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Abs t rac t .  Since decades, basic-block (BB) graphs have been the state- 
of-the-art means for representing programs in advanced industrial com- 
piler environments. The usual justification for introducing the intermedi- 
ate BB-structures in the program representation is performance: analyses 
on BB-graphs are generally assumed to outperform their counterparts 
on single-instruction (SI) graphs, which, undoubtedly, are conceptually 
much simpler, easier to implement, and more straightforward to verify. 
In this article, we discuss the difference between the two program repre- 
sentations and show by means of runtime measurements that, according 
to the new computer generations, performance is no longer on the side 
of the more complex BB-graphs. In fact, it turns out that no sensible 
reason for the BB-structure remains. Rather, we will demonstrate that 
edge-labeled SI-graphs, which model statements in their edges instead of 
in their nodes as classical flow graphs do, are most adequate, both for 
the theoretical reasoning about and for the implementation of analysis 
and optimization algorithms. We are convinced that this perception has 
far-reaching consequences for the design of compiler systems. 

1 Mot ivat ion 

In program analysis and optimization it is common to work on so-called flow 
graphs, whose edge structure makes the control flow of the underlying program 
explicit. Most widely used are node-labeled basic-block (BB) graphs, whose nodes 
represent maximal sequences of straight-line code. This most prominent repre- 
sentation can be modified according to (1) its granularity in order to arrive at 
single-instruction (SI) graphs and /or  to (2) its way of instruction modelling: 
edge-labeled graphs model instructions/basic blocks by edges rather  than nodes. 

In this article we investigate these four variants of program representation 
both from a theoretical and practical point of view. It turns out tha t  the most 
prominent representation in practice is no longer adequate in times where al- 
ready the main storage of home computers easily accommodates SI-graphs for 
huge procedures. Moreover, we show that  edge-labeled graphs simplify both the 
theoretical reasoning about  analysis and optimization as well as their implemen- 
tat ion in comparison to their node-labeled counterparts.  This is mainly due to 
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the fact that edge-labeled graphs allow us to use nodes as the natural place 
for storing analysis results and information within the graph structure, whereas 
node-labeled graphs require separate means and operational overhead. The ad- 
vantage of edge-labeled graphs is even more drastic when looking at programs 
with a parallel operator [18]. 

Our investigation is complemented by runtime measurements demonstrat- 
ing that the "classical" reason for BB-structuring, i.e., opening analysis and 
optimization to realistic programs, did not survive the radical changes at the 
hardware front: as SI-graphs fit into main memory now, BB-graphs can at the 
most gain some performance for programs with basic blocks of comparatively 
large average size. In fact, in everyday's life, we never experienced any situation, 
where BB-graphs were superior to SI-graphs. 

Moreover, the BB-structuring is limited in its application scenario (cf. Section 
2.2). Thus, there are strong reasons to considering edge-labeled SI-graphs as the 
most adequate uniform representation for compiler optimization. In particular, 
it is fair to state that BB-graphs outlived their time, and that they can be 
considered l i v i n g  d i n o s a u r s .  

S t r u c t u r e  of  the  Article.  In Section 2 we critically re-investigate the prop- 
erties usually attributed to BB-graphs. This leads directly to the central thesis 
of this article stating the superiority of edge-labeled SI-graphs for analysis and 
optimization. Subsequently, we present our preliminaries including a taxonomy 
of flow-graph variants in Section 3. Central are then Sections 4 and 5. In Sec- 
tion 4 we give theoretical evidence for the superiority of edge-labeled SI-graphs 
taking three different view-points. In Section 5 we complement this by runtime 
measurements demonstrating that BB-graphs do not compensate for their con- 
ceptual complexity in practice. Together, this confirms our thesis of Section 2 
both theoretically and practically. Section 6, finally, contains our conclusions. 

2 B a s i c  B l o c k s :  " F o l k  K n o w l e d g e "  

2.1 Benefits 

The central benefits commonly claimed are summarized by two keywords: 

- P e r f o r m a n c e :  . . .  because less nodes take part in costly fixed-point iterations. 
- C o m p a c t n e s s :  . . .  thus, larger programs fit into the main memory. 

Both points do not reflect the situation of the late nineties: state-of-the-art 
fixpoint algorithms can easily deal with graphs of more than 105 nodes in real 
time, a size which will hardly be exceeded by procedural SI-graphs (of course, 
this also depends on the fact that these graphs fully fit into the main memory 
of modern computers). 

2.2 Short-comings 

In contrast, BB-graphs are infected with a number of inquestionable short- 
comings: 
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- Higher conceptual complexity: ... basic blocks introduce undesired hierar- 
chy complicating both theoretical reasonings as well as implementations (cf. 
Section 4.1). 

- Demand for pre- and postprocesses: ... usually required for managing the 
subtleties of hierarchy (e.g, dead code elimination, constant propagation, ...), 
or "tricky" formulations mandatory for by-passing them (e.g., partial redun- 
dancy elimination) (cf. Section 4.2). 

- Limited generality: ... certain practically relevant analyses and optimizations 
are hard or even impossible to be expressed on the basic-block level (e.g., 
faint variable analysis and elimination) (cf. Section 4.3). 

Higher conceptual complexity: Basic blocks structure a graph hierarchically. 
As a consequence, analysis and optimization problems must be designed, rea- 
soned about, and implemented on two different levels, the basic-block and the 
instruction level; the latter in order to push the data-flow information com- 
puted globally for basic blocks to their constituting instructions, This two-level 
approach is particularly cumbersome, whenever the local analyses for several 
global analyses are performed in a single traversal, a situation which is com- 
mon in practice for performance reasons. Maintaining a consistent view on basic 
blocks becomes then often a nontrivial task due to intricate interdependencies 
of different analyses and transformations based thereof (cf. [26]). This is a pity, 
particularly, because a single level, even more, the intellectually less sophisti- 
cated and less challenging instruction level would suffice. An observation, which 
previously was made by other researchers as well (cf. [26]). Here, however, we 
investigate its consequences in more detail and complement them with runtime 
measurements showing that the higher conceptual complexity of BB-graphs does 
not pay-off in practice in terms of performance. 

Demand for pre- and postprocesses: Working on BB-graphs requires usually 
pre- and postprocesses on the analysis and optimization side. In fact, this holds 
for almost every optimizing program transformation, and is another source of 
additional conceptual complexity. Obvious, though comparatively simple exam- 
ples are procedures for dead code elimination and constant propagation. After 
computing the required data-flow information for basic blocks, they must be in- 
spected themselves by a postprocess in order to apply the transformation under 
consideration to the complete program. Sometimes pre- and postprocesses can 
be avoided. However, this usually relies on "tricky" formulations often injuring 
conceptual clarity and transparency of the transformation. A representative ex- 
ample is the busy-code-motion (BCM)-transformation of [16] for the elimination 
of partially redundant computations in a program. The BCM-transformation 
does not require a postprocess as e.g. dead code elimination. This, however, 
comes at the price of a more complicated reasoning about the correctness of the 
transformation as the meet-over-all-paths ( MOP )-solutions of the data-flow prop- 
erties involved do not directly fit to the maximal-fixed-point (MFP)-solut ions  
computed because they apply to basic-block internal program points rather than 
to their "natural" entry and exit points. 
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Limited generality: The applicability of BB-graphs for practically relevant 
problems is limited. Faint code elimination (c£ [8, 10,17]), a generalization of 
dead code elimination, is a typical representative of such a problem, which seems 
to be impossible to formulate on a basic-block level. The point is that the local 
properties of a basic block are not invariant under the global faintness analysis. 
This invariance, however, is the prerequisite for lifting an analysis from the 
instruction to the basic-block level, i.e., for hierarchically decomposing it into a 
global analysis on basic blocks followed by their local inspection. 

2.3 W h a t  Rema ins?  

Whereas modern computers easily deal with the size of even large SI-graphs, 
humans will hardly be able to comprehend small ones of a few hundred nodes 
only. Here a factor of 5 to 10 in size may well make a significant difference: it is 
easy to graphically deal with up to 60 or 80 nodes, but 500 nodes are definitely 
beyond a comfortable graphical treatment. Thus, the BB-structure can well be 
regarded as a means to extend the range of graphically manageable programs. 
However, the question remains whether they are most adequate for this. Here, 
the answer is no for two reasons: 

- Syntactic reduction in terms of a macro or sub-routine concept, structuring 
the argument program, is much superior to an algorithmic BB-reduction, 
as this structuring allows an almost arbitrary reduction, while at the same 
time expressing some of the intention of the programmer. Thus the reduced 
programs "are meant" to be understandable. 

- Semantic reduction according to a certain aspect of the program reduces 
the program by hiding all details irrelevant for the aspect currently under 
investigation. This reduction typically has an effect far beyond a BB-collapse, 
and it collapses program parts according to their properties rather than 
according to some comparatively trivial syntactic criterion. This allows to 
maintain understandability on the level of the collapsed program, which is 
by no means guaranteed by a BB-collapse. 

Both syntactic and semantic reduction can easily be computed in real time in 
order to provide the user with the most adequate "view" of the program. Both re- 
duction techniques have in fact been successfully applied in an industrial project, 
where they were one of the key "unique selling propositions" [24, 25]. In the re- 
mainder of this article we give theoretical and empirical evidence advocating our 
thesis that edge-labeled SI-graphs are the graph variant simultaneously fitting the 
needs of theoreticians and practitioners best. 

3 Preliminaries: A Taxonomy of Flow Graphs 

Programs are basically represented by directed flow graphs consisting of a set 
of nodes and edges together with a unique start node and end node, which are 



69 

Flow-graph w 
mos t  wide ly  L 

~h  var iant  
mended  by  
art ic le t  

Fig. 1. A taxonomy of flow graphs. 

assumed to have no incoming and outgoing edges, respectively. Flow graphs 
can either be node-labeled or edge-labeled; they can be basic-block (BB) graphs 
or single-instruction (SI) graphs. Together this leads to the taxonomy of flow 
graphs displayed in Figure 1. We recall that node-labeled BB-graphs are pre- 
vailing both in practice and in the literature on analysis and optimization. They 
can be considered the de-facto standard. 1 In contrast, we argue that from both 
a theoretical and practical point of view edge-labeled SI-graphs are the most 
appropriate flow-graph variant. Figure 2(a) illustrates the different flow-graph 
variants by means of small flow-graph fragments. 

Conventions: We denote BB-graphs and SI-graphs by quadruples G = (N, E, s, e) 
and G = (N, E, s, e), respectively. Basic blocks are usually denoted by /5, and in- 
structions by 5, both possibly indexed, lhs(~) denotes the left-hand side variable 
of an instruction 5, and block(L) the basic block containing 5. Moreover, start(/~) 
and end(~) denote the first and the last instruction of/3, respectively. For an 
SI-graph G, predG(n)=df { m I(m, n) • E } and succG(n)==d$ { m I (n, m) • E } 
denote the set of all immediate predecessors and successors of a node n. Usu- 
ally, e will be used as an identifier for edges. A finite path in G is a sequence 
(nz,. . . ,nq) of nodes such that (nj ,nj+l)  • E for j e { 1 , . . . , q - i } .  PG[m,n] 
denotes the set of all finite paths from m to n, and Pa lm,  n[ the set of nil finite 
paths from m to a predecessor of n. Finally, every node n • N is assumed to 
lie on a path from s to e. These notions are used analogously for BB-graphs. 

4 Theory: Short-comings of BB-Graphs 

In this section we give theoretical evidence for the short-comings of BB-graphs 
for analysis and optimization as summarized in Section 2.2. Each of the points 
mentioned, higher computational complexity, demand for pre- and postprocesses, 
and limited generality, is investigated in a separate subsection. 

1 See e.g. [1-7, 9, 10, 12, 16, 17, 19-22, 26]. One of the few exceptions is [18] considering 
edge-labeled SI-graphs. 
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Fig. 2. a) Node-labeled vs. edge-labeled (BB- and SI-) flow graphs, b) eNtry- and 
eXit-points, and local semantic functions. 

4.1 Higher Conceptual Complexity 

BB-graphs are inherently hierarchical. They have a two-level structure. This 
enlarges the conceptual and technical complexity of specifying analysis problems, 
and of reasoning about them as well as their implementations. We demonstrate 
this on two different levels of abstraction. First, on the level of the abstract- 
interpretation framework underlying data-flow analysis (DFA) (cf. Section A). 
Second, on the concrete level of a typical and practically relevant DFA-problem, 
the availability of program terms (cfi Section B). 

A) Cor rec tness  and Precis ion:  MOP-Solution and MFP-Solution. Fun- 
damental for reasoning about correctness and precision of a DFA are the meet- 
over-all-paths (MOP) solution and the maximal-fixed-point (MFP) solution in 
the sense of Kam and Ullman [11]. Intuitively, the MOP-solution defines the 
desired solution of a DFA-problem. It directly reflects the operational semantics 
of a program because it is the "meet (intersection)" of all (data-flow) infor- 
mations contributed by some program path reaching a specific program point. 
Unfortunately, this solution does in general not induce an effective computation 
procedure. Fortunately, this holds in practice for the MFP-solution of a DFA- 
problem. It is defined as the greatest solution of an equation system express- 
ing consistency of an annotation of the program with (data-flow) informations, 
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which, under certain side-constraints, can effectively be computed by an itera- 
tive fixpoint procedure. For each analysis, however, the MFP-solution must be 
proved precise or at least correct with respect to the MOP-solution. Though this 
reduces in practice to checking the premises of the well-known Coincidence and 
Safety Theorems of Kildall [13], and Kam and Ullman [11], the technical com- 
plexity of the definitions of the MOP- and MFP-solution, and hence of applying 
these theorems, varies significantly for the flow-graph variants of Figure 1. We 
demonstrate this by contrasting the definitions of the MOP- and MFP-solution 
for edge-labeled SI-graphs, leading to the most elegant and concise versions, 
with their counterparts for node-labeled BB-graphs, leading to the most com- 
plex ones. It is common to all variants that the specification of a DFA-problem 
consists basically of a local semantic functional [ ] describing the effect of the 
instructions (basic blocks) in terms of a function on a complete lattice C repre- 
senting the data-flow informations of interest, and a start information cs E C, 
which is assumed to be valid on calling the program under consideration. The ef- 
fect of a program path is then defined as the effect of the sequential composition 
of its elements (i.e., nodes or edges). 

A1) MOP- and MFP-Solution for Edge- labe led  SI -Graphs .  Considering 
an edge-labeled SI-graph G, the local semantic functional [ ~ : E -+  (C--+6) 
specifying a DFA-problem defines for every edge e of G a function on 6. The index 
L indicates that the local semantic functions define the effect of instructions, not 
of basic blocks. The solution of the MOP-approach is then given by: 

The  MOP-Solution: 

Vcs E C Vn E g .  MOP(~ L,c.)(n)=d] R { ~p~(cs)tP E Pc[s ,n]  } 

Note that this definition is the formal counterpart to the informal definition 
given above. Next, we define the corresponding MFP-solution. 

The  MFP-Solution: V c8 E C V n E N. MFP([ ]~,c8)(n)=di ±nfOc~ (n) 

where infoc, denotes the greatest solution of the following equation system: 

info(n) = { I (re, n) ~(info(m)) I m E predG(n) } otherwise 

The Coincidence Theorem 1 is the handle for proving the MFP-solution of a 
DFA-problem precise with respect to its MOP-solution (cf. [11,13]). 2 

T h e o r e m  1 (Coincidence  Theo rem) .  
The MFP-solution and the MOP-solution coincide, i.e., 

Vcs E C Vn E N. MFP([ ]~,c~)(n) = MOP([ ~,c~)(n) 

i] the local semantic ]unctions [ e ]~, e E E, are all distributive. 

2 If the local semantic functions axe monotonic, the MFP-solution is a safe (correct) 
approximation of the MOP-solution, i.e.: MFP(I ]~,c~) E MOP([ ]~,c~) (Safety Theo- 
rem, [11]). 
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A2) MOP- and  MFP-Solution for Node- labeled  BB-Graphs .  For com- 
parison we now recall the definitions of the MOP- and MFP-solution for node- 
labeled BB-graphs. This requires a two-level approach. First, defining them on 
the basic-block level. Second, defining them on the instruction level. The two 
levels are illustrated in Figure 2(b), which in addition makes the usually im- 
plicit distinction between entry- and eXit-points for both instructions (N-I,X-I) 
and basic blocks (N-BB,X-BB) of a node-labeled graph explicit. Note that mak- 
ing the eNtry- and eXit-points explicit, the node-labeled BB-graph is simply a 
(complicated) coding of an edge-labeled (SI-) graph. 

Level 1 - Basic-block Level. On this level we need a local semantic functional 
~ : N --+ (C -+ C), which defines the effect of complete basic blocks, not just of 

single instructions. In practice, this requires a preanalysis of every basic block 
being accomplished by some preprocess. The definition of the MOP-solution is 
then as follows. Note that it defines for every node an eNtry- and an eXit- 
information, which is mandatory for node-labeled flow graphs. Unfortunately, 
this introduces an inhomogeneous notion of program point into the reasoning. 

The MOP-Solution: (Basic-block Level) 

Vcs E C Vn E N. MOP(~ ],,cs)(n):d/(N-MOP([ ]~,c.)(n), X-MOP([ ]~,c.)(n) ) 

with N-MOP(~ ],,e,)(n)=df ~ { [p]Z(c~)[p E PG[s,n[} 
X-MOP(~ ]~,c.)(n)=dy ~ { [p ~(cs)  [p E PG Is, n] } 

Also the fixed-point counterpart of the MOP-solution considers for every node 
of G a pair of DFA-informations: 

The MFP-Solution: (Basic-block Level) 

V cs E C Vn E N. MFP([ ~,,c.)(n) =if ( N-MFP(I ~,c.)(n), X-MFP(~ ~,,c.)(n)) 

with N-MFP([ i~,c.)(n)=dr pre~. (n) and X-MFP([ ],,c.)(n)-----dr post~. (n) 

where prec~ and post~, denote the greatest solutions of the equation system: 

c~ if n = s 
pre(n)  

( p o s t ( m )  I m E predG(n) } otherwise 
post(n)  = [n]~(pre(n) )  

Level 2 - Instruction Level: On this level the information must be pushed 
into the basic blocks to the individual instructions. Like on the basic-block level 
we have to distinguish between entry- and eXit-informations. In addition to ~ ~ 
this requires a second local semantic functional [ L : N ~ (C -+ C), which defines 
the effect of instructions, not of basic blocks. 

The MOP-Solution: (Instruction Level) 

VCs E C Vn E N. MOP([ ~,,c,,)(n)----d.f (N-MOP([ L,c.)(n), X-MOP(~ L,c.)(n) ) 
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with { N-MOP([ ]~,c.)(block(n)) if n :  start(block(n)) 
N-MOP([ L,c.)(n) =d/ [p],(N-MOP([ lj.)(block(n))) otherwise (p prefix- 

path from start(block(n)) 
up to n) 

X-MOP(~ L,c.)(n) =d/ [p]~(N-MOP([ ~,c.)(block(n))) (p prefix-path 

from start(block(n)) up to and including n) 

Similarly, we get for the fixed-point counterpart. 

The MFP-Solution: (Instruction Level) 
V Cs E g V n E N. MFP([ L,c.) (n) =d,f ( N-MFP(~ L,c.) (n), X-MFP(~ ]~,c.) (n)) 

with N-MFP([ 1,,c.) (n)--~df pre~c. (n) and X-MFP([ ],,c.) (n) =a/post~. (n) 

where pre~. and post~, denote the greatest solutions of the equation system: 

{ pre~c.(block(n)) if n = start(block(n)) 
pre(n) = post(m) otherwise (m is n's unique predecessor 

in block(n)) 
post(n)  = [n ] , (p re (n) )  

Note that the greatest solution of the latter equation system can be computed 
quite efficiently by exploiting the fact that basic blocks represent straight-line 
code sequences. Hence, it suffices to visit the instructions of the basic blocks in 
their sequential order without having to visit instructions or basic blocks again. 
Note, however, that this requires a different implementation than for solving the 
first-level equation system. Moreover, inside a basic block the eNtry-information 
of an instruction coincides with the eXit-information of its unique predecessor. 
Thus, one of these informations can be dropped. This is another source of in- 
homogeneity between program points complicating theoretical investigations as 
well as implementations further. 

The Coincidence and Safety Theorem can also be given for the 2-[evel setting 
of node-labeled BB-graphs. We omit this here for brevity. Prom the preceding 
presentation it should be obvious that the technical and notational details are 
much more complicated than for edge-labeled SI-graphs. We remark that this 
complexity is not restricted to theoretical investigations on correctness and pre- 
cision. It directly carries over to the implementation side. One has to define and 
implement a DFA both on the basic-block as well as on the instruction level. 
This is illustrated in the following section. Note that the equation systems oc- 
curring in the following examples are specializations of the equation systems of 
paragraphs A1) and A2). 

B) Avai labi l i ty  of  Terms:  A Typical  Appl icat ion.  In this section we demon- 
strate the impact of the choice of a specific flow-graph variant on the form of a 
DFA-specification considering a practically relevant analysis problem, the avail- 
ability of terms, a representative of Hecht's famous taxonomy of DFA-problems 
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[9]. Intuitively, a term t is available at a program point, if it has been computed 
on every program path reaching this point without an intervening modification. 

Table 1 recalls the specification of the availability problem for node-labeled 
BB-graphs. Note that  the two-level specification of the BB-approach requires a 
two-phase computation process. The first phase is concerned with basic blocks, 
the second phase with their individual instructions. Table 2 opposes this speci- 
fication directly to its counterpart  for edge-labeled SI-graphs. As expected, it is 
much simpler as it does not require a two-level specification and dealing with 
entry- and exit-properties. The latter point makes it also simpler and thus su- 
perior to its counterpart  for node-labeled SI-graphs, which for comparison is dis- 
played in Table 3. In fact, the specification for edge-labeled SI-graphs is the most 
concise and elegant one of the four variants (see [15] for the last one). A fact, 
which applies to other DFA-problems as well. In [15] this is demonstrated for 
the problems of very busy expressions and constant propagation. 

Availability for Node-labeled BB-Graphs: 
P h a s e  I :  T h e  B a s i c - b l o c k  L e v e l  

Local Predicates: (associated with basic-block nodes) 

- B[3-XCOMP~(t): fl contains an instruction e computing t, and neither e nor 
any instruction of fl following t modifies an operand of t. 

- BB-TRANSP~(t): fl contains no instruction modifying an operand of t. 

The Equation System of Phase I: 

ff if /5=s 
BB-N-AVAIL~ = ]-[ BB-X-AVAIL~ otherwise 

3~prea(Z) 

BB-X-AVAIL~ = BB-N-AVAIL~ • BB-TRANSPf~ + BB-XCOMP~ 

P h a s e  I I :  T h e  I n s t r u c t i o n  L e v e l  

Local Predicates: (associated with single-instruction nodes) 

- COMPs(t): ~ computes t. 
- TRANSP,(t): * does not modify an operand of t. 
- BB-N-AVAIL*, BB-X-AVAIL*: greatest solution of the equation system of Phase I. 

The Equation System of Phase II: 

{ BB-N-AVAIL~zo&(~ ) if ~,= start(block(t)) 
N-AVAIL~ = X-AVAILpred(~) otherwise (note that t pred(~) 1 = 1) 

X-AVAIL~ = [ BB-X-AVAIL~'t°ck(') if L = end(block(L)) 
( (N-AVAIL~ + COMP,) • TRANSP, otherwise 

Table 1. Node-labeled BB-graphs: Availability of term t. 



75 

Availability for Edge-labeled SI-Graphs: 
Local Predicates: (associated with single-instruction edges) 

- COMPe(t): instruction t of edge ¢ computes t. 
- TRANSP~(t): instruction ~ of edge ¢ does not modify an operand of t. 

The Equation System: 

ff  if n = s  
AVAILn = N (AVAILm + COMP(m,~)) • TRANSP(.~,~) otherwise 

mEpred(n) 

Table 2. Edge-labeled SI-graphs: Availability of term t. 

Availability for Node-labeled SI-Graphs: 
Local Predicates: (associated with nodes) 

- COMPs(t): ~ computes t. 
- TRANSP~(t): t does not modify an operand of t. 

The Equation System: 

N-AVAIL~ = 
ff  if L=S 

YI X-AVAIL~ otherwise 
~Epred(L) 

X-AVAtLL = (N-AVAIL~ + COMPs). TRANSP~ 

Table 3. Node-labeled SI-graphs: Availability of term t. 

4.2 D e m a n d  for Pre -  and  P o s t p r o c e s s e s  or  "Tricky" F o r m u l a t i o n s  

After focusing on analysis in the previous section, we now concentrate on opti- 
mization. Optimizations on BB-graphs demand typically for pre- and postpro- 
cesses in order to manage the technical subtleties caused by their hierarchical 
structure. We illustrate this by means of the busy-code-motion (BCM) trans- 
formation of [16] for eliminating partially redundant expressions in a program; 
the latter an optimization, which is implemented in many" advanced industrial 
compiler systems like e.g. on the basis of [16] in the Sun SPARCompiler lan- 
guage systems. 3 In essence, the BCM-transformation places computations as 
early as possible in a program. This maximizes the potential of redundant code 
which can be eliminated by replacing the original computations of the program 
by references to temporaries initialized at the earliest possible program points. 

3 SPARCompiler is a registered trademark of SPARC International, Inc., and is l i -  
censed exclusively to Sun Microsystems, Inc. 
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As proved in [16] this leads to computationally optimal results, which cannot be 
improved any further by means of partial redundancy elimination. In essence, 
the computation of the earliest computation points for a computation requires 
the computation of the set of program points, where it is available (i.e., where it 
has been computed on every program path reaching the point without an inter- 
vening modification of any of its operands), and where it is very busy (i.e., where 
it will be computed on every program continuation without a preceding mod- 
ification of any of its operands). The availability analysis has been considered 
in detail in Section 4.1; the very-busyness analysis is completely dual, and can 
be found in [15]. Of course, for BB-graphs the computation of availability and 
very busyness requires a two-level approach. In [16] this is avoided by computing 
a somehow "tricky" variant of availability and very busyness. The point of the 
modification, which is described in full detail in [15] and [16], is that the proper- 
ties computed do not hold for the "natural" entry and exit point of a BB-node, 
but for a transformation-specific entry- and exit-insertion point inside the basic 
block itself, which depend on the computation pattern under consideration. 

Though this avoids a postprocess, it makes reasoning about the correctness of 
the transformation more intricate as the MFP-solutions computed do not coin- 
cide with the "standard" MOP-solutions. The Coincidence Theorem (cf. Section 
4.1) cannot directly be applied. In addition, the BCM-transformation still relies 
on a preprocess eliminating partial redundancies locally inside a basic block. It 
is worth noting that this is not specific for BCM, but applies to every PRE- 
algorithm working on BB-graphs (see [15] and [16] for details). 

Considering SI-graphs instead of BB-graphs reduces the complexity of the 
specification of the BCM-transformation dramatically. In [15] this is demon- 
strated for node-labeled SI-graphs. A major reason for this decrease of both con- 
ceptual and technical complexity is that there is no longer a need for "tricky" 
variants of availability and very busyness nor for any pre- and postprocesses. The 
counterpart of the BCM-transformation for edge-labeled SI-graphs would even 
be simpler due to the homogeneity of program, points. Moreover, the edge-label 
modeling additionally profits from the fact that the problem of critical edges, 
i.e., edges leading from nodes with more than one outgoing edge to nodes with 
more than one incoming edge (see [16] for details), does not arise here. 

4.3 Limited Generality 

The faint variable analysis (cf. [8, 10, 17]) is a striking example of a practically 
relevant problem where it is not at all obvious of how to express it on the basic- 
block level. Intuitively, a variable is faint if there is no program continuation 
on which it is used without a preceding modification, or if the left-hand side 
variable of the instruction it is used in, is faint as well. A simple example of 
a faint, though not dead variable, is the left-hand side occurrence of x in the 
statement x :-= x + 1 located inside a loop without any other occurrence of 
x elsewhere in the program. The specification of the faint variable analysis for 
both node-labeled and edge-labeled SI-graphs can be found in [15]. We conjecture 
that it is impossible to express this property adequately on the BB-level. The 
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point here is that the basic-block properties of this problem are not "really" 
local, but depend on the globally computed information. Hence, a basic-block 
analysis must be interleaved with steps for updating basic-block informations. 
Conceptually, this is even more complicated than the pre- and postprocesses or 
the "tricky" formulation of the BCM-transformation of the previous section, and 
destroys the two-level approach of working on BB-graphs, i.e., iterating over the 
BB-structure first, and inspecting them locally second. 

Besides faint variable analysis, there are many other practically relevant 
DFA-problems like constant propagation (cf. [11]) or the computation of seman- 
tically equivalent program terms (cf. [23]), which can quite naturally and easily 
be expressed on the instruction level, but not on the basic-block level. In [15] 
this is illustrated by means of constant propagation. 

5 Practice:  Empirical  Evaluation 

In this section we complement our conceptual investigation by empirical results. 
We will see that BB-graphs do by no means compensate performance-wise for 
their (artificial) conceptual complexity. We compared the runtimes for different 
DFA-problems for edge-labeled BB- and SI-graphs, for programs of different size, 
and varying average lengths of basic blocks. As expected, it turned out that (1) 
the average length of basic blocks and (2) the maximal chain length of the lattice 
of data-flow information are the key parameters for this comparison. 

Figures 3(a) and (b) show a representative profile of these results. For the 
problem of computing dead variables (cf. [9]), Figure 3(a) shows that there is 
no pay-off for BB-graphs unless the average length of basic blocks becomes un- 
realistic large for "real world" programs. Figure 3(b), subsequently, illustrates 
the results of computing available expressions for a scenario, where the number 
of computation occurrences is small. In this practically frequent situation, the 
overhead for the basic-block handling is dramatically dominating. 

The worst-case scenario for SI-graphs requires both large basic blocks, and 
large maximal chain lengths of the data-flow lattice, in order to force long it- 
eration sequences. Both of these characteristics hardly arise in practice. E.g., 
Morel and Renvoise report that they never observed more than 3 iterations in 
their experiments [20], while Dhamdhere reports a number of 5 [3, 4]. Typical 
DFA-probtems requiring lattices with longer chains (than e.g. bitvector problems 
or constant propagation), like e.g. the computation of semantically equivalent 
terms (cf. [23]) are beyond the scope of a BB-modelling (cf. Section 4.3). 

6 Conclusions 

For decades, BB-graphs are the state-of-the-art means for representing programs 
in analysis and optimization. They are considered a guarantor of high perfor- 
mance and broad applicability, which is believed to fairly balance the higher 
conceptual complexity they cause for theoretical reasoning and implementation. 
In this article we have systematically investigated the benefits and short-comings 
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Fig. 3. Illustrating empirical results. 

of the complete taxonomy of flow-graph variants. As a central result it has turned 
out tha t  the severe short-comings of the currently most  prominent representa- 
tion is by no means compensated by its assumed benefit, namely performance.  
Empirical  results show tha t  the conceptually far superior SI-graphs are com- 
petet ive in practice, often even superior. In fact, in everyday 's  life, we never 
experienced a situation, where the classical representation performed better.  
This strongly _indicates tha t  edge-labeled SI-graphs are the adequate represen- 
tat ion for the considered application scenario. In fact, the experience with our 
DFA&OPT-genera tor  (cf. [14]), which is based on edge-labeled SLmodeling, is 
extremely promising. 
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