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Abstract .  The covering algorithm has been ubiquitous in the induction 
of classification rules. This approach to machine learning uses heuristic 
search that seeks to find a minimum number of rules that adequately 
explain the data. However, recent research has provided evidence that 
learning redundant classifiers can increase predictive accuracy. Learning 
all possible classifiers seems to be a plausible ultimate form of this no- 
tion of redundant classifiers. This paper presents an algorithm that in 
effect learns all classifiers. Preliminary investigation by Webb (1996b) 
suggested that a heuristic covering algorithm in general learns classifi- 
cation rules with higher predictive accuracy than those learned by this 
new approach. In this paper we present an extensive empirical com- 
parison between the learning-all-rules algorithm and three varied estab- 
lished approaches to inductive learning, namely, a covering algorithm, an 
instance-based learner and a decision tree learner. Empirical evaluation 
provides strong evidence in support of learning-all-rules as a plausible 
approach to inductive learning. 

1 I n t r o d u c t i o n  

The heuristic covering algorithm (as typified by Michalski, 1984; Clark and 
Niblett, 1989; Muggleton and Feng, 1990; and Quinlan, 1990) has been the 
predominant approach to learning classification rules. A basic characteristic of 
inductive learning is the use of search. In this context machine learning is often 
regarded as a search for generalizations and specializations of concepts. The cov- 
ering algorithm seeks to develop a minimal set of rules that adequately explains 
the training data. 

In contrast, recent research (Ali, Brunk, and Pazzani, 1994; Breiman, 1996; 
Dietterich and Bakiri, 1994; Domingos, 1995; Kwok and Carter, 1990; Nock and 
Olivier, 1995; Oliver and Hand, 1995; Schapire, 1990; Webb, 1996a; Wogulis and 
Langley, 1989) has provided increasing evidence in support of learning redundant 
classifiers. While most of this research has occurred in the context of learning 
decision trees rather than the classification rules with which the current research 
is concerned, there is no reason to believe that the results do not generalise to this 
latter context. Webb (1996b) presented a system that in effect infers and employs 
all possible classification rules, and after preliminary investigation concluded that 
a heuristic covering algorithm in general provided higher predictive accuracy. In 
this paper we present results of extensive empirical comparison of the learning- 
all-rules approach against a heuristic covering algorithm, a benchmark instance- 
based learner and a benchmark decision tree based learning algorithm. We find 
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that the learning-all-rules approach in general gives superior performance over 
the traditional covering algorithm and has equivalent performance levels to the 
decision tree and instance based learners. 

2 T h e  C o v e r i n g  A p p r o a c h  

The covering technique for the induction of classifiers from examples has been a 
popular generic approach among machine learning systems that infer classifica- 
tion rules. The covering strategy forms a set of rules by inferring the rules one 
at a time. At each step it searches for a rule that covers many positive examples 
and few or no negative examples. The covered examples are then removed and 
the algorithm starts again on the remainder. This heuristic approach to learning 
a set of rules seeks to infer a minimal number of rules. 

Although the covering algorithm has been a commonly used technique, it 
is subject to several well known weaknesses. The foremost among these is the 
application of hill climbing search. This search technique has well known limi- 
tations, including the problems of local maxima, plateaus and ridges. These can 
prevent it from reaching an optimal solution. Another problem with heuristic 
search is that it is often difficult to determine whether the search technique has 
introduced additional implicit biases that evade proper identification. Such im- 
plicit biases could have a profound effect on experimental results. There is also 
a growing body of evidence that learning a minimal set of rules is in general 
sub-optimal with respect to predictive accuracy. Empirical evidence from recent 
research (Ali, Brunk, and Pazzani, 1994; Breiman, 1996; Dietterich and Bakiri, 
1994; Domingos, 1995; Kwok and Carter, 1990; Nock and Olivier, 1995; Oliver 
and Hand, 1995; Schapire, 1990; Webb, 1996a; Wogulis and Langley, 1989) has 
shown that learning classifiers that contain elements in addition to the bare 
minimum needed, can improve predictive accuracy. 

3 I n d u c t i o n  o f  A l l  R u l e s  

Webb's (1996b) new technique learning-all-rules, in effect learns all possible rules 
defined by the rule-description language. The number of possible rules for a given 
domain or learning task may be infinite. As a result it is infeasible to develop 
explicit representations for all possible rules. However, explicit representations 
of all rules are not necessary in order to apply all possible rules. Webb (1996b) 
adopts an approach whereby explicit rules are only developed when an exam- 
ple is classified by the algorithm. Then, only the single rule that determines the 
class to be assigned to the unclassified item is explicitly represented. Thus, in this 
technique the training set is retained until actually classifying an instance. When 
an example is classified those rules relevant to that instance will be inferred from 
the training set. This can be viewed as a lazy learning (Aha, 1997) approach to 
learning classification rules. However, learning-all-rules differs from most lazy 
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learners that construct temporary classifiers (such as lazy decision trees, Fried- 
man, Kohavi, and Yun, 1996) by performing complete search, instead of heuristic 
search, for the best classifier with respect to the target object. 

3.1 The Learning-All-Rules Algorithm 

Every inductive machine learning system necessarily embodies some search tech- 
nique in its quest for hypotheses. OPUS (Webb, 1993; Webb, 1995) is a search 
algorithm that provides efficient complete search to select individual classifica- 
tion rules from a search space of all possible non-disjunctive rules. OPUS takes 
as input a training set t, an evaluation function e, and a set of specialisation 
operators o, and outputs a set of operators from o which generate a classifier 
that maximises e with respect to t. 

The evaluation function e specifies the inductive bias. The max consistent 
and Laplace accuracy estimate metrics of empirical support were used in this 
research. The max consistent metric favours rules that cover the most positive 
examples and no negative examples while the Laplace metric allows for a trade- 
off between the coverage of positive and negative examples. Given that N is the 
number of negative training examples covered, P the number of positive examples 
and C the number of classes from the training data, the max consistent empirical 
support value for a rule equals -N, if N > 0, else P and the Laplace empirical 
support for a rule equals (P + 1)/(P + N + C). 

The OPUS algorithm is not presented here, as the search algorithm employed 
is not significant to the research, so long as that algorithm performs complete 
search. 

An abstract specification of the learning-all-rules algorithm is presented as 
follows. Let, 

T : set of training examples. 

instance : an unclassified object to be classified. 

OPUS(T, ins t ance ,  E) : function that takes as its inputs the training set T, 
an example to be classified instance, and an inductive bias function E and 
returns a rule that covers instance, and has maximal support for the induc- 
tive bias function E with respect to the training set T. 

X -~ C : a classification rule. 

X -~ C = OPUS(T, instance, E) 
assign class C to instance 

The OPUS algorithm performs complete search in contrast to heuristic search. 
Hence, the rules it generates are always optimal with respect to the preference 
function. 
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3.2 Advantages 

The learning-all-rules approach embodies a number of major advantages in com- 
parison to the traditional covering technique. 

As opposed to the covering approach, learning and employing all rules in- 
volves no search heuristics. The representation language for expressing rules used 
by the system determines the set of rules generated. The exclusion of heuristics 
from the inference process eliminates the limitations of the heuristic search. 

The learning-all-rules approach employs OPUS (Webb, 1995), an admissible 
search algorithm which guarantees to find the nominated target as opposed to 
heuristic search algorithms that cannot guarantee to find the designated targets. 
Regarding the introduction of implicit biases discussed in the previous section, 
admissible search assures that the search technique is not introducing confound- 
ing unidentified implicit biases into the experimental evaluation. 

For any inductive learning strategy that seeks to develop a minimal set of 
rules there will be a number of possible sets of rules based on the data but 
only one of them may be selected. According to Webb (1995) this introduces an 
element of uncertainty which may affect the quality of the induced classifiers. 
This uncertainty is eliminated in the learning all rules approach which in effect 
learns and employs all rules. 

Exemplar-based methods have been popular in data mining due to their 
strong approximation properties in determining the similarity between instances 
(Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy, 1996). The learning-all- 
rules approach offers specific advantages to data mining. Primarily the use of 
admissible search to explore the space of all possible rules enables a wider explo- 
ration of the instance space, which can be valuable in some data mining contexts. 
Learning-all-rules also offers computational advantages when the number of cases 
to be classified by a single classifier is low. This is because only those portions 
of the search space pertaining to the cases to be classified need to be explored. 
This may be of particular value in applications where new training examples 
are continually becoming available, leading to frequent updating of the inferred 
classifier. One of the main limitations with instance-based methods is the need 
to define a priori distance metric to compute similarity between instances. Often 
the interdependencies between attributes and the diverse measurement units of 
attribute values make this a formidable task. The learning-all-rules algorithm 
uses the inferred rules to define similarity between instances, thus eliminating 
the need to define an a priori distance metric. 

4 Evaluation with a Covering Algorithm 

The covering algorithm used is a reimplementation of CN2 (Clark and Niblett, 
1989) using unordered rules and the Laplacian error estimate evaluation func- 
tion (Clark and Boswell, 1991). In order to minimise possible confounds in the 
experimental comparision, the covering algorithm uses OPUS to provide com- 
plete search in place of the heuristic search algorithm employed in the original 
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CN2 algorithm. If the original heuristic search were employed, it would not be 
possible to determine to what extent differences between the system could be 
attributed to the difference between complete and heuristic search, and to what 
extent they were due to differences between learning all rules and the use of a 
covering algorithm. 

An abstract specification of the covering algorithm, COV, is presented as 
follows. Let, 

T : set of training examples. 

ins tance  : an unclassified object to be classified. 

OPUS(T,c lass ,E)  : function that takes as its inputs the training set T, a class 
class, and an inductive bias function E and returns a rule for the class that 
has maximal support for the inductive bias function E with respect to the 
training set T. 

ruleset = 0 
For class = each class in turn 

examples = the training examples 
while examples contains objects belonging to class 

rule = OPUS(examples, class, E) 
if no rule found 

remove from examples all objects of class class 
otherwise 

remove from examples all objects of class class covered by rule 
add rule to ruleset 

Note that whereas in learning-all-rules the OPUS algorithm is used to search 
for a rule for any class that covers a specific case, in COV it is used to search 
for any rule of a specific class, in both cases seeking the rule that maximises the 
preference function. 

5 E v a l u a t i o n  w i t h  I n s t a n c e  B a s e d  L e a r n i n g  

Instance-based learning (IBL) is the most widely employed form of lazy learning. 
Instance-based learning algorithms are an offspring of nearest neighbour (NN) 
algorithms and k-nearest neighbour algorithms (k-NN) (Fix and Hodges, 1952). 
As opposed to most other supervised learning methods, instance-based learners 
do not construct explicit abstractions such as decision trees or rules (Aha, Ki- 
bler, and Albert, 1991). In typical instance-based learning systems the training 
data (either in its entirety or a selected subset thereof) is retained for use in 
classification. A new example is classified by finding the nearest stored example 



154 

from the training data based on some similarity function/metric, and assigning 
its class to the new example. Basically the performance of an instance-based 
learner depends critically on the metric used to compute the similarity between 
the instances (Domingos, 1995). 

The similarities between the learning-all-rules approach and instance-based 
learning suggested an empirical evaluation of their relative performances. The 
learning-all-rules approach shares certain features with instance-based learners. 
First, in both approaches the entire training set or a subset is retained and ref- 
erenced during classification. Webb (1996b) suggests that the learning-all-rules 
approach could be considered to be a form of qualitative instance-based learning 
whereby the selected rule is used to define a similarity metric for classification 
in place of the use of a distance metric. 

This paper includes in the comparative evaluation with the learning-all-rules 
approach the IB 1 instance-based learning algorithm implemented by Aha (1990). 
IB1 is an adaptation of the k-nearest neighbour algorithm that retains all the 
training instances for classification. Three successors to IBI--IB2, IB3, and 
IB4--were also evaluated, but in general provided worse results than IBI, and 
hence results are not presented herein. IB2 is an edited nearest neighbour algo- 
rithm that retains only the misclassified instances. Since the instance selection 
method stores noisy instances and uses them for classification this algorithm is 
susceptible to noise in the data. The IB3 algorithm is an adaptation of IB2 and 
is similar in retaining the misclassified instances but in addition keeps a classifi- 
cation record for each instance and removes some of the stored instances that are 
believed to be noisy using a significance test. Finally IB4 includes the complete 
functionality of IB3 in addition to an attribute weight learning capability. 

6 E x p e r i m e n t a l  E v a l u a t i o n  

As mentioned above, the primary objective of this paper is to present an ex- 
tensive empirical comparison between the learning-all-rules and other learning 
methods. Webb's (1996b) preliminary empirical evaluation led him to conclude 
that the covering algorithm enjoyed a statistically significant general advantage 
(in terms of predictive accuracy) over learning-all-rules. However, there was a 
flaw in the statistic analysis underlying this conclusion. Webb used a Fried- 
man rank test comparing the number of times each approach outperformed the 
other. Experiments were conducted using 100 runs over 16 different domains. 
The Friedman rank test analysis was performed over all resulting 1600 compar- 
isons. However, the results for each domain are not independent of one another, 
and hence the analysis is invalid. Such an analysis could be applied to a single 
domain to determine whether there was a significant difference within that do- 
main, but should only be applied to a single result for each domain (such as the 
mean accuracy across a~ 100 runs) if it is to be used to evaluate the significance 
of an general advantage across domains. On extending the initial evaluation by 
incorporating additional data domains and analyzing mean performance on each 
domain, it is found that the covering algorithm outperforms learning-all-rules for 
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9 domains while learning-all-rules outperforms the covering algorithm for 22 do- 
mains. This does not support the claim of a general advantage for the covering 
algorithm. 

Webb's (1996b) results also suggested that the learning-all-rules algorithm 
performed better with the max-consistent metric while the covering algorithm 
performed optimally with Laplace metric. Therefore the learning-all-rules algo- 
rithm employing the max consistent metric along with the covering algorithm 
employing the Laplace metric; C4.5 (Quinlan, 1993), the decision tree learner 
and the instance-based learner were applied to a representative collection of 33 
datasets from the UCI Machine Learning Repository (Merz and Murphy, 1997) 
that were considerably diverse in size, number and type of attributes and number 
of classes. 

It would also have been interesting to compare learning-all-rules with some 
further lazy learning algorithms, but did not have access to implementations of 
these systems for this purpose. This remains an interesting subject for future 
research. 

6.1 Discretization of  Continuous-Valued Attributes 

Due to the limitation of the current implementation of the OPUS search al- 
gorithm to searching for categorical attribute-value rules, all the data domains 
that contained continuous values for the attributes had to be discretized. The dis- 
cretization system provided by Ting (1995) employs Fayyad and Irani's (1993) 
discretisation method that considers all possible cut-points (i.e., all values in 
the training set) and selects the cut-point that gives the highest information 
gain. The method is recursively applied to the subsets of the previous split until 
the stopping criterion is met. The stopping criterion is based on the minimum 
description length principle, MDLP (Rissanen, 1989). 

Note that C4.5 was applied to the discretized version of the data even though 
it has the capacity to perform its own discretization. This was done in order to 
minimize the number of possible confounding factors in the comparison. After 
all, in theory, the learning-all-rules approach could be applied to continuous 
valued data. The only reason that it was not is our lack of access to a search 
algorithm capable of performing complete search through such data. 

6.2 Description of  Experiment 

The final experiment included the following steps. 

- Each data set containing continuous attributes was discretized. 
- Each data set was randomly divided into training (80%) and evaluation 

(20%) sets 100 times and for each pair of training and evaluation sets so 
formed all learning methods which included the covering algorithm with 
the Laplace metric (COV), leaxning-all-rules (LAR) with the max consistent 
metric, IB1 and C4.5 were applied to the training set and the predictive 
accuracy of the resulting classifiers was evaluated on the evaluation set. 

All systems were run with their default settings in all experiments. 
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6 . 3  A n a l y s i s  o f  R e s u l t s  

The mean predictive accuracy achieved by each treatment on each domain is 
presented in Table 1. In order to analyze these raw figures, Table 2 outlines 
the win/loss ratio. As can be seen, learning-all-rules with the max consistent 
metric achieves a higher mean predictive accuracy than the covering algorithm 
in 22 out of 33 domains. Learning-all-rules also outperforms the instance-based 
learner. Learning-all-rules achieves higher predictive accuracy than IB1 in 19 of 
the 33 domains. In comparison to the pruned version of C4.5, learning-all-rules 
achieves higher predictive accuracy in 11 of the 33 domains. 

A multiple comparisons test was performed in order to compare each com- 
bination of pairs of treatments. The test was used in evaluating the statistical 
significance of the observed differences between the different learning methods. 
This test indicates the learning methods whose rankings significantly differ and 
also the direction of the difference. In the Table 3, '> '  indicates that the treat- 
ment for the row has obtained a higher rank (at the 0.05 level) more often than 
the treatment for the column. '< '  indicates that the treatment for the row has 
obtained a lower rank significantly (at the 0.05 level) more often than the treat- 
ment for the column. Finally, '= '  indicates no overall significant difference in 
ranking. In the light of this experiment the table suggested that: 

- Learning all rules with the max consistent metric was ranked significantly 
higher than the covering algorithm. In contrast to Webb's (1996b) earlier 
erroneous conclusions, this supports the existence of a general advantage to 
learning-all-rules over the covering algorithm. 

- There was no significant difference between the general rankings of learning- 
all-rules with the max consistent metric and C4.5 or IB1. This suggests that 
these algorithms perform at similar levels. 

7 Conclusions 

The empirical analysis conducted so far has clearly and significantly yielded ev- 
idence against Webb's (1996b) hypotheses on the superior performance of the 
covering algorithm. The comparison with a benchmark decision tree learner and 
an instance based learning system suggests that the learning-all-rules algorithm 
is a plausible alternative to state-of-the-art heuristic inductive learning systems. 
In domains where constant acquisition of novel training examples results in fre- 
quent updating of the inferred classifier, a classifier will only be used to classify 
a small number of cases each time. In such domains, the learning-all-rules ap- 
proach, owing to its use of lazy learning, enjoys a computational advantage over 
conventional machine learning. Therefore in such a context if a suitable met- 
ric is not available to support reliable instance-based learning, learning-all-rules 
provides an attractive alternative. 
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Table 1. Mean Predictive Accuracy for each Treatment and Domain 

DOMAIN LAR COV C4.5-U C4.5-P] IB1 
Australian 84,79 79.88 82.63 85.63 81 
Autos 71.75 68.87 75.95 73.85 73.33 

Cleveland 80.91 74,01 74,39 76.57 76,38 
Credit  screening 84,97 80.81 82,89 86.01 81.01 
Diabetes 73,02 70.98 72.33 74.85 69.64 
Echocardiogram 67.60 65.80 73,8 74.53 69.33 
Glass 65,88 62.44 67,11 67.25 69.32 
Heart 80.46 76.01 75.81 77.14 78.22 
Hepatitis 80.61 82.77 77.90 81.80 81.47 
Horse-colic 85.41 8 0 . 0 5  83.67 86,58 82.47 
Hungarian 81,90 78.20 79.87 79.63 70.83 
Hypothyroid 97.82 ] 98.171 98.79 98.82 97.91 
Ionosphere 91.15 89.14 88.84 89.25 86.53 
Iris 93.93 90.53 93.26 93.20 93.23 
Pima-diabetes 72.08 69.71 71.83 73.93 69.42 
Satimage 79,01 74.83 79.29 80.98 85.54 
Segment 90,91 91.17 94.42 94.08 95.11 
Shuttle 99.64 99.75 99.77 99.74 99.76 
Vehicle 63,38 60.25 68,23 68.86 68.48 
Slovenian breast cancer 69.08 69.17 66.65 71.03 66.77 
Winconscin breast cancer 95.49 91.67 93.58 94.58 95.62 
House-votes-84 94.25 92.43 94.42 94.94 92,70 
KR-vs-KP 96,90 97.79 99,29 99.35 95.67 
Lymphography 80,93 76.56 74.99 77.13 79.26 
Monkl 100 100 93.70 96.71 84.02 
Monk2 81.14 80.74 61.33 64.34 87.87 
Monk3 97.37 97.73 98.61 98.89 82.75 
MPll  98.62 98.61 87,05 86.45 85,17 
Mushroom 100 100 100 100 100 
Promoters 60,59 68.68 76.77 76.45 77.27 
Primary tumor 39.52 35.01 39.52 39,63 36.85 
Soybean-large 59,53 76.41 79.58 79.45 76.48 
tic-tac-toe 96.50 96.49 83,77 83.05 96.15 
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Table  2. General Performance Summary 

Learning-allTrules Verses  Won Lost 
C4.5-Unpruned 18 13 
C4.5-Pruned 11 21 
Cover 22 9 
IB1 19 13 

Tied 
2 

1 
2 

1 

Table  3. Multiple Comparisons Test 

Method LAR COV C4.5-U C4.5-P I B 1  
LAR na > = = = 
COV < na < < < 
C4.5-U = > na < = 
C4.5-P = > > na > 
IB1 = > = < na 
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