, appears the attribute pO.
This attribute is the conditional prob-
ability p(Class = FalseIx) given
by the Naive Bayes. The classifi-
cation rule used by Naive Bayes is:
choose the Class~ that maximizes
p(Classilx). The decision tree gen-
erated by C4.5 uses the constructed
attributes given by Naive Bayes,
but redefining different decision sur-
faces. Because this is a two class
problem, the Bayes rule uses p0 with
threshold 0.5, while the decision tree
chose the threshold at 0.6. Those
decision nodes are a kind of func-
tion given by the Bayes strategy.

For example, the attribute pO can be seen as a function that computes p(Class =
Falselx) using the Bayes theorem. The decision tree performs a sequence of
tests based on the conditional probabilities given by the Bayes theorem. In a
certain sense, this decision tree combines both representation languages: Bayes
and Trees. The constructive step performed by Cascade, inserts new axis that
incorporates new knowledge provided by the Naive Bayes. It is this new knowl-

182

edge that allows the significant increase of performance verified with the Decision
Tree, despite the limitations of Naive Bayes to fit complex spaces. It is this kind
of synergies between classifiers that Cascade Generalization explores.

4 R e l a t e d W o r k

We can analyze previous work on the area of multiple models through two di-
mensions. One dimension is related to the different methods used for combining
classifications. The other dimension is related to the methods used for generating
different models.

4.1 Combining Classifications

Combining classifications usually occurs at classification time. We can consider
two main lines of research. One group includes methods where all base classi-
tiers are consulted in order to classify a query example, the other, methods that
characterize the area of expertise of the base classifiers and for a query point
only ask the opinion of the experts. Voting is the most common method used
to combine classifiers. As pointed in Ali[1], this strategy is motivated by the
Bayesian learning theory which stipulates that in order to maximize the predic-
tive accuracy, instead of using just a single learning model, one should ideally
use all hypotheses (models) in the hypothesis space. The vote of each hypothe-
sis should be weighted by the posterior probability of that hypothesis given the
training data. Several variants of the voting method can be found in machine
learning literature: from uniform voting where the opinion of all base classifiers
contributes to the final classification with the same strength, to weighted voting,
where each base classifier has a weight associated, that could change over the
time, and strengthens the classification given by the classifier.

4.2 Generating Different Models

Buntine's Ph.D. thesis [5], refers to at least two different ways of generating
multiple classifiers. The first one, involves a single tree that is generated from
the training set and then pruned back in different ways. The second method
is referred to as Option Trees. These kind of trees are in effect an ensemble of
trees. Each decision node contains not only a univariate test, but also stores
information about other promising tests. When using an Option Tree as a clas-
sifier the different options are consulted and the final classification is given by
voting. He shows that, if the goal is to obtain an increase of performance, the
second method out performs the first, basically, due to the fact that it produces
different syntactic models. Breiman[2] proposes Bagging, that produces replica-
tions of the training set by sampling with replacement. Each replication of the
training set has the same size as the original data, but some examples don't
appear in it, while others may appear more than once. From each replication

183

of the training set a classifier is generated. All classifiers are used in order to
classify each example on the test set, usually using a uniform vote scheme.

The Boosting algorithm from Freund and Schapire [9] maintains a weight
for each example in the training set that reflects its importance. Adjusting the
weights causes the learner to focus on different examples leading to different
classifiers. Boosting is an iterative algorithm. At each iteration the weights are
adjusted in order to reflect the performance of the corresponding classifier. The
weight of the misclassified examples is increased. The final classifier aggregates
the learned classifier at each iteration by weighted voting. The weight of each
classifier is a function of its accuracy.

Wolpert [21] proposes Stacked Generalization, a technique that uses learning
in two levels. A learning algorithm is used to determine how the outputs of the
base classifiers should be combined. The original data set constitutes the level
zero data. All the base classifiers run at this level. The level one data are the
outputs of the base classifiers. Another learning process occurs using as input the
level one data and as output the final classification. This is a more sophisticated
technique of cross validation that could reduce the error due to the bias.

Brodley[4] presents MCS, a hybrid algorithm that combines in a single tree,
nodes that are univariate tests, multivariate tests generated by linear machines,
and instance based learners. At each node MCS uses a set of If-Then rules in
order to perform a hill-climbing search for the best hypothesis space and search
bias for the given partition of the dataset. The set of rules incorporates knowledge
from expert domains. Gama[10, 11] presents Ltree, also a hybrid algorithm that
combines a decision tree with a linear discriminant by means of constructive
induction.

Chan and Stolfo[6] presents two schemes for classifier combination: arbiter
and combiner. Both schemes are based on meta learning, where a meta-classifier
is generated from a training data, built based on the predictions of the base classi-
tiers. An arbiter is also a classifier and is used in order to arbitrate among predic-
tions generated by the different base classifiers. Later[7], extended this framework
using arbiters~combiners in an hierarchical fashion generating arbiter~combiner
binary trees.

4.3 Discuss ion

Reported results relative to Boosting or Bagging are quite impressive. Using
10 iterations (that is generating 10 classifiers) Quinlan[16] reports reductions
of the error rate between 10% and 19%. Quinlan argues that these techniques
are mainly applicable for unstable classifiers. Both techniques requires that the
learning system should not be stable, in order to obtain different classifiers when
there are small changes in the training set.

Under an analysis of bias-variance decomposition of the error of a classifier[13],
the reduction of the error observed when using Boosting or Bagging is mainly
due to the reduction in the variance. Ali[1] refers to that "the number of train-
ing examples needed by Boosting increases as a]unction of the accuracy of the

184

learned model. Boosting could not be used to learn many models on the modest
training set sizes used in this paper. ".

Wolpert[21] says that successful implementations of Stacked Generalization
is a "black art", for classification tasks and the conditions under which Stacked
works are still unknown. Recently, Ting[18] have shown that successful stacked
generalization requires to use output class distributions rather than class pre-
dictions. In their experiments, only the MLR algorithm (a linear discriminant)
was suitable for level-1 generalizer.

Tumer[19] presents analytical results that showed that the combined error
rate depends on the error rate of individual classifiers and the correlation among
them. This was confirmed in the empirical study presented in [1].

The main point of Cascade Generalization is its ability to merge different
models. As such, we get a single model whose components are terms of the base
model's language. The bias restriction imposed by using single model classes is
relaxed in the directions given by the base classifiers. Cascade Generalization
gives a single structured model for the data, and this is a strong advantage
over the methods that combine classifiers by voting. Another advantage of Cas-
cade Generalization is related to the use of probability class distributions. Usual
learning algorithms produced by the Machine Learning community uses cate-
gories when classifying examples. Combining classifiers by means of categorical
classes looses the strength of the classifier in its prediction. The use of probability
class distributions allows us to explore that information.

5 E x p e r i m e n t s

5.1 The Algor i thms

Ali [1] and Tumer[19] among other authors, suggest as a method that allows us
to reduce the correlation errors, the use of "radically different types of classi-
tiers". This was the criterion that we have used in order to select the algorithms
for the experimental work. We use three classifiers: a Naive Bayes, a Linear
Discriminant, and a Decision Tree.

Naive Bayes The Bayes approach in order to classify a new example E, is
the use of Bayes theorem in order to compute the probability of each class
Ci, given the example. The chosen class is the one that maximizes: p(CilE) =
p(Ci)p(EICi) /p(E). If the attributes are independent, p(EICi) can be decom-
posed into the product p(vllCi) * ... * p(vklCi). Domingos [8] show that this
procedure has a surprisingly good performance in a wide variety of domains,
including many where there are clear dependencies between attributes. The re-
quired probabilities are computed from the training set. In the case of nominal
attributes we use counts. Continuous attributes were discretized. The number
of bins that we use is a function of the number of different values observed on
the training set: k = min(lO; nr. d i f f e r e n t values). This heuristic was used in
[8] and elsewhere with good overall results. Missing values were treated as an-
other possible value for the attribute, both on the training and test data. Naive

185

Bayes uses all the attributes in order to classify a query point. Langley [14] refers
tha t Naive Bayes relies on an important assumption: that the variability of the
dataset can be summarized by a single probabilistic description, and that these
is sufficient to distinguish between classes. From an analysis of Bias-Variance,
this implies that Naive Bayes uses a reduced set of models to fit the data. The
result is low variance, but if the data cannot be adequately represented by the
set of models, we obtain a large bias.

L i n e a r D i s c r i m i n a n t A linear discriminant function is a linear composition of
the attr ibutes where the sum of the squared differences between class means is
maximal relative to the internal class variance. I t is assumed that the a t t r ibute
vectors for examples of class Ci are independent and follow a certain probabili ty
distribution with probability density function fi . A new point with a t t r ibute
vector x is then assigned to that class for which the probability density function
f i (x) is maximal. This means that the points for each class are distributed in
a cluster centered at #i. The boundary separating two classes is a hyper-plane
and it passes through the mid point of the two centers. If there are only two
classes one hyper-plane is needed to separate the classes. In the general case of
q classes, q - 1 hyper-planes are needed to separate the classes. By applying the
linear discriminant procedure described below, we get qnode -- 1 hyper-planes.
The equation of each hyper-plane is given by[12]:

1. TS-1. Hi = ai + ~ j flij * xj where ai = - ~ i ~i and fli = S-1]Ai

We use a Singular Value Decomposition (SVD) in order to compute S -1. SVD
is numerically stable and is a tool for detecting sources of collinearity. This
last aspect is used as a method for reducing the features used at each linear
combination. Discrim uses all, or almost all, the attributes in order to classify
a query point. Breiman,[3] refers that from an analysis of Bias-Variance, Linear
Discriminant is a stable classifier although it can fit a small number of models.
It achieves their stability by having a limited set of models to fit the data. The
result is low variance, but if the data cannot be adequately represented by the
set of models, then the result is a large bias.

D e c i s i o n T r e e We have used C~.5 (release 8) [17]. This is a well known decision
tree generator and widely used by the Machine Learning community. In order
to obtain a probability class distribution, we need to modify C4.5. C4.5 stores
a distribution of the examples that fall at each leaf. From this distribution and
using m-estimates 1 [15] we obtain a probability class distribution at each leaf.
A Decision tree uses only a subset of the available attributes, in order to classify
a query point. Breiman [3] among other researchers, note tha t Decision Trees
are unstable classifiers. Small variations on the training set could cause large
changes in the resulting predictors. These classifiers have high variance but they
can fit any kind of data: the bias of a decision tree is low.

1 In all the experiments reported m was set to 0.5.

1 8 6

5.2 T h e Da tase t s

We have chosen 17 data sets from the UCI repository. All of them are well
known and previously used in other comparative studies. In order to evaluate
the proposed methodology we performed a 10 fold Cross Validation (CV) on
the chosen datasets. Datasets were permuted once before the CV procedure. All
algorithms where used with the default settings. In each iteration of CV, all
algorithms were trained on the same training partition of the data. Classifiers
were also evaluated on the same test partition of the data. Comparisons between
algorithms were performed using t-paired tests with significant level set at 95%.

Table 1 presents data sets characteristics and the error rate and standard
deviation of each base classifier. Relative to each algorithm, + (-) sign in the
first column means that the error rate of this algorithm is significantly better
(worse) than C4.5. These results provide an evidence, once more, that no single
algorithm is better overall.

D a t a s e t Class E x a m p l e s T y p e s
A u s t r a l i a n 2 690 7 N 6 Con t
B a l a n c e 3 625 4 Con t
Breas t 2 699 9 Con t
Diabetes 2 768 8 Cont
German 2 1000 24 Cont
Glass 6 213 9 Con t
Heart 2 270 6 N 7 Cont
Ionosphere 2 351 33 ContJ
Iris 3 150 4 Cont!
Monks-1 2 432 6 Nora
Monks -2 2 432 6 Nora
Monks -3 2 432 6 Nom
S a t i m a g e 6 6435 36 Con t
S e g m e n t 7 2310 18 Con t
Vehicle 4 846 18 Con t
W a v e f o r m 3 2581 21 C o n t
W i n e 3 178 13 C o n t

A v e r a g e o f E r r o r r a t e s

Bayes
13.8 :E3.5

- 28.8 4-6.3
2.4 4-1.9

2 5 . 7 4-5.5
2 7 . 7 4-4.4

- 4 1 . 8 4-12
+ 16.7 4-5

9.1 4-6.3
6.0 4-4.9

- 2 5 . 0 4-3.9
- 49 .6 4-9.0

2.8 4-2.4
- 18.8 -4-1.5

9.5 4-2.1
- 41.4 4-3.9
+ 18.8 4-1.5

2.8 4-4
20.1

D i s c r i m C4.5
14.1 + 6 15.3 ~ 6 . 3

+ 13.3 4.4.4 2 2 . 3 4-5.3
+i 4,1 q-6 6.1 4-6.1
-t- 22.7 + 5 2 4 . 8 4-6.6
+ 24.0 4-6,2 29.1 4-3.7
- 4 1 . 3 q - t l 3 2 . 3 4-9.6

16.7 4 - 3 . 6 1 9 . 9 4-7.2
- 1 3 . 4 4-5.4 9.1 4-5.8

2.0 4-3.2 4 .7 4-4.5
- 33.3 -4-11.3 2.3 4-4.4

34.0 + 5 . 9 32.9 4-5.9
- 22.5 4.8.7 0.0 4.0.0
- 16.1 4-1.5 13.9 ± 1 . 3
- 8.3 q-2.5 3.3 4-1,3
+ 22.2 4-5.1 28.8 4-3.9
+I 15.3 4.2 2 4 . 0 4.2.2

1.7 4-3.8 6.7 4.8.2
17,9 " 16.2

T a b l e 1. D a t a C h a r a c t e r i s t i c s a n d Re su l t s o f Base Class i f ie rs

5.3 Cascade Genera l izat ion

We have run all the possible two level combinations of base classifiers. Table 2(a)
presents the results of using C4.5 at the top level. Each column corresponds to a
Cascade Generalization combination. For each combination, the significance of t
test is presented comparing the composite model with the individual components,
in the same order that they appear on the header.

The trend on these results is a clear improvement over the base classifiers.
We never observe an error rate degradation of a composite model in relation
to the individual components. Using C4.5 as the high level classifier the perfor-
mance is improved with a significant statistical level of 95%, 22 times over one
of the components, and it degraded 5 times. Using Naive Bayes at the top, there

187

D a t a s e t
A u s t r a l i a v
iBalance
Breas t (W~
i Diabetes
iGerman
iGlass
H e a r t
I o n o
Iris
M o n k s - 1
M o n k s - 2
Monks -3
S a t i m a g e
S e g m e n t
Vehicle
Waveform
W i n e
M e a n

C4 .5VBayes
14.3 4-3.1

+ l + 6.1 4-2.8
[2.8 4-1.7
, 25.2 4-6.9

+] + 24.9 4-4.4
38.1 4-9.6

- 21.1 4-4.9
- 13.1 4-6.6

6.7 4-5.4
+ 1.6 4-3.1

+ [+ 17.9 +9.9
+ 0.4 4-0.9

+ l + 13.0 4-1.4
+ 4.0 4-0.8
+ 27.4 4-5.9

+ [17.2 4-2.3
3,9 =t=4.6

13.9

C4.5VC4.5
15.2 4-6.2
22.1 =t=5.2 -{-[+

5.6 4-4.8]+1
24.4 4-6.9[
29.1 4-3.71

32.3 4-12.ol
20.0 --I-7.2]
8.9 4-5.8 - i
4.7 4-4.5
2.3 +4.4[+

32.9 4-5,9l
0.0 4-0.01 +

13.7 4-1.31+1+
3.2 +1 .4 l +

28.2 +4.31 , -
- 24.4 +2.o1+1

0.7 +8.21 I
16.1 I

C4 .5VDisc
14.8 =[=6.1

5.4 4-2.0
4.1 =h6.0

24.2 4-5.8
26.2 4-6.0

36.1 =t=10.9
17.8 4-5.5
13.1 4-5.1

3.4 4-3.4
2.3 4-4.4

32.9 4-5.9
O.O 4-0.0

12.4 4-1.5
3.4 4-1,5

28.2 4-4.3
16.6 4-1.4

2.2 4-3,9
14.3

C 4 V D i s V B a y
13.6 4-6

6.6 4-2
2.7 =[=2

24.8 -I-9
28.4 4-4

37.6 4-12
17.0 =t=5
10.6 -t-6

3.3 -4-4
1.4 4-3

16.7 4-9
0.2 :h l

13.0 4-1
3.0 4-1

22.1 4-3
16.9 4-2

3.4 4-4
13.0

Stacked Gen
14.3 -t-5

-}- 12.5 =t=5
2.4 4-2

22.4 4-6
- 25.0 4-5

34.3 =h12
16.3 4-8
10,6 -4-6

4.0 4-3
2.3 4-4

+ 32.9 4-6
+ 2.1 4-2

13.5 4-1
3.4 4-1

+ 29.2 4-4
16.5 4-2

2.8 4-4
1~.4

Table 2. (a) Results of Cascade Generalization. (b)Comparison with Stacked

are 21 cases against 9. Using Discrim at the top, there are 22 cases against 7.
In same cases, there is a significant increase of performance when compared to
all the components. For example, the composition C~. 5 VNaive Bayes improves,
with statistical significance, both components on 4 datasets, C4.5 VDiscrim and
Naive Bayes VDiscrim on 2 datasets, and Discrim VC~.5 on 1 dataset. The most
promising combinations are C4.5VDiscrim and C4.5VNaive Bayes. The new at-
tributes built by Discrim or Naive Bayes set relations between attributes, that
are outside the scope of DNF algorithms like CJ.5. Those new attributes sys-
tematically appears at the root of the composite models. A particular successful
application of Cascade is on Balance dataset.

In another experiment, we have compared C4VDiscrimVBayes against Stacked
Generalization, which was reimplemented following the method of Ting[18]. In
this scheme Discrim is the Ievell algorithm. C4.5 and Bayes are the levelo al-
gorithms. The attributes of the levell data are the conditional probabilities
P(Ci[x), given by the levelo classifiers. The levell data is built using a (inter-
nal) 5 fold stratified cross validation. On those datasets, C4VDiscrimVBayes
performs significantly better on 4 datasets and worst on one. Cascade competes
well with Stacked method, with the advantage that it doesn't use the internal
cross validation.

5 . 4 H o w F a r f r o m the B e s t ?

Error rates are not comparable between datasets. Although the t paired tests pro-
cedure is commonly used for determining whether two means are statistically dif-
ferent, this procedure only permits to compare two algorithms. We are interested
in comparisons which involve several algorithms. As such, for each dataset we
identify the classifier with lowest error rate. Call it Elo~. Denote the error rate of
algorithmi on the given dataset as Eatg~. Now we compute the Error margin as

188

C4VDis C4VBay SG]C4VC4 C4 BayVC4 D|sVBay Dis'c BayVDis DisVC4 Di"VDis BayVBay Bayes
1.8 1.9 2.5~ 4.8 4.9 5.5 I 5.9 7.0] 7.1 7.1 7.5 8.3 8.0

T a b l e 3. Average of Distances to Best

the standard deviation of a Bernoulli distribution: Era = ~/Etow * (1 - Etow)/N
where N is the number of examples in the test set. For each algorithm in com-
parison, we compute the distance to the best algorithm in terms of Era. That is,
low value of Distancei, means that the algorithmi has an error rate similar to
the best algorithm, whilst high value means that the performance of algorithmi
is far from that of the best algorithm. The goal of this analysis is to compare
algorithm performance across datasets. Em is a criterion that can give insights
about the difficulty of the problem. Table 3 summarizes the averages of distances
of all models.

6 C o n c l u s i o n s

This work presents a new methodology for classifier combination. The basic
idea of Cascade Generalization consists on a reformulation of the input space
by means of insertion of new attributes. The new attributes are obtained by
applying a base classifier. The number of new attributes is equal to the number
of classes, and for each example, they are computed as the conditional probability
of the example belonging to classl given by the base classifier. The new attributes
are terms, or functions, in the representational language of the base classifier.
This constructive step acts as a way of extending the description language bias
of the high level classifiers.

There are two main points that differentiate Cascade Generalization from
other previous methods on multiple models. The first one is related with its abil-
ity in merging different models. We get a single model whose components are
terms of the base model's language. The bias restrictions imposed by using single
model classes are relaxed in the directions given by the base classifiers. This as-
pect is explored by combinations like C4.5VDiscrim or C4.5VNaive Bayes. The
new attributes built by Discrim or Naive Bayes set relations between attributes,
that are outside the scope of DNF algorithms like C~.5. Those new attributes
systematically appears at the root of the composite models.

Cascade Generalization gives a single structured model for the data, and
in this way is more adapted to capture insights about problem structure. The
second point is related to the use of probability class distributions. The use
of probability class distributions allows us to exploit the information about the
strength of the classifier. This is very useful information, especially when combin-
ing predictions of classifiers. We have shown that this methodology can improve
the accuracy of the base classifiers, preserving the ability to provide a single and
structured model for the data.

189

A c k n o w l e d g m e n t s : Grati tude is expressed to the support given by the F E D E R
and PRAXIS XXI projects and the Plurianual support a t t r ibuted to LIACC.
Also to P.Brazdil and the anonymous reviewers for useful comments.

References
1. Ali, K. and Pazzani, M. (1996) "Error reduction through Learning Multiple De-

scriptions", in Machine Learning, Vol. 24, No. 1 Kluwer Academic Publishers
2. Breiman,L. (1996) "Bagging predictors", in Machine Learning, 24 Kluwer Aca-

demic Publishers
3. Breiman,L. (1996) "Bias, Variance, and Arcing Classifiers", Technical Report 460,

Statistics Department, University of California
4. Brodley, C. (1995) "Recursive Automatic Bias Selection for Classifier Construc-

tion", in Machine Learning, 20, 1995, Kluwer Academic Publishers
5. Buntine, W. (1990) "A theory of Learning Classification Rules", Phd Thesis, Uni-

versity of Sydney
6. Chan P. and Stolfo S., (1995) "A Comparative Evaluation of Voting and Meta-

learning on Partitioned Data", in Machine Learning Proc of 12th International
Conference, Ed. L.Saitta

7. Chan P. and Stolfo S. (1995) "Learning Arbiter and Combiner Trees from Parti-
tioned Data for Scaling Machine Learning", KDD 95

8. Domingos P. and Pazzani M. (1996) "Beyond Independence: Conditions for the
Optimality of the Simple Bayesian Classifier", in Machine Learning Proc. of 12th
International Conference, Ed. L.Saitta

9. Freund, Y. and Schapire, R (1996) "Experiments with a new boosting algorithm",
in Machine Learning Proc of 13th International Conference, Ed. L. Saitta

10. Gama, J, (1997) "Probabilistic Linear Tree", in Machine Learning Proc. of the
14th International Conference Ed. D.Fisher

11. Gama,J. (1997) "Oblique Linear Tree", in Advances in Intelligent Data Analysis -
Reasoning about Data', Ed. X.Liu, P.Cohen, M.Berthold, Springer Verlag LNCS

12. Henery R. (1997) "Combining Classification Procedures" in Machine Learning and
Statistics. The Interface. Ed. Nakhaeizadeh, C. Taylor, John Wiley & Sons, Inc.

13. Kohavi, R and Wolpert, D. (1996) "Bias plus Variance Decomposition for zero-one
loss function", in Machine Learning Proc of 13th International Conference, Ed.
Lorenza Saitta

14. Langley P. (1993) "Induction of recursive Bayesian Classifiers", in Machine Learn-
ing: ECML-93 Ed. P.Brazdil, LNAI n667, Springer Verlag

15. Mitchell T. (1997) Machine Learning, MacGraw-Hill Companies, Inc.
16. Quinlan R., (1996) "Bagging, Boosting and C4.5", Procs. 13th American Associa-

tion for Artificial Intelligence, AAAI Press
17. Quinlan, R. (1993) C4.5: Programs for Machine Learning, Morgan Kaufmann Pub-

lishers, Inc.
18. Ting K.M. and Witten I.H. (1997) "Stacked Generalization: when does it work ?",

in Procs. International Joint Conference on Artificial Intelligence
19. Turner K. and Ghosh J. (1995) "Classifier combining: analytical results and impli-

cations", in Proceedings of Workshop in Induction of Multiple Learning Models
20. Thrun S., et all, (1991) The Monk's problems: A performance Comparison of dif-

ferent Learning Algorithms, CMU-CS-91-197
21. Wolpert D. (1992) "Stacked Generalization", Neural Networks Vol.5, Pergamon

Press

