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Abstract .  In this paper a notion of lighting function is introduced as an 
axiomatized formalization of the "face membership ruleg' suggested by 
Kovalevsky. These functions are defined in the context of the framework 
for digital topology previously developed by the authors. This enlarged 
framework provides the (a, fl)-connectedness (~, fl E {6, 18, 26}) defined 
on 2[ 3 within the graph-based approach to digital topology. Furthermore, 
the Kong-Roscoe (c~,fl)-surfaces, with (a,~) 5~ (6,6), (18,6), are also 
found as particular cases of a more general notion of digital surface. 

Keywords:  Lighting function, digital surface, pixel connectivity, digital 
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1 I n t r o d u c t i o n  

In [1,2] we introduced a framework for digital topology whose main feature is 
to provide a link between digital spaces and Euclidean spaces. This framework 
consists of a multilevel architectm-e made up of five levels each of them repre- 
senting a different level of abstraction for a digital picture, increasing from its 
digital structure to the continuous perception that  an observer takes on it. 

The starting level is a polyhedral complex, called the device level, which 
represents the physical layout of the pixels in the digital space, and so the neigh- 
bouring relationship considered among them. This relationship is abstracted by 
means of a graph, called the logical level. Two further levels serve as a bridge 
towards an Euclidean polyhedron, where every digital picture is associated with 
a subpolyhedron called its continuous analogue. 

With this framework one takes advantage of the knowledge from continuous 
topology to obtain results in digital topology, by translating, whenever it is pos- 
sible, not only the statements but also the proofs of the corresponding continuous 
ones to the logical level. Indeed, this method has allowed us to introduce a gen- 
eral notion of digital n-manifold extending the Morgenthaler (26,6)-surfaces [1], 
and then to prove a generalized digital index theorem for these n-manifolds [2]. 

Another interesting aspect of this framework is that  it gathers, at least par- 
tially, some of the various approaches to digital topology that have been appeared 
in literature, such as those of Kovalevsky [8], Khalimsky [5], and the graph-based 
spaces due to Rosenfeld and other authors [7,11,6]. 
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Concerning the latter approach, only some of the most usual graph-based 
spaces, as the (8,4)- and (26,6)-connected spaces (and their generalization to 
arbitrary dimension) or the hexagonal one, were found as the logical level of 
some device level. So that, this framework was not general enough to deal with 
all the graph-based spaces~ This is so because each device level determines a 
single neighbouring relationship on the pixels, and so the logical level is fixed. 
The goal of this paper is to present an improved version of that framework in 
order to avoid this restriction. This is done by adding what we call a lighting 
function to the architecture quoted above (see §2). This allows us, given a device 
level, to select the neighbouring relationship we want to work with. In this way, 
the ability for translating results from continuous topology is preserved, and 
still the (a,/?)-connectedness can be defined in this setting for all pairs (a,/?) 
with a,/? E {6, 18, 26} (see §4). Furthermore, the (a, /?)-surfaces, for (o~, ¢~) ¢ 
(6, 6), (18, 6), are also found as particular cases of a more general notion of digital 
surface (see §5). Finally, it is worth pointing out that this new version provides 
a single digital notion of connectedness which works for both the digital object 
and its complement (see §3). 

We refer to [12] for all notions in polyhedral topology contained in this paper. 
For recent trends in digital topology see [4]. 

2 L i g h t i n g  f u n c t i o n s  a n d  d i g i t a l  s p a c e s  

As in [1,2], a digital space consist.s of a multilevel architecture which provides a 
bridge for transferring definitions, statements and proofs from continuous topol- 
ogy to digital topology. 

The first level of a digital space, called the device level, is used to represent 
the spatial layout of the pixels, which are represented by the n-cells of a ho- 
mogeneously n-dimensional locally finite polyhedral complex K. Namely, K is a 
complex of convex cells (polytopes) such that each cell is face of a finite number 
(non-zero) of n-cells. If cr is a face of 7 we shall write ~r _< 7. If I K I denotes 
the underlying polyhedron of K, a centroid-map is a map c : K --+ 1 K t such 
that c(~r) belongs to the interior of a. The set of all n-cells of K will be denoted 
by cell~(K). Given a device level K,  a digital object in K is a subset of the set 
cell~(K) of n-cells in K. 

To avoid connectivity paradoxes, Kovalevsky points out in [8] the convenience 
of associating to each digital object some set of lower dimensional cells in K. 
These cells would indicate which pairs of n-cells should be considered adjacent. 
For this, Kovalevsky makes two proposals. On one hand, he suggests to encode 
a digital image by specifying not only what pixels (n-cells) are in the object but 
also the faces of these pixels which are associated to ito On the other hand, to 
save memory space, Kovalevsky observes that some global face membership rule 
can be used; that is, '% rule specifying the set membership of the faces of every 
n-cell as a function of the membership of the n-cell itselF'. We have adopted 
this last point of view, which has been formalized through the notion of lighting 
function. To introduce this notion we need the following notation. 
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Given a cell a E K and a digital object O _C cell,~(K), the star of ~ in 0 
is the set st,~(a;O) = {o" E O : a _< ~r}, and the support of O, supp(O), is 
the set of all cells a E K such that a = N{~r : cr E st~(a; O)}. Observe that  if 
stn(a; O) has only one element, then o~ E supp(O) if and only ifc~ E O, and thus 
st,~(cqO) = {c@ To ease the writing, when the digital object is the whole set 
cell,~(K) we shall write supp(K) and stn(o d K) instead of supp(cell,~(K)) and 
st,~(a; celln(K)), respectively. Finally, we shall write P(A) for the family of all 
subsets of a given set A. 

Def in i t i on  1. Given a complex N, a function f : P(cell,~(K)) x h" --~ {0, 1} is 
said to be a lighting function on K if it verifies the following properties for all 
O E P(cell~(K)) and ~ E K. 

(F1) I f a  ~ supp(O) then f(O,a) = 0. (F3) f(O,a) = f(st~(a;O),a). 
(F2) If a E O then f(O, a) = 1. (F4) f(O, a) < f(cell,~(K), a). 

In this way, given a digital object O, the complex K is partitioned into two 
subsets of cells. Namely, {a E K : f(O, a) = 1} which is associated to the object, 
and {a E K : f(O,a) = 0} associated to its complement. In addition, these 
properties formalize very natural and intuitive ideas. Property (F2) expresses 
that in order to display a digital object its pixels must be lighted, while (F1) 
says that  the cells which are not the intersection of pixels of the object have 
nothing to do with its connectivity, and so we choose to get them dark. Property 
(F3) states that  for a given object the lighting of a cell is a local property of the 
object; and finally, (F4) says that a cell a E K is lighted for the global object 
cell~(K) whenever it is lighted for some small object O C_ cell,~(K). 

Given a lighting function f on K,  the logical level of a digital object 0 is an 
undirected graph, £]O, whose vertices are the centroids of n-cells in O and two 
of them c(cr), C(r) are adjacent if there exists a common face a < ~ f3 r such 
that  f(O, ~) = 1. 

The conceptual level of 0 is the digraph C]O whose vertices are the centroids 
c(o 0 of all cells a E K with f(O, c~) = 1, and its directed edges are (c(c~), c(fl)) 
with a < ft. 

The simplicial analogue of 0 is the order complex .4/0 associated to the 

digraph C]O. That  is, (x0, x l , . . . ,  x,n) is an m-simplex of .4/o if x0, x l , . . . ,  xrn is 
a directed path in 6]O. This simplicial complex defines the simplicial level for the 
object O in the architecture and, finally, the continuous level is represented by 
the underlying polyhedron [ A]O [ ofA]o. This polyhedron is called the continuous 
analogue of O. 

Example 1. Every polyhedral complex K :# 0 admits the following lighting func- 
tions: fmax(O, o~) = 1 if and only if a E supp(O); train(O, a) = 1 if and only if 
c~ E O; and, g(O, a) = 1 if and only if a E supp(O) and st~(a; K) _C O. 

Notice that  both fm~x and g are distinct from fmin only if there exist two 
n-cells in K with a common face. On the other hand, if a cell a E K is the 
intersection of a proper subset of n-cells in st,~(o d K) then g ~ fm~x. Moreover, 
each one of these lighting functions may induce different levels for a given digital 
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A digital object O 

cg cg 

A ~  ~ 

Fig. 1. Logical and conceptual levels, and simplicial analogues of a digital object for 
fmax and g in Example 1. 

object, as Figure 1 shows for fma× and g. In this example, all levels for fmin are 
the same; namely, a set of seven discrete points. From this example it is evident 
that the levels for a digital object depend both on the complex K and on the 
lighting function f considered on it. So that, we define the notion of digital space 
as follows. 

D e f i n i t i o n 2 .  A digital space is a pair (K, f )~ where K is a homogeneously 
n-dimensional locally finite polyhedral complex and f a lighting function on K. 

From now on, when working with a digital space (K, f )  and if there is no 
place to confusion, for a digital object O we shall write £ o ,  Co, A o  and [ A o  1 
instead of £fo, C]o, Afo and I A]o I respectively to denote the corresponding levels 
of O. Moreover, if the digital object is the set cell~(K) of all n-cells in K we 
shall write f~K,CK,.AK and [AK [ for its levels, which will be called the levels 
of the whole digital space (K, f ) .  

Next, we introduce some structural properties about digital spaces whose 
proofs are straightforward. 

P r o p o s i t i o n  3. Let (K, f )  be a digital space and 0 C__ celln(K) a digital object. 
Then (1) £ o  is a (not necessarily full) subgraph qf f~K; (2) Co is a .full subgraph 
of gg  ; (3 ) ,40  is a full subcomplex of A g .  

Clearly, any lighting function f on K is the characteristic function of some 
subset of P(cell,~(K)) × K. However, not all the subsets of ~P(celln(K)) × K 
define a lighting function (for instance, if K -~ ~, the characteristic function of 
the empty set does not verify the property (F2)). 

T h e o r e I n 4 .  The set of all lighting functions on a given complex K is a dis- 
tributive complete lattice, whose greatest and least elements are fraax and fmin, 
respectively. Moreover, it is a Boolean algebra i f  and only i f  fmax = g- 
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3 C o n n e c t e d n e s s  in digital  spaces 

In this section we introduce the notion of connectedness for subsets of n-cells in 
a digital space. This notion includes, as particular cases, the connectedness for 
both digital objects and their complements. Afterwards, we shall prove that this 
notion of connectedness coincides with the corresponding topological notion in 
the continuous analogue. 

D e f i n i t i o n  5. Let 0 and 0 / be two disjoint digital objects in a digital space 
(K, f ) .  Two distinct n-cells c~, v E 0 are said to be 0t-adjacent in 0 if there 
exists a common face a < ~r N v such that f (O I, a) = 0 and f (O U 0 t, c~) = 1. 

• ~ T t  An O~-path in 0 from ~ to v is a finite sequence {o'i}i=0 _C 0 such that  ~r0 = ~', 
c% = r and c~-i is 01-adjacent in 0 to cri, for i =  1 , . . . , m .  

The digital object 0 will be said 0 ~- corm ected if for any pair of n-cells a, ~- E 0 
there exists an 01-path in 0 from (r to 7. An object C C 0 is an 0t-component 
of 0 if for any pair ~, r E C there exists an 01-path in 0 from cr to v and none 
element in C is 01-adjacent in 0 to some element of 0 - C. Observe that  any 
O~-component is 0t-connected. 

Given a digital object 0 in the digital space (K, f )  the previous definitions 
provide an entire family of notions of connectedness for 0 in relation to another 
object 0 I, when 01 is allowed to range over the set of all subsets of cell,,(K) - 
O. The extreme cases, when 0 ~ = 0 and 0 t = c e l l n ( K ) -  O, represent the 
connectedness of the digital object 0 itself and the connectedness of 0 as the 
complement of 01 , respectively. 

Following this line, we will call connected to any object which is 0-connected, 
and C is a component of 0 if it is a 0-component. Moreover, it is easy to check 
that  two n-cells or, r E 0 are 0-adjacent in 0 if and only if there exists a < c~ M v 
such that  f (O,  c~) = 1. So that,  ~, r E 0 are 0-adjacent in 0 if and only if their 
centroids c(e) and c(r) are adjacent as vertices of the logical level £o of O. 
This justifies to call adjacent in 0 to any pair of n-cells which are 0-adjacent 
in O, and then a path in 0 is just a 0-path in O. These observations prove the 
following result. 

P r o p o s i t i o n  6. A digital object 0 is connected if and only if its logical level Co 
is a connected graph. 

Furthermore, when 0 is considered as the complement of the digital object 
0 ~ = cell,~(K) - 0 ,  we get that  or, r E 0 are 01-adjacent in 0 if and only if there 
exists a _< cr M r such that f ( 0 / , a )  = 0 and f (ce l l~( I f ) , a )  = 1. So that,  two 
n-cells c~, r are 01-adjacent in the complement of 0 ~ if and only if there exists 
a E K whose centroid c(a) is adjacent to both c(a) and c(r)  in the complement 
CK \ Co, of the conceptual level Co, in CK. In this way, the conneetedness of the 
complement of an object can be characterized in the conceptual level, but not 
in the logical level. Indeed, the complement of the object 0 shown in Figure 1 it 
is not O-connected in the digital space (K, fmax), while the complement of the 

logical level/3]o m'X of 0 in/:]K ='" is connected. 
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Theorem 7 shows how these notions of connectedness are stated at each level 
of our architecture. This result is an immediate consequence of Theorem 8. Be- 
low, L1 \ Lz = {a E L1 : aM I L2 [ = 0} will stand for the simplicial complement 
of L2 in L1, where L1 and L2 are subcomplexes of a simplicial complex L. 

T h e o r e m  7. Let 0 be a digital object. The following properties are equivalent: 
(1) 0 is connected. (2) £o is a connected graph. (3) Co is a connected digraph. 
(4) Ao is a connected simpIicial complex. (5) I Ao I is a connected space. 

Moreover, if O' = cell,(K)--On the following properties are equivalent: (1) 0 
is O;-connected. (2) CK \ CO, is a connected digraph. (3) ¢4K \¢4o, is a connected 
simplicial complex. (~) ] AK l -  I Ao,  [ is a connected space. 

T h e o r e m  8. Let 0 and O; be two disjoint digital objects in a digital space. The 
family J: of O;-eomponents of O can be described in any of the following ways 

(1) Conceptual level: :P = {Oc}~ where Oa = {o" E 0 : c(¢) is a vertex of 
G}, and G ranges over the family of components of the digraph Couo, \ Co,. 

(2) Simplicial level: :P = {OA}, where OA "- {0" ~ 0 : C(O') ~ A}, and A 
ranges over the family of components of the simplicial complement Aouo, \ Ao,.  

(3) Continuous level: F =- {Ox}, where Ox = {o" E 0 : c((r) E X} ,  and X 
ranges over the family of components of the space 1Aouo, [ - I Ao, t. 

We sketch a proof of this theorem. Firstly, the characterization in the con- 
ceptual level can be readily proved from the following proposition. 

P ropos i t i on  9. (i) Let 02 C 01 be two digital objects. I f  c(v) is a vertex of the 
complement Co, \ Co2 then there exists an n-cell o" E 01 - 02 such that r <_ ~r, 

(it) Let 0 and O r be two disjoint digital objects in a digital space. Given two 
distinct n-cells ~, r E 0 there exists a Or-path in 0 from a to v if and only if 
their centroids c(cr) and c(v) are vertices of the saree component of Couo, \ Co,. 

Next, to obtain the characterization in the simplicial level from that in the 
conceptual level it is enough to observe that Couo~ \Co, can be identified with the 
1-skeleton of Aouo, \ Ao,. Finally, the characterization in the continuous level 
follows from the simplicial one and the next lemma fi'om simplicial topology. 

L e m m a  10. Let L C h" be a full subcomplex of a locally finite simplicial complex 
K. Then, the components of I I( [ - t L ] are in I-I correspondence with the 
components of K \ L. 

4 L i g h t i n g  f u n c t i o n s  f o r  t h e  ( c ~ f l ) - c o n n e c t e d n e s s  

Within the graph-based approach to digital spaces, due to Rosenfeld and other 
authors, many graphs on almost arbitrary grids of points have been used [7]. 
However, this section is only concerned with the most usual connectedness on the 
grid 7/3, defined by means of the double adjacency (c~,/3), with a, fi E {6, 18, 26}. 
The a-adjacency is considered to define the connection for digital objects and 
the fl-adjacency for their complements. See [6] for a precise definition. 
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In this section we show how all types of (a, fl)-connectedness on the grid 2~ 3 
can be recovered in our framework by selecting suitable lighting fimctions. These 
functions will be defined on the device level R ~, called the standard cubical de- 
composition of the 3-dimensional Euclidean space Ig 3. That  is, R 3 is the complex 
determined by the collection of unit 3-cubes in IR 3 whose edges are parallel to 
the coordinate axes and whose centres are in the set 7]3. The centroid-map we 
will consider in R 3 associates to each cube a its barycentre c(c,). In particular, 
if d im¢ = 3 then c(¢) E 7]3 where dim~r stands for the dimension of ~. So 
that ,  every digital object O in/~3 can be identified with a subset of points in 
~3. Henceforth we shall use this identification without further comment. 

Def in i t i on  11. We say that a lighting function f~,z on/~3 provides the (a, fl)- 
connectedness if the two following properties hold for any digital object O: (1) O 
is connected if and only if it is a-connected; and, (2) whenever O is considered 
as the complement of the object O ~ = cell3(R 3) - O, then O is O~-connected if 
and only if it is Ê-connected. 

In Example 2 below we give some lighting functions providing the (~, fl)-con- 
nectedness for each pair (a, ~). For this we consider a new polyhedral decomposi- 
tion of IR 3, denoted R 3 (Z3), consisting of unit cubes with vertices in 7] 3. To avoid 
misunderstandings, we keep the terminology "cube" for the 3-cells in R 3 and we 
call 27a-cell to the closed cubes in Ra(7]3). Given a digital object O in R a and a 
713-cell C, the configuration of O in C is the set C(O) = {c(~r) E 2[ 3 : ~r E O}MC 
of vertices of C which are the centroids of cells in O. Observe that the centre 
of C coincides with some 0-cell p E R 3. So that,  C(O) is the set of centroids 
of cubes in st3(p; O). In Figure 2 are shown all the possible configurations of a 
given object after a suitable rotation or reflection. 

Example 2. The lighting functions f2,Z listed below are providing the corre- 
sponding (a,fl)-connectedness, for all pairs (a,fl)  with a , / )  E {6, 18,26}. To 
prove this fact is a tedious but mechanical task, which involves to check prop- 
erties (F1)-(F4) in Definition 1 and to prove that  the components and the 
(cell3(R 3) - O)-components of a given digital object O coincide with the a- 
components and the fl-components, respectively. 

a) f ° s (O ,a  ) = 1 iff a E O for d ima  = 3, and a E supp(O) for dirna = 2. 
b) f~, ls(O,a)  = 1 iff a E O for d i m a  = 3, a E supp(O) for d i m a  = 2, 

st3(a; R 3) C_ O for d i m a  = 1, and st3(o d O) contains the configuration (6c) 
in Figure 2 for dim a = 0. 

e) f~,ls(O, a) = f ° l s (O , a) for d ima  = 3, 2, 0, and, for d ima  = 1, f~,ls(O, a) = 
1 i f f I s t a ( a  ;O) I -> 3. 

d) f°26(0, a) = 1 itr st3(a; R 3) c_ o for any cell a R 3. 
e) f°s,~(O, a ) l iff a E O for dima = 3, a E supp(O) for dimc~ = l,2, and 

st3(a; o )  contains either the configuration (3c) or (4e) for dim = 0. 
f )  f~s,6(O,a) = 1 iff a E O for d i m a  = 3, a E supp(O) for d i m a  = 1,2, and 

[ s t3(a;O) I>_ 3 and a E supp(O) for d i m a  = 0. 
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Fig. 2. Possible configurations of a digital object. 

g) f~s,6(O,a) = 1 iff a E O for d ima  = 3, a c= supp(O) for dimc~ = 2, 
c~ E supp(O) and I s ta(a ;O ) 1= 2,4 for d i m a  = 1, and sta(a; O) i s  one  of  t h e  

configurations (3c), (4b), (4d), (4e), (4 0 or [ sta(a; O) 1 >_ 5 for d i m a  = 0. 
h)  f°ls, ls(O,a ) = 1 i f f a  E O for d ima  = 3, a E supp(O) for d i m a  = 1,2, and 

sta(a; O) contains the configuration (6c) in Figure 2 for d i m a  = 0. 
i) f~8,1s(O, oO = t iff a E O for d ima  = 3, a E supp(O) for d i m a  = 2, 

E supp(O) and ] s ta(a;O) ]= 2,4 for dimc~ = 1, and s ta(a ;O)  is one of 
the configurations (6c), (7) or (8) for d ima  = 0. 

j )  f°<26(0, o 0 = 1 i f f a  E O for dimc~ = 3, a E supp(O) for d i m a  = 1,2, and 
I sta(a; O) 1>_ 7 for d ima  = 0. 

k)  f°6,6(O,a ) = 1 i f f a  E supp(O) for any cell a ~. Re; that is, f°6, 6 = fmax. 
1) f°6,1s(O,a ) = 1 iff a E O tbr d ima  = 3, a E supp(O) for d i m a  = 2, 

a E supp(O) and ] s t3(a;O) [= 2,4 for dima - 1, and s ta(a ;O)  is one of 
the configurations (2c), (4c), (5a), (6a), (6c), (7) or (8) for dim a = 0. 

m)  f°<26(O,a ) = 1 iff ~ E O for d i m a  = 3, a E supp(O) for d i m a  = 2, 
E supp(O) and I sta(a';O) I= 2,4 for d i m a  = 1, and s ta (a ;O)  is one of 

the configurations (2c), (6a), (7) or (8) ibr dim. a = 0. 

Observe that, in general, the (a,/3)-connectedness can be provided by several 
lighting functions. However, it is not difficult to prove that f°,6 is the only 
function providing the (6,6)-connectedness. 

It can be readily checked that the simplicial analogue of the whole space 
(R a, f2,Z) is the barycentric subdivision of R a for all the lighting functions given 
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in Example 2, except for the case fos .  Thus, their continuous analogues are 

always the 3-dimensional Euclidean space IR 3. The continuous analogue of the 
3 0 special case (R , f~,6) is the subset (77 x 77 x JR)U(77 x lR x 77)U(IRx 77 x 77) C ]R 3. 

5 A b o u t  d i g i t a l  s u r f a c e s  

In Section 3 we have used our multilevel architecture to show that a merely 
combinatorial definition, as the notion of &-connectedness, is a correct counter- 
part of the topological notion we have at the continuous level. But, in order to 
define a digital notion, one may proceed along the inverse way. That  is, given 
a topological property P,  we can say that a digital object O satisfies the digi- 
tal counterpart of P by requiring that the continuous analogue No satisfies P.  
However, doing that, it arises the problem of characterizing property P at a level 
as close to the logical one as possible. 

In this section we will present a case of this method, by defining the no- 
tion of digital surface throughout the continuous analogue of objects and then, 
finding characterizations in the logical level for those digital spaces (R 3, f2,z) in 
Example 2. 

Def in i t i on  12. A digital object S in a digital space (K, f )  is said to be a digital 
surface if its continuous analogue I As  ] is a surface without boundary. We will 
call S a f-surface in case the digital space is (R 3, f) .  

Kong-Roscoe [6], generalizing the Morgenthaler-Rosenfeld surfaces [11], de- 
fine in 773 the notion of (a, fl)-surface for all pairs a,/3 E {6, 18, 26}. Next theo- 
rem states the characterization in the logical level of the f2  ~-surfaces throughout 
their relation with the corresponding (a,/3)-surfaces. 

T h e o r e m  13. The following properties are verified for the lighting functions 
given in Example 2. 

(1) The family of f2,~-surfaces coincides with the corresponding family of 
(a,/3)-surfaces for the lighting functions: fg,26, fg, ls, f~s,26, f~6,6, f°s,ls and 
f206,26 

(2) The family of f2,z-surfaces is strictly contained in the family of (o~,/3)- 
surfaces in the cases: f~,ls, f°s,6, f~s,6 and f°s,ls. In addition, the families of 
f°ls,e-surfaces and f~s,6-surfaces coincide. 

(3) The families of (18,6)-surfaces and (18,18)-surfaces are strictly contained 
in the families of f~s,6-surfaces and flls,ls-surfaces , respectively. 

The equality between the families of f~6,6-surfaces and (26,6)-surfaces was 
originally proved in [1]. The same technique can be adapted for each one of 
the remaining cases in Theorem 13. Notice that we only get an inclusion in (2) 
because not all the configurations permitted in an (a,/3)-surface can appear in 
an f~,~-surface. Also we only get an inclusion in (3) since an f~s,6-surface may 
contain the configuration (5b) in Figure 2 which is not permitted in a (18,6)- 
surface. 
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Fig. 3. A polyhedral complex K0. 

Observe that Theorem 13 shows that the family of (a,/3)-surfaces, for (o~, fl) ¢ 
(6, 6), (18, 6), coincides with the family of f2,p-surfaces for some lighting func- 
tion f2,z. As it was pointed out by Kong-Roscoe in [6], there exists (6,6)-surfaces 
whose complement is 6-connected. So that, these are not truly digital surfaces. 
This fact agrees with our point of view because the continuous analogue of the 
only digital space (R 3, .t'°6 ) providing the (6,6)-connectedness is i-dimensional. 
Concerning the pair (18,6), it can be proved that there exists no lighting func- 
tion such that the corresponding family of digital surfaces exactly coincides with 
the (18,6)-surfaces. These surfaces have, in some sense, an anomalous behaviour 
with respect the others. In a future work we will intend a more detailed analysis 
of them; and moreover we also plan to find lighting functions gathering other 
definitions of digital surface, as those due to Malgouyres [9,10]. 

6 Final  d i scuss ions  

In this last section we want to discuss some interesting points of our framework 
as it is compared with other approaches to digital topology. 

Firstly, we focus our attention on our notion of connectedness (Definition 5), 
which is slightly different from that normally used in abstract cell complexes. 
To explain this difference, let us consider the polyhedral complex K0 in Fig. 3, 
where we will distinguish two digital objects A = {al, a2} and B = {/~1,/32}, 
and the vertex 5. Let us also consider the lighting function f ("membership 
rule" in Kovalevsky's terminology) defined on K0 by f(O, 7) = 1 for any digital 
object O C_ celln(K0) and any cell 7 E supp(O) with 1, ¢ 5, and f(0,7) = 0 
otherwise. Observe that the "membership rule" f ~sociates the 0-cell 5 only to 
complements of objects; see the comment after Definition 1. 

Let now consider the digital space (K0, f);  i.e., the set celln(K0) of all pixets 
in K0 together with the set of lower dimensional cells associated to it 

According to the arcwise connectedness usually defined on cell complexes 
(see Definition 4 in [8]), the digital space (Ks, f )  has two connected components 
whose sets of pixels are {c~1,/31} and {a'2,/32} respectively. Moreover, if we con- 
sider B as an object, its complement A is connected although A meets both 
components {al,/31} and {c~2,/32}. This situation is avoided with our notion of 
connectedness. 

The crucial point is that, in the usual definition, each lower dimensional ceil 7 
associated to the complement celln(K)-O of an object O is connecting the pixels 
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(n-cells) in the star of 7 in celt~(K) - O. In contrast our Definition 5 expresses 
only that 7 is not a cut-point for s~ (7 ;  celln(K) - O ) .  In order to ensure that 7 
connects sty(7; cell~(K) - O) it is required in addition that 7 is lighted in the 
global object celln(K); i.e., 7 connects the pixels in sty(7; cell~(K)). 

In relation to the notion of connectedness used in the graph-based approach 
to digital topology, it may seem puzzling the existence of lighting functions 
providing the (a,/?)-connectedness, for a, j3 E {18, 26}. These pairs are usually 
discarded on the ground that their restrictions on the grid 7/2 × {0} _C 7] 3 
produce the paradoxical (8, 8)-connectedness. However, this is not the case of 
our lighting functions f~,~. 

For instance, consider the lighting function f°s, ls given in Example 2(h) and 
the subcomplex R0 3 = {a E R 3 : a  < c~,c(cr) E 7] 2 × {0}) of R 3. It is easy to 
show that the restriction of f0 to the plane R0 3, given by 0 fls,ls [Rfl (O, a) = 1 18,18 

if and only if a E supp(O) for any object 0 C_ cell3(R0 a) and any cell a E R0 3, is 
a lighting function providing the (8, 4)-connectedness. 

Next, we will illustrate how is this possible through an example. Let consider 
the digital object 0 = {(rn E cell3(/~ a) : e(crn) = (n, n, 0), n E 7/} in the digital 

(R , f~s,ls) consisting of a diagonal line in the digital plane R~, and let space a o 

q , r 2  E cella(R a) - O be the two only 3-cells sharing the edge 7 = o'1 N o'2. 
According to the (18, 18)-adjacency both pairs of 3-cells, ~rl, cr2 and rl, r2, should 
be adjacent. Indeed, o'1 and o'2 are adjacent (ke., 0-adjacent) in O through their 
common edge 7, while rl and r2 are O-adjacent in cell3(R 3) - O through any 
one of the extremes of 7. On one hand, O and cell~(R a) - O are connected 
and O-connected objects respectively, as well as they are 18-connected. On the 
other hand, consider the same object O and cells rl ,  r~ in the digital sub@ace 
(R0 0 fls, ls [/@. In this space, ¢h and c~2 are again adjacent in O through 7. But 
now, ~-1 and ~'2 are not O-adjacent in cetl3(R~) - O because the extremes of 7 
do not belong to supp(R03). Thus, O is connected as an object in the digital 
subspace 3 0 (R0, f ls , ls  [Ro3), but its complement eella(R0 3) - O is not O-connected. 

Finally, we are going to justify briefly why a multilevel architecture seems to 
us very suitable for the development of digital topology. 

The goal of digital topology is to analize and to study topological proper- 
ties on digital objects, under the assumption that, although these objects have 
strictly a discrete nature, they are perceived as continuous objects. Because of 
this, any framework for digital topology should contain at least these two levels: 
a digital one, in which digital images can be easily processed, and a continuous 
level, where digital methods and results can be justified in accordance with the 
continuous perception of objects. Obviously these levels are of very different na- 
ture and we have considered convenient to introduce some other levels which, in 
conjunction with suitable transformations, make easier the translation of notions 
and results between the digital and continuous levels. 

This architecture has allowed us to define, in a very natural way, a continu- 
ous analogue close enough to the perception of objects. And, what has greater 
importance, it makes possible to reuse knowledges and experiences of contin- 
uous topology, by translating them to the digital level throughout the whole 
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architecture. In addition, it is worth pointing out that our architecture gathers 
in its levels the somehow scattered proposals by other authors. Actually, the 
device level corresponds to Kovalevsky's approach, the logical level falls within 
the graph-based models due to Rosenfeld and others, and finally, Khalimsky's 
spaces are a particular case of the conceptual level. 
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