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Abstract .  The naive Bayes classifier, currently experiencing a renais- 
sance in machine learning, has long been a core technique in information 
retrieval. We review some of the variations of naive Bayes models used for 
text retrieval and classification, focusing on the distributional assump- 
tious made about word occurrences in documents. 

1 Introduct ion 

The naive Bayes classifier, long a favorite punching bag of new classification 
techniques, has recently emerged as a focus of research itself in machine learning. 
Machine learning researchers tend to be aware of the large pattern recognition 
literature on naive Bayes, but  may be less aware of an equally large information 
retrieval (IR) literature dating back almost forty years [37,38]. In fact, naive 
Bayes methods, along with prototype formation methods [44, 45, 24], accounted 
for most applications of supervised learning to information retrieval until quite 
recently. 

In this paper we briefly review the naive Bayes classifier and its use in infor- 
mation retrieval. We concentrate on the particular issues that  arise in applying 
the model to textual data, and provide pointers to the relevant IR and computa- 
tional linguistics literature. We end with a few thoughts on interesting research 
directions for naive Bayes at the intersection of machine learning and information 
retrieval. 

2 The  Naive  Bayes Classifier 

A widely used framework for classification is provided by a simple theorem of 
probability [10, Sec 2.1] known as Bayes' rule, Bayes' theorem, or Bayes'formula: 

P(X = xlC = c~) 
P(C = cklX = x) = P(C = ck) x P(x)  (1) 

where 



e c  

P ( X  = x) = E P ( X  = xIC = Ck,) × P ( C  = ck,) (2) 
kt=l 

We assume here that all possible events (in our case, documents) fall into exactly 
one of ec classes, (ci,..., ck,..., Cec). C is a random variable whose values are 
those classes, while X is a vector random variable whose values are vectors of 
feature values x -- (Zl,..., xj,..., Zd), one vector for each document. (Except 
where stated, we will assume that x has the same length, d, for each document.) 
P(C = cklX ---- x) is the conditional probability that a document belongs to 
class ck, given that we know it has feature vector x. Bayes' rule specifies how 
this conditional probability can be computed from the conditional probabilities 
of seeing particular vectors of feature values for documents of each class, and 
the unconditional probability of seeing a document of each class. 

Having made clear that ck and x are values taken on by random variables 
C and X we simplify notation by omitting those random variables and instead 
writing Bayes' rule as: 

P(cklx) = p(c ) × P(xlc ) 
P(x )  (3) 

When we know the P(ck Ix) exactly for a classification problem, classification 
can be done in an optimal way for a wide variety of effectiveness measures [10, 
31]. For instance, the expected number of classification errors can be minimized 
by assigning a document with feature vector x to the class ck for which P(cklx) 
is highest. 

We of course do not know the P(cklx) and must estimate them from data, 
which is difficult to do directly. Bayes' rule suggests instead estimating P(xlck),  
P(ck), and P(x) ,  and then combining those estimates to get an estimate of 
P(cklx). However, even estimating the P(xlck ) poses problems, since there are 
usually an astronomical number of possible values for x = ( x l , . . . ,  x j , . . . ,  xd). 
A common strategy is to assume that  the distribution of x conditional on ck can 
be decomposed in this fashion for all ck: 

d 

P(xlc ) = 1-IP(xjlc ) (4) 
j - --1 

The assumption here is that  the occurrence of a particular value of xj is sta- 
tistically independent of the occurrence of any other xd, , given that  we have 
a document of type ck. The advantage of making this assumption is that  we 
typically can model the P(xjlck) with relatively few parameters. 

If we assume Equation 4, then Equation 3 becomes: 

d p 
1-Ij=l (  lck) 

P(cklx) = P(ck) X P(x)  (5) 

where we now have 



e c  d 

P(x) = ~ P(ck,) x 1-I P(zj,[c~,). (6) 
k / = l  j '=l  

If we plug in estimates (indicated by carats) for the values on the right hand 
side, we get an estimate for P(eklx): 

~ d 

P(cklx) = P(ck) x I-[~=le(z~lc~)1-_ (7) 
p(x) 

This estimate can then be used for classification. If the goal of classification is 
to minimize number of err A ors, then we can assign a document with feature vector 
x to the ck such that  P(ck Ix) is highest. A classifier which operates in this fashion 
is sometimes known as a naive Bayes classifier. Typically the denominator in 
Equation 7 is not explicitly computed for minimum-error classification, since it 
is the same for all ck. Instead the maximum value of the numerator is found as 
used to make a classification decision. 

Indeed, classification will be accurate as long as the correct class has the 
A d 

highest value of P(ck) x 1-Ij_lP(zjlc~), regardless of whether that  is a good 
estimate of P(ck Ix) (Section 6i- 

3 T e x t  R e p r e s e n t a t i o n  

Before discussing the classification of documents using naive Bayes, we must say 
a bit about what a document is, and how it is represented. A document is typ- 
ically stored as a sequence of characters, with characters representing the text 
of a written natural language expression. 1 Information retrieval has developed 
a variety of methods for transforming the character string representing a doc- 
ument into a form more amenable to statistical classification. These methods 
are analogous to, if less complex than, the feature extraction methods used in 
speech recognition, image processing, and related disciplines. 

A wide variety of statistical, linguistic, and knowledge-based techniques, in- 
volving various amounts of machine and/or  manual processing, have been used 
to produce representations of text for information retrieval systems ([12, Chs. 
7-9], [28, Ch. 5], [29, Chs. 3-6] [46, Ch. 3], [51, Chs. 2-3]). An ongoing surprise 
and disappointment is that  structurally simple representations produced without 
linguistic or domain knowledge have been as effective as any others [30, 33]. We 
therefore make the common assumption that  the preprocessing of the document 
produces a bag (multiset) of index terms which do not themselves have inter- 
nal structure. This representation is sometimes called the bag of words model. 
For the purposes of our discussion, it does not matter  whether the index terms 

1 More generally a document may have various components (title, body, sections, etc.) 
which are, for the most part, pieces of text. We will concentrate here on the simplest 
case, where the document is a single piece of text. 



are actually words, or instead character n-grams, morphemes,  word sterns, word 
n-grams, or any of a number  of similar text  representations. 

4 The Binary Independence Model 

Having reduced the richness of language to a bag of symbols,  information re- 
trieval commonly goes even farther. Suppose we have a collection of documents  
and associate a binary feature xj with each of the d unique words we observe 
in the collection. The feature will equal 1 if the corresponding word occurs 
in the document,  and 0 otherwise. The full document  representation then is 
x = (Xl , . . . , x j , . . . , xd) ,  where all xj are 0 or 1. 

If we make the naive Bayes assumption of conditional independence of feature 
values given class membership,  then the conditional probabil i ty of observing 
feature vector x for a document  of class ck is given by Equation 5. However, the 
combination of binary features with the conditional independence assumption 
allows an even simpler expression for the posterior probability. Note that:  

P(xjlck) = Pjk(1 -- pjk, (S) 

( - - -  (1  -pj ) (9 )  
1 - P j k  / 

where pjk = P(zj = lick ). Using this fact in combination with Equation 5 and 
some rearranging of terms 2 we get: 

d d 

Pj.__.~_k + E l o g ( 1  _ Pjk) --logP(x) (10) log P(cklx) = log P(ck) + E x j  log 1 -- Pjk 
j = l  j = l  

for each ck. Except for l ogP(x ) ,  this has the convenient property of being a 
linear function of the feature values. In many  uses of naive Bayes, however, we 
care only which P(CklX) (or logP(eklx)) is largest, not their exact values. In 
that  case, we can drop the logP(x ) ,  since it is the same for all Ck. 

It  is common in information retrieval that  we have only two classes between 
which we wish to discriminate. In text retrieval, we want to separate those doc- 
uments relevant to a user of a search engine from those not relevant. In text 
categorization we often need to decide only whether a document  should be as- 
signed to a particular subject category or not. In the two class case, we have 
P(c2Ix) = 1 - P(cl[x), so that  with some ari thmetic manipulat ions we can re- 
place the two functions that  Equation 10 would give for the two-class case with 
a single function [10, Sec. 2.10]: 

2 See [39, Sec. 12.4.3] or [10, Sec. 2.10], though in their derivations P(x)  has already 
been dropped. 



d P(cllx) _ , log l(l_zp 2) d + E l o g  1 -- Pjl +log P(cl)  (11) 
log 1 ~- P--~llx) 5=1 (1 - Pj13-~j2 j=l 1 Pj2 1 : P - ~ I ) "  

Equation 11 has several properties that  make it particularly convenient. First, 
• P~c, Ix~ we observe that  log ~ is monotonic with (and if necessary can be used 

to compute) P(cl{x). It therefore suffices for any purpose which we might use 
P(cl lx)  for. Second, the equation is truly linear in the zj (since P(x)  disappears 
completely in the two-class case), and has only d +  1 parameters to estimate and 
store. 

A further advantage in the context of information retrieval is that  Equa- 
tion 11 requires presence weights only. That  is, if one sets the initial score of a 
document to be the constant term in Equation 11, the full score can be com- 
puted by adding up values involving only those words present in a document, not 
those absent from the document [41,48]. Since most words do not occur in most 
documents, this is desirable from the standpoint of computational efficiency. 

The two-class, binary feature naive Bayes model has come to be known in 
information retrieval as the binary independence model. Its use in the form of 
Equation 11 was promoted by Robertson and Sparck Jones in a paper [41] that  
did much to clarify and unify a number of related and partially ad hoc applica- 
tions of naive Bayes dating back to Maron [37]. 

Robertson and Sparck Jones' particular interest in the binary independence 
model was its use in relevance feedback [20, 45]. In relevance feedback, a user 
query is given to a search engine, which produces an initial ranking of its docu- 
ment collection by some means. The user examines the initial top-ranked docu- 
ments and gives feedback to the system on which are relevant to their interest 
and which are not. The search engine then applies supervised learning to these 
judgments to produce a formula that  can be used to rerank the documents. 

Robertson and Sparck Jones noted that  if a system does not need to choose 
between cl and c2, but only to rank documents in order of P(cllx),  then the 
only quantity needed from Equation 11 is: 

d 1 , P j l ( - - P j 2 )  
j~=lxj log i t  _ Pjl)Pj2" (12) 

All other values in Equation 11 are constant across x's, and so can dropped, the 
result is still monotonic with P(cllx),  but does not require an estimate of the 
prior P(cl). Such an estimate is difficult to obtain either from users or from the 
small, nonrandom samples available for training in a relevance feedback context. 

4.1 W e a k n e s s e s  o f  t h e  B I M  

While the BIM has been very influential in information retrieval, it has short- 
comings that  mean it is now rarely used in the pure form given above. One 



weakness is that by considering only the presence or absence of terms, the BIM 
ignores information inherent in the frequencies of terms. For instance, all things 
being equal, we would expect that if 1 occurrence of a word is a good clue that  a 
document belongs to a class, then 5 occurrences should be even more predictive. 

A related problem concerns document length. As a document gets longer, 
the number of distinct words used, and thus the number of values of xj that  
equal 1 in the BIM, will in general increase. Many of these word usages in 
very long documents will be unrelated to the core content of the document,  
but are treated as being of the same significance as similar occurrences in short 
documents. Again, all things being equal, we would expect that  1 occurrence of 
a good predictor in a short document is a better  clue than 1 occurrence of tha t  
predictor in a long document. 

Ignoring document length can have a particularly bad interaction with feature 
selection. It is common in IR that one class (let's say el) is of much lower 
frequency than its contrasting class (c2). The class clmight be those documents 
relevant to a user (vs. the much larger class of nonrelevant documents), or the 
class of documents on a particular subject (vs. all those not on the subject). 
Further, it is common that most words have skewed frequencies as well, resulting 
in binary features that  much more often take on a value of 0 than 1. In this 
situation, typical feature selection measures strongly prefer features correlated 
with el, so that  we often have: 

log pj~(1 - p~2) (1 - p j ~  > 0 (13) 

for all selected features. Some feature selection measures used in IR in fact 
explicitly require features to have this property. When all features have this 

property, increasing document length can only increase the estimate P(ck[x), 
regardless of the actual content of the document. While a case can be made that  
longer documents are somewhat more likely to be of interest to any given user 
[43,47], the above effect is likely to be far stronger than appropriate. 

5 O t h e r  D i s t r i b u t i o n a l  M o d e l s  

In this section we look at a number of variations on the naive Bayes model that  
a t tempt  to address the weaknesses of the BIM. 

5.1 Di s tr ibut ions  for Integer-Valued Features  

The most straightforward generalization of the BIM is to let the Xj be integer- 
valued random variables corresponding to term frequencies, that  is counts of the 
number of occurrences of words in a document. The naive Bayes model will still 
assume the Xj are independently distributed, but now each is modeled by an 
integer-valued distribution rather than a Bernoulli one. 
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A variety of statistical distributions for term frequencies have been investi- 
gated, some in the context of naive Bayes classifiers and some for other pur- 
poses. The distributions investigated have mostly been Poisson mixtures [4, 26]: 
the Poisson itself [40], mixtures of 2, 3, or more Poissons [1,2, 22,23, 36], and 
the negative binomial (an infinite mixture of Poissons) [40]. The details of the 
particular models can be complex, sometimes involving latent variables that in- 
tervene between the class label and the term frequencies. Rather than attempt 
to survey the variations here, we refer the reader to the above references, with 
the suggestion that the book by Mosteller and Wallace [40] is the most clear 
treatment from a classification standpoint. 

Despite considerable study, explicit use of Poisson mixtures for text retrieval 
have not proven more effective than using the BIM [35,42]. This failure has 
been variously blamed on the larger number of parameters these models require 
estimating, the choice of estimation methods, the difficulty of accounting for doc- 
ument length in these models, and the poor fit of the models to actual term fre- 
quencies. In contrast, a recently proposed term weighting formula which rescales 
the BIM weight to in some ways approximate the behavior of a two-Poisson 
model has proven quite successful [43]. It should be noted, however, that most 
studies of Poisson mixtures (Mosteller and Wallace being an exception) have 
been applications to text retrieval rather than routing or categorization (where 
more training data is available), and/or have focused on unsupervised fitting of 
Poisson mixtures rather than supervised learning with a naive Bayes model. 

5.2 Mul t i nomia l  Models  

An alternative approach to modeling term frequencies is to treat the bag of words 
for a length f document as resulting from f draws on a d-valued multinomial 
variable X, rather than as a single draw on a vector-valued variable of length d 
[15]. The naive Bayes assumption then is that the draws on X are independent-- 
each word of the document is generated independently from every other. 

A multinomial model has the advantage that document length is accounted 
for very naturally in the model. The corresponding disadvantage is that it as- 
sumes independence not just between different words, but between multiple oc- 
currences of the same word, an assumption which is strikingly violated for real 
data [4]. A multinomial therefore assigns extreme posterior log odds to long docu- 
ments, and would presumedly be very poor for the purpose of ranking documents 
in a search engine. The problem is somewhat less extreme for classification tasks, 
where we can in some cases arrange to compare posterior log odds of classes for 
each document individually, without comparisons across documents. Indeed, we 
know of many applications of multinomial models to text categorization [3,14, 
15, 25, 32, 34] but none to text retrieval. 

5.3 Non-Distributional Approaches 

A variety of ad hoc approaches have been developed that more or less grace- 
fully integrate term frequency and document length information into the BIM 
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itself. The widely used probabilistic indexing approach assumes there is an ideal 
binary indexing of the document, for which the observed index term occurrences 
provide evidence [7, 13]. Retrieval or classification is based on computing (or 
approximating) the expected value of the posterior log odds. The expectation 
is taken with respect to the probabilities of various ideal indexings. While this 
is a plausible approach, in practice the probabilities of the ideal indexings are 
computed by ad hoc functions of term frequency, document length, and other 
quantities, making these models not truly distributional. 

Another approach is to fit a distributional but nonparametric model (for in- 
stance a linear regression) to predict the probability that a given term frequency 
will be observed in a document of a particular length [53]. Such nonparametric 
approaches have been relatively rare in IR, and it appears that the sophisticated 
discretization and kernel based approaches investigated in machine learning have 
not been tried. 

6 V i o l a t e d  A s s u m p t i o n s  a n d  t h e  S u c c e s s  o f  N a i v e  B a y e s  

As has often been observed, the independence assumptions on which naive Bayes 
classifiers are based almost never hold for natural data sets, and certainly not 
for textual data. This contradiction has motivated three kinds of research in 
both information retrieval and machine learning: 1) attempts to produce better 
classifiers by relaxing the independence assumption, 2) modifications of feature 
sets to make the independence assumption more true, and 3) attempts to explain 
why the independence assumption isn't really needed anyway. 

Whatever its successes in machine learning, the first strategy has not met 
with great success in IR. While interesting research on dependence models has 
been done [8, 11,21,49, 50], these models are rarely used in practice. Even most 
work in the "inference net" approach to information retrieval has mostly used 
independence (or ad hoc) models. 

Results from the second strategy are hard to judge. A variety of text rep- 
resentation strategies which tend to reduce independence violations have been 
pursued in information retrieval, including stemming, unsupervised term cluster- 
ing, downcasing of text, phrase formation, and feature selection. However, these 
strategies have usually been pursued for reasons besides reducing feature depen- 
dence, and so there has been little attempt to correlate their actual impact on 
dependence with any effectiveness changes they yield. Further, the nature of this 
impact is more complex than might be guessed, even for very simple techniques 
[4]. In any case, the effectiveness improvements yielded by these strategies have 
been small (with the possible selection of feature selection). 

IR's representative of the third strategy is Cooper [6], who points out that in 
the case of a two-class naive Bayes model, the usual independence assumptions 
(Equation 4) can be replaced by a weaker "linked dependence" assumption: 

P(xtcl) l-TP(xjlcl) (14) 
P(xfc ) - 
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In machine learning, considerable theoretical and experimental evidence has been 
developed that a training procedure based on the naive Bayes assumptions can 
yield an optimal classifier in a variety of situations where the assumptions are 
wildly violated [9]. 

7 Conclusion 

Naive Bayes models have been remarkably successful in information retrieval. 
In the yearly TREC evaluations [16-19,52], numerous variations of naive Bayes 
models have been used, producing some of the best results. Recent comparisons 
of learning methods for text categorization have been somewhat less favorable 
to naive Bayes models [5, 25] while still showing them to achieve respectable 
effectiveness. This may be because the larger amount of training data available 
in text categorization data sets favors algorithms which produce more complex 
classifiers [27], or may because the more elaborate representation and estimation 
tricks developed for retrieval and routing with naive Bayes have not been applied 
to categorization. 

There are many open research questions on the application of naive Bayes 
in information retrieval. What is a reasonable distributional model taking into 
account term frequency and document length? Can we state necessary or suffi- 
cient conditions for when a naive Bayes model will produce an optimal ranking 
of documents? What is the optimal strategy for selecting training data for naive 
Bayes? And, of course, can dependence information actually be used to improve 
the effectiveness of naive Bayes classifiers? These and other questions will pro- 
vide great interest for both machine learning and information retrieval in the 
years to come. 
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