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Abs t r ac t .  Discrete surfaces composed of surfels (a surfel is a facet of a 
voxel) have interesting features. They represent the border of a discrete 
object and possess the Jordan property. These surfaces, although discrete 
by nature, represent most of the time real world continuous surfaces for 
which local geometrical characteristics are useful for registration, seg- 
mentation, recognition and measure. We propose a technique designed 
to estimate the mean curvature field of such a surface. Our approach 
depends on a scale parameter and has a tow computational complexity. 
It is evaluated on synthetic surfaces, and an application is presented : 
the extraction of sulci on a brain surface. 
I n d e x  t e r m s  - Discrete surfaces, surfels, geometric invariant, mean cur- 
va tu re  

1 I n t r o d u c t i o n  

Modern imaging techniques like MRI or confocal microscopy produce 3D digi- 
tal images that  represent real world scenes. A segmentation step {bllowed by a 
labelling of the resulting binary image yields well identified aD discrete objects. 
Their surface contains a lot of useful information. Second order differential in- 
variants such as curvatures play a key role in image processing. For example, 
they are used for registration of 3D images, or for representation, recognition 
and segmentation of objects, as presented in [4, 7, 11]. They may  also be used as 
internal forces that  drive the deformation of an active surface. Mean curvature 
has a special physical signification : zero mean curvature surfaces are called min- 
imal surfaces, because given a closed curve in 3D-space, the surface of minimal  
area that  has this curve for border has everywhere a zero mean curvature [5] 
p.199. Soap films are familiar examples of minimal surfaces. 

1.1 N o t i o n s  o f  d i s c r e t e  s u r f a c e s  a n d  r e l a t e d  a l g o r i t h m s  

There are several definitions of discrete surfaces. Some are composed of subsets 
of voxels, seen as points of Z a that  verify some special topological properties 
[t5]. Their definition is still studied in order to adapt  it to intuitive notions of 
surfaces [3, 12]. Some other are made of surfels, that  can be seen as the facets of 
voxels, elementary cubes whose centre has integer coordinates. This context is 
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called the cuberille model and we will use this notion in the following. A formal 
description in arbitrary dimension of this model can be found in [8] and [19], 
and will partially be recalled in section 2. This kind of surface is still actively 
studied in arbitrary dimension, but their detection and properties are already 
well known in 3D [18, 20]. Efficient techniques that give the volume enclosed 
by these surfaces exist [18]. Furthermore~ one may also find boundary based 
techniques that produce the geometrical moments of an homogenous volume 
enclosed by the surface in [22]. Many papers have been written to propose and 
to justify methods that detect the connected components of surfaces in binary 
scenes [17, 20]. However, specific techniques that estimate shape information like 
normal vector field, area or curvature for this surface representation seem to 
lack. A first step has been proposed in [I0]. We use the word estimate, because 
from now, we will suppose that the discrete surface actually represents a smooth 
continuous surface, and we are interested in obtaining the geometric properties 
of this continuous surface. The computation of geometrical properties of the 
discrete surface itself is straightforward but meaningless. Moreover, as the surface 
of an object of practical interest is made of a big number of surfels (typically from 
50 000 to 400 000), an efficient approach is welcome to avoid long computation 
time and to allow interactive use or multiscale analysis. 

1.2 Estimation of geometric invariants 

We will now briefly survey the methods that may be found in the literature and 
aimed at estimating the differential properties of discrete or sampled surfaces. 
In 2D, the estimation of differential invariants of curves like tangent, length 
and curvature was already well studied (see [21] and its references). The main 
problem of the estimation of parameters on a discrete surface (3D case) is that 
no parametrization of the surface exists contrarily to the 2D case. But for 2D1/2 
surfaces (range images) represented by a depth map, a natural coordinate system 
is the 2D position. On this kind of images, one can get a locM model, either by 
using a polynomial fig like in [4] or by computing partial derivatives of the depth 
function along coordinate lines. Classical formulas of differential geometry are 
then used to get the invariants from the partial depth derivatives or from the 
fitted polynomial. Different approaches exist for true 3D surface analysis. THose 
presented in [16] and [14] use partial derivatives of the 3D grey level image on 
the surface trace to compute the differential properties of the surface. These 
methods need to scan the entire 3D volume several times. A method presented 
in [13] uses the fitting of a quadratic surface patch on the surface trace. This 
method is to be more computationally efficient since it works only on the surface 
trace. 

1.3 Our  approach  

The method described here uses the regular structure of the discrete surface as 
the support of functions of vectorial values that describe the geometry of the 
surface at the surfet scale. Then, we convotve recursively these values by a low 
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pass filter along special curves, in order to get a regional average of these local 
geometrical values. These curves define coordinates curves that  are common to 
several surfels. They are defined globally, and not locally. As the surfel belongs to 
two of these curves, the curves define a local parametr izat ion of the surface. The 
geometric invariants are then obtained via local calculation. We use this uniform 
framework to compute both normals and mean curvature field. Note tha t  the 
normals field is needed to get mean curvature. One of the strength of this method 
is its t ime complexity in O(o'.v~n ) + n), where ~r is the scale parameter  of the 
calculation, and n the number  of surfels of the object. We can see that  it is only 
slightly dependent on the scale parameter.  This is be a at tractive in a multiscale 
context. Another advantage is the simplicity and the uniformity of tools used to 
compute both normals and curvatures. The width of the neighbourhood taken 
into account is directly controlled by the scale parameter .  

1.4 O u t l i n e  o f  t h e  p a p e r  

This paper  is organised in the following way : in section 2 we give the basic 
definitions relative to discrete surfaces. Then, we explain the recursive computa-  
tion of the convolution product of a summable  function and a periodic function. 
In section 3 some basic notions of differential geometry of parametrized curves 
and surfaces are recalled. In section 5 we explain the calculus of mean curvature 
which implementat ion is detailed in section 4. The computat ional  complexity is 
est imated in section 6 and experimental results on families of analytic objects 
are presented and discussed in section 7. 

(a) Co~gurat ior~ (h) Slices ana slice contours (c) A surface, its nor- 
of voxels and bels of an object along the three real, principal curvature di- 
that meet the bel b families of main planes. At- rections and a curve of the 
at the edgel e. Grey rows show the orientation of surface with an angle of /~ 
squares are 1-- vox- the contours with the main curvature di- 
els, white one are rection. 
0-voxels 

Fig. 1. Special curves on discrete and continuous surfaces 
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2 N o t a t i o n s  a n d  b a s i c  d e f i n i t i o n s  

We first describe the nature of the discrete we use, as well as the curves we 
consider on it. Afterwards we explain the main calculation tool used in our 
method: the recursive computation of a convolution product. 

2,1 Surfaces of  3D discrete objects  

These definitions are mainly drawn from [8] and [19] but we restrict ourselves to 
the 3D case. 

M a i n  vectors of  ]R 3, z~, o p e r a t i o n s  invo lv ing  t h e s e  v e c t o r s .  We consider 
the euclidian vectorial space ~a  and a direct orthonormal basis (O, wl, w2, w3). 
We will use the sets of indices I~ = {1, 2, 3}, 13 = { -3 ,  - 2 ,  - 1 ,  0, 1, 2, 3}, and 
I,  3 = I 3 \ {0}. We define Vi E I~, 5~ = w~, 6- i  = -6i, the null vector 50, z3 = 
{&/i E in} and A, = {Si/i E I3}. We define the multiplicative operator ® from 

I3xIa- .>I ~ the vector cross product A: ® : (,: ~,)-+z=~®y/a.=a=^a~ 

Voxel~ b i n a r y  scene.  Let x E ]~3 We denote xi the ith coordinate of x. ~a  is 
divided into unit cubes called voxels by a set of planes orthogonal to the axes 
{ P~,j E 13 +,j  E ~ +  ½ and P~,j = {x E ~3 /z i  = j } } .  We identify each voxel with 
its central point of ~3. A binary scene of ~a is a function B : Z 3 -+ {0, 1} . We 
call B(v) the value of the voxd v. We note I(B) = B-~(1) and 0(B) = B-~(0) .  

n - a d j a c e n c y ,  n - p a t h ,  n - o b j e c t ,  n - b a c k g r o u n d .  Two voxels c and d 
are said to be 6-adjacent if they share a face. They are 18-connected if they 
are 6-adjacent or if they share an edge. For n E {6, t8}, an n-path of lenght 
l p = [v0 , . . . ,v l ]  is a sequence of l + 1 voxels so that Vj E [0, l - 1] vj is 
n -ad jacen t  to vj+l. Let E be a set of voxels. Let x, y E E. If there exists a 
n - p a t h  from z to y in E, we say that x and y are n-connec ted  in E.  A set E 
of voxels is n -connec ted  iff any two voxels of E are n -connec ted  in E. Since 
n-conneetedness is an equivalence relation, we consider its equivalence classes 
that  we call n-components. If B is a binary scene, an n-object is an n -connec ted  
component of I(B) and an n-background is an n-connec ted  component of 0(B). 

Sur fe l ,  Sur fe l  t y p e ,  Sur face ,  B o u n d a r y ,  B o r d e r ,  Bel .  A surfel is an ori- 
ented surface element that is identified by the pair @i, v~) of 6-adjacent voxels, 
of which it is the common face. Therefore,the vector 5 = v2 - vl = 5~ E A. can 
take six distinct values. The type of the surfel s is T(s) = i. We will call vl the 
start voxel of s, and v2 its end voxel. A surface is a set of surfels. The boundary of 
two disjoint sets of voxels E1 and E2 is the set fl(E1, E~) = {s = (al, a2)/s E £' 
and al E E1 and a2 E E2}. Abel  of a binary scene B is a surfel a = (e, d) so that  
c E I(B) and d E 0(B). The boundary of a binary scene is the set of its bels. A 
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hA-border  is the boundary of a n -ob jec t  and of a ,k-background. In the sequel 
we will consider n)t-borders,  where t; = 6 and )~ = 18. Such a border is proved 
to be connected in some sense, to have a connected interior and exterior and to 
possess the Jordan property. 

Edge l ,  Edge l ' s  t y p e ,  Be l  ad j acency ,  S u r f a c e  g r a p h .  We call edgel of the 
surfel a the pair e = (a, hi), with 5i E A~ and Ill # IT(a)t. T(e) = i is the 
type of e. We also say that  the surfel meets the surfel at the edgel iff a and a t 
share an edge. We can define an adjacency relation between bets such as each 
edgel corresponds to a single adjacent bel. This neighbouring relation define the 
notion of path on a surface and of connected component of a surface, as well 
as the notion of surface graph. Each surfel has exactly four neighbours (one per 
edgel). 

Sl ices,  Sl ice c o n t o u r ,  Sl ice c o n t o u r  f u n c t i o n .  A slice of ~3 is a set of 
voxels in which one coordinate is fixed, the two others being free. The slice 
denoted SIi,j is the set of voxels whose ith coordinate is j .  Let be b -- (c, d) 
a b e l  of type i. It belongs exactly to two slice contours denoted by S1Cij ,  i E 
I+ \ {IT(b) l}. We c a l l / t h e  type of the slice contour SICi,b. These slice contours 
are images of slice contour functions, denoted S1CFi,b. The succession of slice 
contour bels is naturMly defined by their adjacency relation and their type : 

1Z -~ B with SICFi,b(O) = b, Vz E Z , t  = T(z) ,  and e = 5i Awl. SICF~,b : z --+ SlCFi,b(z) 
SlCFi,b is then recursively defined in the following way : 

{ SICFi,b(z + 1) is the adjacent bel of SICF~,b(z) at e 

S l C F i , b ( z -  1) is the adjacent bel of StCFi,b(z) at - e  
Slice contours of finite objects are periodic lists of adjacent bels whose start  
voxels are in a same plane. A slice may contain several slice contours as shows 
Fig. 1 (b) for horizontal slices. 

2.2 R e c u r s i v e  c o m p u t a t i o n  o f  a d i s c r e t e  c o n v o l u t i o n  p r o d u c t  

Let g : Z -+ ~ be a convolution kernel. Let f be a periodic function of 
with values in L~. We want X = g * f .  In [6] is explained how to approximate a 
gaussian kernel and its derivatives by a sum of exponential as well as the reeursive 
implementation of a non causal filter. The k -o rde r  recursive calculation of X is 
implemented by splitting g into a sum of two functions g_ et g+, respectively 
null upon ]~+, and ~ , .  For each of these functions, we need only the k previous 
values of the convolution products as well as the current value of f and its k - 1 
previous values. Notice that the method proposed depends on a scale parameter 
but that  the design of the filter for any choice of scale parameter is very little 
time consuming. This is important  since the period of the function we wish to 
convolve may be as small as 4 (the length of a slice contour bounding a single 
voxel). Whenever this case occurs it would be meaningless to keep a wide kernel 
for these short slice contours. In such a case, the scale of our filter is adapted 
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so that  it is always less than a fraction of the length of the slice contour it will 
convolve. This fraction is 4 in our implementation.  

Contrary to the usual context of signal filtering, initial values of the convo- 
lution are not zero, because the function we want to convolve is not everywhere 
zero outside a given interval. We therefore need an initialisation step for the 
recursive calculation. At the start  of the recursion, one can truncate g outside 
an appropriate interval and then compute the first ]¢ convolution products in 
a non recursive way. We normalise our filters such that  ~,:e,~g(x) = 1 for an 
averaging kernel and ~ e z  x.g(z) = 1 for a derivative kernel. 

3 Local differential geometry 

We have seen in section 2.1 that  the nature of the surface defines naturally slice 
contours which are plane curves. If  we suppose that  the surface is a discretization 
of a smooth surface, then the slice contour is a discretized smooth plane curve. 
Consequently, we wilt recall the basic concepts of differential geometry of smooth 
parametrized plane curves and surfaces. These classical formulas of differential 
geometry of surfaces are drawn from [9]. 

3.1 P l a n e  c u r v e s  

Let P be a plane with a direct othonormat basis (O; i ,j).  We set k = i A j.  Let 
UcR-.-~-P C : s.4c(~) be a curve in this plane. We suppose that  this curve is parametrized 

by its arc length:tt~cH = 1. The unit tangent vector of this curve is r = ~c and 
5r the unit normal  as u = r A k . The algebraic curvature of the curve is p = ~ .  

3.2 S u r f a c e s  

Here we consider a smooth surface S in the euclidian 3D space (see Fig. 1(c)). 
UCN~-+S The surface is parametrized in a neighbourhood of a point p by M : (u v)-~M(~ v) 

with M(0, 0) = p. Let C1 and C2 be any two curves on the surface with C1(0) = 
C~(0) = p . Provided that. the curves are not mutual ly parallel at p, the two 
tangents of the curves at p, rl(0) and r2(0) and are in a plane that  is the 
tangent plane of the surface at p. Np, the normal unit vector of Tp is colinear to 
r~ (0) A r2 (0) . Let P0 be a plane that  contains 5~. Now let Co, Co (0) = p be a 
curve that  lies both on the surface and on a plane Pe that  contains Np. Po has a 
dihedral angle 8 with P0. Let p(O) and v(0) be the curvature and tangent of Ce at 
p. p(O) considered as of map  from [0, rr[ on R has in general two extremal values, 
~\1 = p(01) and )~ = p(01 + ~). From now, we wilt assume that  01 = 0. The two 
directions of extremal curvatures are the principal directions of the surface. 

3.3 C u r v e s  o n  s u r f a c e s  

Let C be a curve on a surface S. Let r ,  u and p be its tangent, normal  and 
curvature at p. Then the curvature at p of a curve C r on S and on a plane 
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containing Np with the same tangent r is p,, = p.(Np.v) and is called the normal  
curvature of C at p. Normal  curvature depends only on the tangent of the curve 
and is noted p(O) if r = r(O). 

4 C o m p u t i n g  s u r f a c e  m e a n  c u r v a t u r e  f r o m  c u r v e  

c u r v a t u r e  

We explain here the principle of our method.  We use slice contours and their 
curvatures to get the mean curvature of the surface. Slice contours are plane 
curves, and the computat ion of plane curves curvature is a common topic in the 
field of shape analysis. One can see [21] for a survey of curvature estimations 
methods.  A surfel is crossed by two slice contours. We suppose we know their 
curvatures at each surfel. Provided the normal to the surface on the surfel s, we 
can have the normal  curvature of each curve. We may  then use the Euler formula 
tha t  links the normal  curvature c of a curve to the angle x of the tangent of the 
curve with one of the two main curvatures (A1 andA2) of the surface : 

Euler formula c = ~1. cos(0) 2 + ~2. sin(0) 2 (1) 

The mean curvature is H = ~2~_z it is also equal to c 2-q-~, when c and c ~ are 
2 ' 

the normM curvatures of two orthogonal curves that  lie on the surface. If  the 
curves are not orthogonal, as we do not know 0, we cannot get H.  However, it 
is possible to get H if we know three curves (C/){ei~ with normal  curvatures 
(c{){ei~ * that  pass through the same surface point p. First, we note that  (1) 

can be rewritten c = H + d . c o s ( 2 . 0 )  with d = A I - ~  For (i, j )  E t 3 × I .  3, 
2 " 

we note ai,j  the angle between C{ and Cj at p. We have the set of equations 
Vi E I3.,c{ = H + d. cos(2.(0 + a~,j)) where 0 is the angle between C/ and the 
main curvature direction. We wish to find a combination of normal curvatures 
in order to eliminate d for any value of 0. We use the trigonometric relation: 

cos(2.0), sin(2.(  ,3 - 

+ cos(2.(0 + a~,2)) + sin(-2.a~,3)) (2) 

+cos(2.(0 + a~,3)) + sin(2.al,2) = 0 

Using the triangle relation oel,~ + al,2 + al,2 = ~r, with 0 < al,2, a2,3, o~3,1 < ~, 
we obtain al,3 - al,2 = a2,3 - It. Then (2) can be rewritten: 

cos(2.o). 

+ cos(Z(e  + (a) 

+ cos(2.(0 + a1,3)), sin(2.al,2) = 0 

The coefficients of a linear combination appear clearly and are all positive. They 
do not depend on 0 but only on the relative angles of the curves. We define 

13i = sin(2.aj ,k)with j® = i C I3, and ~i - fli Finally we get 

H = (4) 
iez2 
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5 A p p l i c a t i o n  t o  s u r f a c e s  o f  d i s c r e t e  o b j e c t s  

We will now apply the previouss onto discrete surfaces. Only two curves pass 
trough a surfel, but if we consider a neighbourhood of a surfel we can verify that  
one of the following cases is true: 

- One or two of the components of the normal to the surface are near zero. 
There exist only two types of slice contours, but they are mutually orthog- 
onal. So we can have mean curvature from curves curvatures. 

- None of the components of the normal to the surface is near zero. Slice 
contours are not mutually orthogonal but there exist three types of them. 
We may apply (4) to get the mean curvature. 

We suppose from here that the normal to the surface is (a, b, c), with a2+b2+c 2 = 
1. The angles between slice contours may be expressed with the coordinates 
of the normal to the surface. Tangent vectors of slice contours are parallel to 
( -b ,  a, 0) and ( - c ,  0, a), for slice contours of type 2 and 3. We have cos(a:,a) = 

a Therefore we have : bc and sin(o~2,3) = ~ , / - p % ~ . ~ ,  

a.~.C 
/31 = sin(2.a2,3) = 2. cos(a2,3), sin(c~2,3) = (a 2 + b~ ).(a2 + b2 ) (5) 

and by definition of c~1 : 
b 2 + c 2 1 - a 2 

- ( 6 )  
a l  - - -  2 2 

5.1 N o r m a l  e s t i m a t i o n  

The surface graph of the 18 or 6-connected object is first computed thanks to an 
adaptation of surface tracking algorithm (see [1]). The whole surface graph, and 
not only its vertices are needed. A transversal of this graph yields the length, 
as well as a start surfel of each slice contour. We explained in [10] the way we 
compute the normals, by estimating tangents and then by doing a vector cross 
product, and another smoothing in order to have a good result at each surfel. 

5.2 S l i c e  c o n t o u r  c u r v a t u r e  e s t i m a t i o n  

We use the tangents of each of the curves computed previously. We first normalise 
them and then a derivative filter along the slice contours is applied. Note that 
derivation is done with respect to the discrete arc length, and not with respect to 
the continuous arc length like in the classical definition. But as we know the ratio 
between the smoothed discrete arc length and the continuous arc length is the 
euclidian norm of the non normalised tangents, we divide the result of the derived 
normalised tangents by this norm. We suppose now that  in a neighbourhood of a 
surfel s, the mean curvature varies smoothly and that the slice contour curvatures 
depends on the type of the slice contour but varies also smoothly inside the 
neighbourhood. We will note p~ the curvature and cl the normal curvature of a 
slice contour Ci of type i in the neighbourhood of s. For instance, for a slice of 
type 1, we have cl = pl.v~(b 2 + c2). 
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5.3 Mean curvature estimation 

Using (6) and the unit normal vector, we compute C~l for each of the two slice 
contours of each surfet. We now assume that the ratio of surfets of type 2 and 
3 on this slice contour are rl,2 and r1,3 • These ratios may be estimated by a 
low pass filter along each curve. For a slice contour of type 1, we compute the 
following values : a l .c l  + O~s.c3 a2.c2 - -  or surfels of type 2 and al.Ci + for surfeIs 

P1,2 rl,3 
of type 3. Note that when we are on a surfel of type 2, rL2 cannot be zero. We 
recall that  a surfel of type 2 intersect slice contours of types 1 and 3. Then we 
convolve this value with the same smoothing filter used to get the ratios and we 
get ~1.cl + oh.c1 + ~1.Cl = H , following (4). 

6 Evaluat ion of algorithmic complex i ty  

If the object is bounded by cube of size n, the number of slice contours is roughly 
3.n, and the number of surfels of its surface is around n 2 . We want to compute 
a field at the scale ~. The cost of the initialisation of the recursive calculation 
is proportional to the number of slice contours and to the scale : O ( ~ r . n ) .  The 
recursive computation needs a constant computational amount for each surfel. 
There are then only local computations. As several convolutions are needed, we 
just have to add their costs. In conclusion, the cost of our method is O (c~.n + n2). 

(a) A paraboloid and (b) Mean curvature field (c) After filtering the 
a sphere with identical on a brain surface parts of the surface of 
curvatures at top. negative mean curvature, 

we have extracted their 
centre lines 

Fig. 2. Experiments and application to mean curvature field. 

7 Exper imenta l  results  and applications 

We have made experiments in order to estimate the precision of our technique. 
All the experiments were done with an exponential filter with cr = 4 for averaging 
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filters, and the derivative of an exponential filter with a = 2.5. Filters with lower 
scale may have been used for short slice contours as explained in section 2.2. 

7.1 E x p e r i m e n t a l  r e su l t s  for  spheres  

T a b l e  1. E x p e r i m e n t a l  r e su l t s  for  sphe re s  

Hmir~(S~) - Hm,~x(Sr) 
5 0.2 0.248 - 0.261 30.5% 

t0  0.1 0 . i 0 6 - 0 . i 0 7  7% I 5.85% 
15 j 0.0667 ~ -- 
2 0  0.05 I 0 .0500- -0 .0502  0.4% 
s0 0.03331 o.0329- 0.0330 . ~  
Yi51 0.(J25 1 ij'iO'2'46"L. 0.02'46 ...... 

The mean curvature of a sphere is everywhere the inverse of its radius. We have 
done a set of experiment on spheres of different radius, digitized one hundred 
times at a random position. The results of these experiments are shown in ta- 
ble 7.1. For a given radius r, let Sr be the set of digitized spheres of radius r. 
For S E S~ we denote s(S) the set of its surfels and H(s) the mean curvature 
computed at the surfel s. We define -if(S) = f@ ~ses H(s) the mean computed 

value over the surfels of S. We consider Hmin(S,.) = min{H(S), H E S~} and 
Hmax(Sr) = max{H(S), H E St} the extremal values for all digitized spheres of 
a given radius of H(S). We computed also the relative errors of mean values for 
all spheres Z(Sr)  = max{lHmax(Sr)-  ~I, tHe(Ss)- ~[}.r.100, and the maximal 

relative error •max ( S t )  = max{-m~×{IH(S-- ~ - ~ s - ! ' }  }. 
H(~) 

7.2 E x p e r i m e n t a l  r e su l t s  for  pa r abo lo id s  

We have seen that  the results for spheres were rather good. They showed that  the 
result is quite insensitive to orientation Mthough the data structure itself is not 
isotropic at all. Nevertheless, spheres do not represent all locM configurations 
of surfaces. Indeed, every smooth surface can be approximated at the second 
order with its so called osculating paraboloid of equation z 2 = ,kl.x 2 + A2.y2 in 
an adequate Euclidean coordinate system. Its principal curvatures are A1 and 
A2. This is the reason why we have done some experiments on paraboloids of 
various principal curvatures that  represent locally any smooth surfaces. We have 
chosen curvatures in the range of [-0.1, 0.t] with an increment of 0.025. For each 
paraboloid, we have discretized it one hundred times, with an arbitrary rotation. 
The centre of the paraboloid was chosen randomly inside a voxel. For each fam- 
ily of discretized paraboloid, we present in Table 7.2 Ibur values that  are the 
minimum, maximum, average and ideal mean curvature computed at the surfel 
that is the closest from the origin of the paraboloid. First it should be noticed 



185 

Table 2. Experimental results for paraboloids. In each element of this array, from top 
to bottom, are given the minimum value, the maximum value, the average value of the 
mean curvature computed at the origin of the paraboloid of equation . The last value 
is the ideal mean curvature 
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that the results are more biased than for the sphere. They are overestimated in 
term of absolute value, but corresponds well to intuitive estimation of curvature 
that is less "local" than its mathematical definition (Figure 2(a) illustrates his 
point). Nevertheless, they still be quite insensitive to translation and rotation. 
The sign of the mean curvature is also well preserved. 

8 C o n c l u s i o n  a n d  p e r s p e c t i v e s  

We have described in this paper an original and efficient technique that estimate 
the mean curvature field of a discrete surface. It depends on a scale parameter. 
Both time and space complexity is linear with respect to the number of surfels. 
Our method is fast enough to be useful in an interactive tool of manipulation 
of discrete surfaces, or in a multi-scale context. Our technique can be applied 
to object recognition and surface segmentation purposes. It may even be appro- 
priate for measure when the surfaces curvature is regionally constant. Since the 
result strongly depends on the estimation of the slice contour curvature, further 
experiments with other methods of discrete plane contour curvature estimation 
should be done. The method of computation of differential characteristics may 
be adapted to work in higher dimensional spaces, to characterise the shape of 
discrete hypersurfaees since surface definition as well as slice contours still exist 
in these spaces. As an application, we have considered the surface of the human 
brain as a classical 2D grey level image where the grey level is the mean curvature 
and have extracted characteristic surface parts (Fig. 2(b) and Fig. 2(c)). 
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