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Abst rac t .  We introduce the curvature indexes of the boundary of a 
discrete object, and using these indexes of points, we define vertex angles 
of discrete surfaces as an extension of the chain codes for digital curves. 
Next, we prove a relation between the number of points on the surface 
and the genus of a discrete object. This is the angular Euler characteristic 
of a discrete object. These relations derive a parallei algorithm for the 
computation of the Euler characteristic of a discrete object. 

1 I n t r o d u c t i o n  

ha this paper we introduce the curvature indexes of points on the boundary of a 
discrete object using the neighborhood decomposition and the curvature indexes 
of planar digital curves. The decomposition of the three-dimensional neighbor- 
hood to a collection of two-dimensional neighborhoods reduces the combinatorial 
properties of a discrete object to the collections of combinatorial properties of 
planar patterns [1]. Using these indexes of points, we define the vertex angles of 
a discrete surface as an extension of the chain code of digital curves [1]. These 
indexes provide a relation between the point configTarations on the boundary and 
the Euler characteristic of a discrete object. This is the angular Euler character- 
istic [5] for a 6-connected discrete object. This relation automatically derives a 
parallel algorithm for the computation of the Euler characteristics of a discrete 
object. In this paper a hole is a point set which is encircled by an object. A 
tunnel is a point set which connects point sets which are locally separated by an 
object. Denoting a wall which transform a tunnel to a pair  of wells of a discrete 
object, we derive an equation for the computation of the Euler characteristic of 
a discrete object using poims on the boundary [4]. 

Recently in computer vision, shape reconstruction from multiview images is 
concerned from viewpoints of the mathematical theory such as the multilinear 
form for corresponding points of a series of images, and practical applications 
such as the construction of geometric date of three-dimensional object from a se- 
lies of tow-dimensional images. This relation among images provides methods for 
the estimation and generation of new images from observed data. The reconstruc- 
tion of shape from muttiview image~ is considered as an interpolation problem 
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in three-dimensional Euclidean space from a collection of two-dimensional data 
on imaging planes. Since each image contains noises, errors in the reconstructed 
data are the collection of errors of projected images. This means the signal-to~ 
noise ratio in a reconstructed object is usually worse than the signal-to-noise 
ratio of each image. These instabilities cause inaccuracies for the configuration 
of reconstructed points. For the reduction of these geometric instabilities of re- 
constructed spatial points, it is necessary to consider the topology of an object, 
since topological properties are expressed by Boolean values which is stable for 
the calculation in digital computers [6]. In digital computer, an object is ex- 
pressed as a discrete object which is a collection of lattice points. Therefore, it 
is desired to define topological characteristics of discrete objects. 

The Euler characteristic is a combinatorial relation among vertices, edges, 
faces, and tunnels of a polyhedron. The Euler characteristic pla~s important 
role in differential geometry in the large [7], and digital image processing. The 
numbers of holes and connected components of a planar discrete binary image 
derive the Euler characteristic of an image. For topological preserving trans- 
formations such as deformation and skeltonization, it is desired to check the 
topology characteristics of an image using the Euter characteristic [3] [8]. For 
digital binary images a relation among the chin codes, boundary elements, and 
the Euler characteristic is proven [9]. Furthermore, an algorithm for the com- 
putation of the Euler characteristic based on this property was developed. Bieri 
and Nef [15] proposed an algorithm for the computation of the Euter character- 
istic of a n-dimensional binary object as an application of the cell decomposition 
of a polytope. In reference [10], Toriwaki and coworkers applied this idea for 
the definition of the Euler characteristic of a discrete object. Furthermore, they 
derived a Boolean function for the computation of the Euler characteristic [1 l J. 
These results are the discrete versions of usual expression of Euler characteristic 
by the cell decomposition. Lee, Poston, and Rosenfeld [12] proposed a method 
for the definition of holes and tunnels of discrete objects using the theory of 
cuts, that  is, they dealt with a discrete version of a topological property between 
the minimum nmnber of cuts which eliminate holes and tunnels and the number 
of holes and tunnels of an object. The numbers of holes and tunnels are called 
the genuses of a planar pattern and a spatial object, respectively. Points on the 
boundary of an object also derive the topological characteristics of object. 

2 C o n n e c t i v i t y  a n d  N e i g h b o r h o o d  

Setting R 2 and R 3 to be two- and three- dimensional Euclidean spaces, we 
express vectors in R 2 and R ?" as x = (x, y)T and x = (x, y, z) T, where T is the 
transpose of vectors. Setting Z to be the set of all integers, the two- and three- 
dimensional discrete spaces Z 2 and Z 3 are sets of points such that  both x and y 
are integers and all x, y, and z are integers, respectively. 

On Z 2 and in Z 3 

N4((m, n) T) : {(rn i 1, n) T, (m, ,z ~ 1) T} (1) 
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and 

N6((k ,m,n)q-)={(k±l ,~n,n)-r , (k ,m+l ,n)q- , (k ,m,n±l)  -c} (2) 

are the planar 4-neighborhood of point (m, n) T and the spatial 6-neighborhood 
of point (k, m, n) T, respectively. In this paper, we assume the 4-connectivity on 
Z 2 and the 6-connectivity in Z a. 

Setting one of x, y, and z to be a fixed integer, we obtain two dimensional 
sets of lattice poims such that  

z~((k, . , , , , )~ )  = {(k,.~,, ~)~t3k, v.% Vn e z} ,  (3) 

z~((k, .~, ~)T) = {(< ~,'~)TtVk, ~,~, v,~ e z}, (4) 

and 

z~((k,.%n) T) : {(k, m, n)TlVk, V-% 3~ e Z}. (5) 

These two dimensional discrete spaces are mutually orthogonal. Denoting 

N4((h,m,n) T) = ( ( k , m  ± 1,n) T, (k,m,n 4- 1)T}, (6) 

N4((k,m,n) T) = {(k :t: 1,re, n) 1-, (k, rn, n :t: 1)T}, 

and 
N~((k, ~ ,  ~,)T) = {(k ± 1, ~ ,  ~)T, (k,.~ ± 1, ~)T}, 

the relationship 

(r) 

(8) 

N6((k,m,n) T) = N4((k,m,n) T) UN4((k,m,n) T) UN~((k,m,n)T), (9) 

holds, since N/4((k, m, n) -r) is the 4-neighborhood on plane Z~((k, m, n) T) for 
i = 1, 2, 3 [1]. Equation (9) implies that  the 6-neighborhood is decomposed into 
mutually orthogonal three 4-neighborhoods [1]. 

A pair of points (k, m, n) "c and x e N~((k, m, n)T) is a unit line segment in 
Z a, Furthermore, 6-connected four points which form a circle define a unit plane 
segment in Z a with respect to the 6-connectivity. Therefore, we assume that  our 
object is a complex of 2 x 2 x 2 cubes which share at least one face each other. 
Thus, the surface of an object is a collection of unit squares which are parallel 
to planes x = 0, y = 0, and z = 0. 

3 C u r v a t u r e  I n d e x e s  o f  P o i n t s  

3.1 P l a n a r  C u r v a t u r e  I n d e x e s  

Since we are concerned with a binary discrete object, we affix 0 and 1 to points in 
the background and in objects; respectively. On Z 2 three types of configurations 
of points which are illustrated in figure 1 exist in the neighborhood of a point 
× on the boundary. In figure 1, ®, and o, are points on the boundary and in the 
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background, respectively: Setting .fi E {0, 1} to be the value of point x~ such 
that  

x3 = (m, ~ + 1) T 
~5 = (~,~ - 1. ~ ) ~  ~o = (m,  ~,~)~ ~ = (,,~ + 1 , ,~ )T  (10)  

x7  = (m,  n - 1) T 

the curvature of point Xo is defined by 

1 1 
r(xo) = 1 - ~ ~ fk + i ~ fkfk+,fk+2, (11) 

IcK:N kCN 

where N = {1,3, 5, 7} and k +  8 = k [9]. The curvature indexes of configurations 
(a), (b) and (c) are positive, zero, and negative, respectively. Therefore, we call 
these configurations convex, flat, and concave, respectively, and affix the indexes 
+, 0, and - ,  respectively. 

(~) (b) (c) 

Fig. 1. Configurations of points on the boundaD'. 

Setting n~ and n_  to be the numbers of positive and negative points on a 
plane, respectively, we obtain the following theorem. 

T h e o r e m  1 .  Let g to be the number of holes of a planar discrete object. I f  a 
discrete object is 4-connected, the relation 

, ,~  - ~ _  = 4(1 - g) (12) 

is held. 

Proof. If an object has no hole, it is possible to deform a 4-connected object 
to a rectangle. A rectangle implies the relation n+ = 4. Thus, an object which 
has no hole holds the relation. Next, a hole is also deformable to a rectangle in 
the background. A rectangular hole holds the relation n_  = 4. Therefore, an 
object which has a hole holds the relation. Assuming that  an object which has 
g holes holds the relation, an object which has g + 1 holes preserves the relation 
since the new hole is deformable to a rectangular hole. This concludes that n_ 
becomes n_  + 4, if a hole appears. Therefore, a 4-connected planar object holds 
eq. 0 - %  [] 
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There exist 4 congruent patterns for pa~terns (a) and (c) in figure 1. These 8 
patterns are independent. This theorem automatically derives an algorithm for 
the computation of the Euler characteristic of a planar discrete object using a 
table with 8 entries of (3 x 3)-local patterns, since points the vertex angles of 
which are 0-s do not affect to the Euler characteristic. 

S t ep  1 Extract the boundary of object O. 
S t ep  2 Count n~ and n_ using the boundary following algorithm. 
S t ep  3 Compute n+ - n_.  

It is also possible to apply paralMly these 8 patterns to masking and matching. 

3.2 Spa t ia l  C u r v a t u r e  I n d e x e s  

Using combinations of the planar curvature indexes on mutually orthogonal three 
planes which pass through a point x0, we define the curvature index of a point 
x0 in Z 3 since the 6-neighborhood is decomposed into three 4-neighborhoods. 
Setting ai to be the planar curvature index on plane Z~(xo) for i = 1, 2, 3, the 
curvature index of a point in Z 3 is a triplet of two-dimensional curvature indexes 
(~1, ct2, as)  such that  ~ E {+, - ,  0, 0}. Here, if a~ = O, the curvature index of 
a point on plane Z~(xo) is not defined. The curvature indexes hold the following 
theorem. 

T h e o r e m  2 .  For the boundary points, seven configurations 

(+,+, +), (+, +,-),  (+,o,o), 
(o,o,0), 

( - , - , - ) ,  (+,- , - ) ,  (-,o,o) 
(13) 

and their permutations are possible. 

Proof. From the definition of the curvature indexes for points on Z 2 and the 
connectivity of points in Z 3, obviously the configurations with the indexes + 
and - exist. Therefore, we prove that  the configurations such that  ( , ,  *, 0), and 
(0, 0, ~), where • c {+, - ,  0}, and their permutations exist. From the configu- 
rations of points in a 3 x 3 x 3 cube, configurations with 0-curvature on a plane 
exist. This geometric property automatically concludes that  one of • is zero. 
Thus, the curvature index is (% 0, 0) for • e { + , - ,  0}. Furthermore, a congru- 
ence transform in Z 3 yields a permutation of a code. D 

4 Curvature and Spatial Vertex Angle 

4.1 Local  C o n f i g u r a t i o n s  on  t h e  B o u n d a r y  

Since a triplet of mutually orthogonal planes separates a space into eight parts, 
we call a one eighth of space an octspace. The number of octspaces determines 
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(+,+,+) (.,0,0) 

/ - - 7 - - 7  

(+, ÷, -) 

/ / /  

(÷, - ,  _)i 

(0, O, ~) 

( - , - , - )  (-,o,o) ( . , - , - )  ( - , - , - ) '  

Fig. 2. Angles and configurations on the bounda~ 7. 

configurations of points in a 3 × 3 x 3 cube. There exist nine configurations in 
the 3 × 3 × 3 neighborhood of a point on the boundary, since these configure~ 
tions separate Z a to two parts which do not share any common points. These 
configurations are the same things introduced by Fran~on [13] for the analysis 
of discrete planes. The curvature analysis of discrete surfaces also derives these 
configurations. 

For a spatial curvature index a ,  setting n(a)  to be the number of octspaces 
in the 3 x 3 x 3 neighborhood of a point, the relationships 

~((+,  +,  +)) = 1, . .((+, 0, 0)) = 2, ~((+,  + , - ) )  = a, 
~((0,  0, 0)) = 4, 

.~((+, - ,  - ) )  = 4, s, n ( ( - ,  0, 0)) = 6, ~ ( ( - ,  - ,  - ) )  = 4, r, 
(14) 

are held. From the decomposition property of the neighborhood and configura- 
tions of points in a 3 × 3 neighborhood on a plane, there exist two configurations 
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for codes ( - ,  - , - )  and ( + , - , - ) .  Therefore, we set 

= 7 ,  = 4 ,  

= 5 ,  = 4 .  
(15) 

4.2 The  Ver tex  Angles  

The curvature indexes of eq. (13) correspond to nine configurations of points 
which are illustrated in figure 2. Since g = 1 we define the vertex angles 
of configurations as 

2 3 
~ ( ( + , + , + ) )  = ~, ~((+, 0, 0)) = ~, ?((+,  +, - ) )  = ~, 

4 - 4  
?((+, - ,  - ) ' )  = ~, ?((0, 0, 0)) = 0, ? ( ( - ,  - ,  - ) ' )  = - ~ ,  (16) 

- 3  - 2  - 1  
? ( ( + , - , - - ) )  = y ,  7(--, 0, 0) = T '  ~ ( ( - ' - '  - ) )  = 8 "  

Considering congruent transformations in Z 3, since a code uniquely corresponds 
to a configuration, the vertex angle for a point on a surface is an extension of 
the chain code for a point on a curve. 

Next, we clarify the geometric properties of nine configurations of points 
which are illustrated in figure 2. A configuration the vertex angle of which is 0 
is flat in a 3 × 3 × 3 local region. 

A point the vertex angle of which is -~ touches a plane the normal vector of 
which is one of (±1, ±1, ±1) T, and a point the vertex angle of which is ~ also 
touches a plane the normal vector of which is one of (±1, ±1, ±1) T. Therefore, 
these points are elliptic points in Z 3. 

A point the vertex angle of which is ~ includes a line segment which is parallel 
to one o£ three axis of the coordinate system on a plane the normal vector of 
which is one of (±1,±1,0)  T, (±1,0 ,±1)  T, and (0 ,±1,±1)  T. Furthermore, a 
point the vertex angle of which is ~-~ also includes a line segment which is 
parallel to one of three axis of the coordinate system on a plane the normal 
vector of which is one of (±t ,  ±1,0) T, (±1,0, ±1) T and (0, ±1, ±1) T. Therefore, 
these points are parabolic points in Z 3. 

Points in the 3 × 3 × 3 neighborhood of a point the vertex angle of which is 
_3 exists in a half space separated by a plane the normal vector of which is one 
8 
of (±1,0,0) -7, (0, ±1~ 0) T, and (0~ 0~ ±1) T. Furthermore, points in the 3 × 3 >< 3 
neighborhood of a point the vertex angle of which is _3  exists in a half space 
separated by a plane the normal vector of which is one of (±1,0, 0 )T  (0, ±1, 0)-F 
and (0, 0, ±1) T. Therefore, these points are discrete hyperbolic-parabolic points 
in Z 3. 

Points in the 3 x 3 × 3 neighborhood of a point the vertex angle of which is 4 
8 

never exists in a half space separated by a plane the normal vector of which is one 
of (±1,0,0) T, (0,±1,0) T (0,0, =hl) T, (±I ,±I ,0)T~ (±1, 0, :kl) T, (0 ,±1,±1)  T, 
and (±1, =kl~ ±1) T. Furthermore, points in the 3 × 3 x 3 neighborhood of a point 
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the vertex angle of which is @ never exists in a half space separated by a 
plane the normal vector of which is one of (±1,0, 0) T, (0, ±1,0) T (0, 0,11) T, 
(±1, ±1,0) T, (±1, 0, ± t )  T (0, ±t~ &l) T, and (±1, ±1, ±1) T. These points are 
hyperbolic points in Z 3. 

5 The Euler Characteristic of Discrete Object 

In this section, we prove the relation between the number of points n~ the vertex 
and the number of tunnels of a discrete object. angles of which are g 

5.1 The Euler Equation 

Setting 

and 
a =  (-2,  - I ,  0,1, 0,1, 0, -1 ,  -2)  T, (18) 

we obtain the following theorems. 

Theorem 3.  For an .object which has no tunnel, an object holds the relationship 

a T n  = 8. (19) 

Theorem 4 .  For an object with 9 tunnels, the object holds the relationship 

aTn  = 8(1 - -  g). (20) 

Theorem 5.  Setting 9, c, and p to be the number of tunnels, holes, and poles 
which are tunnels in holes, respectively, an object holds the relationship 

a T n  = s 0  - g + ~ - p).  (21) 

There exist 8 congruent patterns for 6 patterns which affect to the Euler 
characteristic. These 48 patterns are independent. These theorems automati- 
cally derive an algorithm for the computation of the Euler characteristic of a 
discrete object using a table with 48 entries of (3 x 3 x 3)-local patterns, since 
points the vertex angles of which are 0-s and -~-s do not affect to the Euler 
characteristic. The properties of indexes derive the following simple framework 
for the computation of the Euler characteristic. 

Step 1 Decompose object O to collections of slices of planar patterns 

k m IO I n  {o, .} .= .  {o.,}~=,, ~ ~,,~,,_,,  

which are perpendicular to (1, 0, 0) T, (0,1,0) T, and (0, 0,1) T, respectively. 
S tep  2 Compute r(x) for points on the boundaries of O1~, Ozf~, and O3~. 
Step 3 Compute ~/for points r(x) ~ O, according to the configurations. 
S tep  4 Count n~ for i = ±1, ±3, ~4. 
Step 5 Compute aTn. 

It is also possible to apply parallelly these 48 patterns to masking and matching, 
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5.2 P r o o f s  o f  T h e o r e m s  

P r o o f  o f  T h e o r e m  3 Since an object the vertex angles of which are 0-s, ~ 
and }-s is a parallelopipedon, it holds eq. (19). Furthermore, since an object the 

"-3 1 -~-s,  and ~-~-s is a collection of an appropri- vertex angles of which are 0-s ~-s, 
ate number of parallelopipedons which contain points the vertex angles of which 

1 and -~-s. Although the decomposition of an object into parallelopipedons are ~-s 
is not uniquely determined, the decomposition is always possible. In the con- 
struction of an object from parallelopipedons, if kl points the vertex angles of 
which are -~-s change k3 points the vertex angles of which are 3-s and k_3 points 
the vertex angles of which are ~ - s ,  configurations of points in a 3 × 3 × 3 cube 
imply the relationship kl = k3 + k-3. These geometric properties conclude that 
eq. (19) holds for all objects the vertex angles of which are 0-s ~-s,1 ~ - s ,  and 

Next for an object the vertex angles of which are 0-s, ~ - s ,  ~-~ s and ±3 
s, it is possible to decompose an object into a collection of objects which do 
not contain points the vertex angles of which are -~-s. Furthermore, in the 

and a point the construction process, a point the vertex angle of which is 
vertex angle of which is -~  forms a point the vertex angle of which is -~.  These 
geometric properties also conclude that eq. (19) holds for an object the vertex 
angles of which are 0-s ~ - s ,  -~-s, and ~ - s .  

Finally, it is possible to decompose an object which contains points the vertex 
4 and -~-s into a collection of objects which do not contain angles of which are ~-s 

points the vertex angles of which are ~ - s .  Conversely, combining a pair of 
objects the vertex angles of which are }-s and -~-s, it is possible to construct 

4 and ~ - s .  an object which contains points the vertex angles of which are ~-s 
These geometric properties also conclude that eq. (19) holds for an object the 
vertex angles of which are 0-s, ----~ls, -~-s, -~-s, and ---~s. Thus, eq. (19) holds 
for objects without tunnels. 

P r o o f  o f  T h e o r e m  4 From theorem 3 all discrete objects without tunnels are 
topologically equivalent to an object which has four comers the vertex angles 
of which are ~-s.l These objects are paralletopipedons, which are topologicallvo 
equivalent to a cube which is a sphere in the 6-connected discrete space. 

Considering an object with a tunnel, it is possible to eliminate a tunnel using 
a wall which is parallel to one of planes Z~(x0) for i = 1,2, 3 [4]. Thus, a tunnel 
is transformed to a pair of wells. Since an object with a pair of wells is an object 
without tunnels, it is possible to deform this object to an object with four vertices 

i e i ~ t  vertices the vertex angles of which are the vertex angles of which are ~-s, 
-~-s, eight vertices the vertex angles of which are ~-3--s. If we eliminate a wall 
which separates a pair of wells, we obtain a tunnel: and eight vertices the vertex 
angles of which are ~ - s  disappear. Thus, for an object with a tunnel, eq. (20) 
holds. 

Assuming eq. (20) for an object with ( p -  1) tunnels, for an object with 
p tunnels, it is possible to operate the same procedure in order to transform a 
tunnel to a pair of wells. Furthermore, it is also possible to deform a pair of wells 
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to a pair of wells which consist form eight vertices the vertex angle of which are 
-82-s, and eight vertices the vertex angles of which are ~ - s .  If we eliminate a 
tunnel which separates a pair of wells, we obtain a tunnel, and eight vertices the 
vertex angles of which are -~-s disappear. Thus, for an object with p tunnels, 
eq. (20) holds. 

P r o o f  of  T h e o r e m  5 The vertexes of the inner surface holds eq. (19), because 
the inner surface has the same vertex angles with the vertex angles of the outer 
surfaces. Since the Euter characteristic of an object with holes is the sum of the 
Euler characteristics of the outer boundary and the inner boundaries, we have 

C 

= s(1 - g) + Z s(1 - (22) 
k = l  

where c is the number of holes and pi is the number of poles in the i-th hole. 

6 Conclusions 

We introduced the curvature indexes of the boundary of a discrete object, and 
using these indexes of points, we defined the vertex angles of discrete surfaces 
as an extension of the chain codes of digital curves. Furthermore, we proved the 
relation between point configurations and the genus of a discrete object. This 
is the angular Euler characteristic of a discrete object. This relation derives a 
parallel algorithm for the computation of the Euler characteristic of a discrete 
object. In this paper we assumed the 6-connectivity for points in Z 3. However, 
extensions of the angtflar Euler characteristics to objects which defined using 18- 
and 26- cormectivities are possible if we define the cur~rnture indexes for these 
connectivities. 

a series of papers [16] [17] [18] Bieri and Nef proposed sweeping algorithms 
for the computation of geometric properties of a pol:~ope. The main idea of 
them is the sweeping of a space by a hyperplane. This idea is equivalent to the 
decomposition of a space to collections of lower dimensional spaces. This idea 
goes back to the Radon transform, which is now the theoretical background 
of computerized tomography [19] [20]. Our method is considered as a discrete 
version of the space-sweeping algorithm. Our method, however, requires many 
predetermined planes. 

Regular 3-graphs enjoy nice properties for proving the combinatorial charac- 
teristics of polyhedrons [14]. The surface of a 6-connected object defines a graph 
the degrees of nodes of which run from 3 to 6, if we consider points and bonds as 
nodes and edges, respectively. In the proof of theorem 3, we dealt with an object 
the vextex angles of which are 0-s, !~-s ,  =k~-s, and =k~-s. For these graphs, ff 
we first eliminate all bonds connecting points the vertex angles of which are 0-s, 
second, remove all isolated nodes, and third change all nodes the vertex angle 
of which are =k~-s to edges, we obtain a 3-graph. In the proof of theorem 4, we 
changed an object which contains points the vertex angles of which are =k-~-s 
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to an object without them. Furthermore, in the proof of theorem 5, we used 
this methodology. Therefore, the proofs provide us rewriting rules from a graph 
defined by the connectivity of points on the boundary, of a discrete object to a 
3-graph. 

The decomposition of an object into complexes derives the definition of the 
computation method for the Euler characteristic of a digital object, that is, 
the total number of the all possible simplexes in an object defines the Euler 
characteristic. In reference [10], Toriwaki and coworkers defined the topological 
properties of discrete set using all poims in the region of interest [11], and applied 
this idea for the computation of the Euler characteristic of a discrete binary 
object. Furthermore, they derived a logic function for the computation of the 
Euler characteristic. Their method requires all points in the region of interest. 
Our method, however, requires points on the surface which is extracted using an 
appropriate method [1] [2] [3]. It is possible to define topological characteristics of 
objects using only points on the boundary [5]. Our method is a discrete version 
of this idea. From computational view points, the later method requires less 
amounts of the memories. 
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