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Abs t r ac t .  We describe an experimental study of pruning methods for 
decision tree classifiers when the goal is minimizing l o s s  rather than e r -  

ror .  In addition to two common methods for error minimization, CART's 
cost-complexity pruning and C4.5's error-based pruning, we study the ex- 
tension of cost-complexity pruning to loss and one pruning variant based 
on the Laplace correction. We perform an empirical comparison of these 
methods and evaluate them with respect to loss. We found that apply- 
ing the Laplace correction to estimate the probability distributions at the 
leaves was beneficial to all pruning methods. Unlike in error minimiza- 
tion, and somewhat surprisingly, performing no pruning led to results 
that were on par with other methods in terms of the evaluation criteria. 
The main advantage of pruning was in the reduction of the decision tree 
size, sometimes by a factor of ten. While no method dominated others 
on all datasets, even for the same domain different pruning mechanisms 
are better for different loss matrices. 

1 P r u n i n g  D e c i s i o n  T r e e s  

Decision trees are a widely used symbolic modeling technique for classification 
tasks in machine learning. The most  common approach to constructing decision 
tree classifiers is to grow a full tree and prune it back. Pruning is desirable be- 
cause the tree tha t  is grown may overfit the da ta  by inferring more structure than 
is justified by the training set. Specifically, if there are no conflicting instances, 
the training set error of a fully built tree is zero, while the true error is likely to 
be larger. To combat  this overfitting problem, the tree is pruned back with the 
goal of identifying the tree with the lowest error rate on previously unobserved 
instances, breaking ties in favor of smaller trees (Breiman, Friedman, Olshen ~c 
Stone 1984, Quinlan 1993). Several pruning methods have been introduced in the 
literature, including cost-complexity pruning, reduced error pruning, pessimistic 
pruning, error-based pruning, penalty pruning, and MDL pruning. Historically, 
most  pruning algorithms have been developed to minimize the expected e r r o r  

r a t e  of the decision tree, assuming tha t  classification errors have the same unit 
cost. 



132 

Our objective in this paper is different than-the above-mentioned studies. 
Instead of pruning to minimize error, we aim to study pruning algorithms with 
the goal of minimizing loss. In many practical applications one has a loss matrix 
associated with classification errors (Turney 1997), and pruning should be per- 
formed with respect to the loss matrix. Pruning for loss minimization can lead 
to different pruning behavior than does pruning for error minimization. In this 
paper, we investigate the behavior of several pruning algorithms. In addition to 
the two most common methods for error minimization, cost-complexity prun- 
ing (Breiman et al. 1984) and error-based pruning (Quinlan 1993), we study 
the extension of cost-complexity pruning to loss and a pruning variant based 
on the Laplace correction (Good 1965, Cestnik 1990). We perform an empirical 
comparison of these methods and evaluate them with respect to loss under two 
different matrices. We found that even for the same domain, different pruning 
mechanisms are better for different loss matrices. In addition, we found that 
adjusting the probability distributions at the leaves using the Laplace correction 
was beneficial to all methods. 

2 T h e  P r u n i n g  A l g o r i t h m s  a n d  E v a l u a t i o n  C r i t e r i a  

Most pruning algorithms perform a post-order traversal of the tree, replacing a 
subtree by a single leaf node when the estimated error of the leaf replacing the 
subtree is lower than that of the subtree. The crux of the problem is to find an 
honest estimate of error (Breiman et al. 1984), which is defined as one that is not 
overly optimistic for a tree that was built to minimize errors in the first place. The 
resubstitution error (error rate on the training set) does not provide a suitable 
estimate because a leaf-node replacing a subtree will never have fewer errors on 
the training set than the subtree. Two commonly used pruning algorithms for 
error minimization are C4.5's error-based pruning (Quinlan 1993) and CART's 
cost-complexity pruning (Breiman et al. 1984). 

We attempted to extend several error-based pruning to loss-based pruning. 
In some cases the extensions are obvious, but C4.5's error-based pruning based 
on confidence intervals does not extend easily. The naive idea of computing a 
confidence interval for each probability and computing the losses based on the 
upper bound of the interval for each class yields a distribution that does not add 
to one. Experimental results we made on some variants (e.g. normalizing the 
probabilities) did not perform well. Instead, we decided to use a Laplace-based 
pruning method. 

The Laplace-based pruning method we introduce here has a similar motiva- 
tion to C4.5's error-based pruning. The Laplace correction method biases the 
probability towards a uniform distribution. Specifically, if a node has m in- 
stances, c of which are from a given class, in a k-class problem, the probability 
assigned to the class is (c + 1)/(m + k) (Good 1965, Cestnik 1990). The Laplace 
correction makes the distribution at the leaves more uniform and less extreme. 
Given a node, we can compute the expected loss using the loss matrix. The 
expected loss of a subtree is the sum of expected loss of the leaves. 
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The cost-complexity-pruning (CCP) algorithm used in CART penalizes the 
estimated error based on the subtree size. Specifically, the error estimate assigned 
to a subtree is the resubstitution error plus a factor a times the subtree size. 
An efficient search algorithm can be used to compute all the distinct a values 
that change the tree size and the parameter is chosen to minimize the error on a 
holdout sample or using cross-validation. Once the optimal value of a is found, 
the entire training set is used to grow the tree and it is pruned using this optimal 
value. In our experiments, we have used the holdout method, holding back 20% 
of the training set to estimate the best a parameter. 

Cost complexity pruning extends naturally to loss matrices. Instead of esti- 
mating the error of a subtree, we estimate its loss (or cost), using the resubstitu- 
tion toss and penalizing by the size of the tree times the o~ factor as in error-based 
CCP. 

3 A C o m p a r i s o n  o f  P r u n i n g  A l g o r i t h m s  

Our goal in designing these experiments was to understand which pruning meth- 
ods work well when the decision tree classifier is evaluated on loss given a loss 
matrix. The basic decision tree growing algorithm is implemented in .A4£:C++ 
(Kohavi, Sommerfield & Dougherty 1996) and called MC4 (ME:C++ C4.5). It is 
a Top-Down Decision Tree induction algorithm very similar to C4.5. The algo- 
rithm grows the decision tree following the standard methodology of choosing 
the best attribute according to the gain-ratio evaluation criterion and stopping 
when a node has two or fewer instances. The trees are pruned using the following 
pruning algorithms: 

eb-fr Error-based pruning (C4.5) with probabilities estimated using 
frequency counts. 

eb-lc Error-based pruning with probabilities estimated using the 
Laplace correction. 

np-lc No-pruning with probabilities estimated using the 
Laplace correction. 

lp Laplace-based pruning with probabilities estimated using the 
Laplace correction. 

ccp-lc Cost-complexity pruning based on loss with probabilities estimated 
using the Laplace correction. 

The leaves of the trees are labeled with the class that minimizes expected 
loss based on the probability estimates at each leaf. In our initial experiments, 
the Laplace correction outperformed frequency counts in all variants. Therefore, 
excluding the basic method of error-based-pruning, all other pruning methods 
were run with the Laplace correction. 

Ten datasets were chosen from the UCI repository (Merz &: Murphy 1997): 
adult (salary classification based on census bureau data), breast cancer diag- 
nosis, chess, crx (credit), german (credit), pima diabetes, road (dirt), satellite 
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images, shuttle, and vehicle. In choosing the datasets, we decided on the follow- 
ing desiderata: 

1. Datasets should be two-class to make the evaluation easier. This desideratum 
was hard to satisfy and we resorted to converting several multi-class problems 
into two-class problems by choosing the least prevalent class as the goal class. 

2. Datasets should not have too many unknowns. To avoid another factor in 
this evaluation, we removed all instances with unknown values from the files. 

3. The standard error of the estimated loss should be small. This was very im- 
portant because with loss matrices the standard deviations of the estimates 
can be large. We therefore decided to require at least 500 instances and train 
on only 25% of the data, leaving the remaining instances for testing. 

We wanted to test the following hypotheses: 

1. The Laplace correction for estimating probabilities at the leaves leads to 
lower loss than frequency counts. 

2. Considering the loss matrix during pruning leads to lower loss than pruning 
based on errors. 

For all datasets we trained on 25% of the data and tested on 75% of the data, 
repeating the process 10 times. We compared performance of the pruning algo- 
rithms on two different loss matrices, which respectively set a loss of 10 and 100 
for misclassifying the less frequent of the two classes. This was done to simulate 
real-world scenarios in which the less frequent class is the important class. Ex- 
periments were also done with the losses reversed, with similar conclusions to 
those shown below. 

The results are displayed as graphs showing the average loss for the ten files 
as bars using the scale on the left, and the average relative loss as X-symbols 
with the scale on the right. The relative losses are computed as the ratio between 
the loss of the pruning method and eb-fr, our baseline method. These ratios are 
then averaged across the ten datasets to create summary graphs. In cases for 
which the losses are small, the ratio is a better indicator of performance. The 
average losses and average relative losses for the two loss matrices are shown in 
Figure 1. The following observations can be made: 

1. Error-based pruning with frequency counts performs the worst. 
2. The Laplace-based pruning (lp) performs the best on the 10 to 1 loss matrix 

and is comparable to the best on the t00 to 1 loss matrix. 
3. No-pruning (np-lc) performs surprisingly well on both loss matrices! 
4. Cost-complexity pruning (CCl>-lc) is slightly inferior to no-pruning, but better 

than error-based pruning (eb) on the 100 to 1 loss matrix. 
5. Tree sizes were radically different. The average tree sizes for the 10 to 1 loss 

matrix are: ccp(47), eb(ll8), 1p(382), and np(670). Cost-complexity pruning 
was by far the smallest, confirming the observation by Oates & Jensen (1997) 

for  error minimization. 
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Fig. 1. Average absolute and relative losses for the different algorithms and for a 10 
to 1 loss matrix (left) and a 100 to 1 matrix (right). 

Our hypothesis that the Laplace correction for estimating probabilities at 
the leaves outperforms frequency counts was confirmed. It was also confirmed 
for the np and ccp pruning methods when they were run with frequency counts 
(results not shown). Interestingly, no-pruning performed very well, suggesting 
that when we have loss matrices and when tree size is not important, pruning 
need not be done if the Laplace correction is used. This result differs from error 
minimization, where pruning was consistently shown to help. 

Pruning based on loss matrices performed better than pruning based on 
error for frequency counts for all methods. This result (for frequency counts) 
has been observed previously for reduced error/cost pruning (Draper, Brodley ~z 
Utgoff 1994). When the Laplace correction was used, pruning with loss matrices 
performed better than error-based pruning (eb-lc) for the 100:1 (ccp-lc, lp) but 
there was no significant difference for the 10:1 loss matrix. 

For each pruning method, applying the Laplace correction improved perfor- 
mance on average. Only in a few cases did the Laplace correction lead to a higher 
distribution MSE (mean-squared-error) than frequency counts. The distribution 
MSE was similar for all the Laplace correction algorithms. The main difference 
between the pruning algorithms was in the tree size. The average tree sizes were 
ccp(27), eb(118), lp(2SO), and np(670).) 

4 C o n c l u s i o n s  

Of the two steps in inducing a decision tree--growing and pruning--we concen- 
trated only on the latter stage. We view this as a good first step to study before 
studying different growing techniques as was done in Pazzani, Merz, Murphy, 
Ali, Hume & Brunk (1994). 

We extended cost-complexity pruning to loss and introduced a new method 
that can be used with loss matrices, Laplace-pruning. Laplace-pruning was the 
best pruning method with the 10 to 1 loss matrix and tied for best pruning with 
no-pruning with the Laplace correction for the 100 to 1 loss matrix. 
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Our study revealed that using the Laplace correction at the leaves is ex- 
tremely beneficial and aids all pruning methods used. We also found that for the 
datasets tested, pruning did not help much in reducing the loss, but did lead to 
smaller trees. Cost-complexity pruning was especially effective at reducing the 
tree size without significantly increasing the loss. 

No single pruning algorithm dominated over all datasets in terms of loss, but 
more interestingly, even for a fixed domain, different pruning algorithms were 
better for different loss matrices. In the long version of this paper (Bradford, 
Kunz, Kohavi, Brunk & Brodley 1998) we showed ROC curves for different al- 
gorithms, including another pruning method. These differences, however, were 
not major. Given the fact that there was little difference in loss even for algo- 
rithms that did not use the loss matrix during tree pruning stage, we conclude 
that it will usually suffice to induce a single probability tree and use it with 
different loss matrices. 
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