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Abstract. A new classification of digital curves into boundary curves and 
visual curves of different thickness is suggested. A fast algorithm for 
rec%~nizing digital straight line segments in boundary curves is presented. The 
algorithm is applied to encode the boundaries of homogeneous regions in 
digitized images. The code is economical and enables an exact reconstruction 
of the original image. 

1 Introduction 
The aim of this presentation is to demonstrate that methods of recognizing, encoding 
and decoding segments of digital straight lines may be successfully applied to 
economical encoding of digitized images and to exactly reconstruct the original 
image from the code. Methods of recognizing digital straight segments (DSS) are 
known during a long time. One of the first methods is due to Freeman [Fre74]. He 
suggested to analyze the regularity in the pattern of the directions in the chain code 
[Fre61] of a digital curve. Anderson and Kim [AndKim85] have presented a deep 
analysis of the properties of the DSS ~s and suggested a different algorithm based on 
calculating the convex hull of the points of the digital curve to be analyzed. The 
author has suggested a simple and fast version of this algorithm [Kov90] and 
demonstrated that the recognition may be performed as a successive, point for point, 
actualization of the coefficients of the linear inequality, which all points of a DSS 
must satisfy. Today this inequality is generally known. It was successfully used in 
many recent works, e.g. ~evDeb94], [Deb95], [Franc96]. 
The author has devoted his investigation to a special class of the DSS's: the 
boundary lines. The reader will find in this presentation a new classification o f  
digital curves into boundary curves and visual curves. Boundary curves and lines are 
a useful means for fast drawing of regions defined by their boundaries. The 
algorithra for filling the interior of a closed boundary curve represented as a 
sequence of boundary cracks [Kov84], [Kov94a] is very simple and fast. It is an 
important tool for the reconstruction of images encoded by means of the boundaries 
of homogeneous regions. However the known methods of encoding boundaries 
without loss of information need relatively much memory space. We suggest here a 
new method of  encoding digital straight segments without loss of information which 
is more economical then the known methods. 
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Sections 2 and 3 contain a short sunuuary of the topological and geometrical 
background of the further sections. Section 4 is devoted to the new classification of 
digital curves. It also contains a short description of a new fast algorithm for drawing 
visual curves of arbitrary width with antialiasing when given an equality of the curve 
in the form F(x,y)=O. F(x,y) may be given as any floating point function in a 
programming language. 
Section 5 presents a new derivation of the well-known properties of the DSS's. This 
section is the theoretical foundation of the recognition algorithm. The algorithm 
described in Section 6 is not new: this is the algorithm of [Kov90]. What is new is 
the method of encoding the parameters of the DSS's which is presented in Section 7. 
Section 8 contains some experimental results. 

2 Topological Background 

We consider here the digital plane as a two-dimensional cell complex [Kov89] rather 
then a set of pixels. Thus our digital plane contains cracks and points besides the 
pixels. Cracks are the sides of the pixels, the latter being considered as square areas. 
From the point of view of cell complexes pixels are two-dimensional and cracks are 
one-dimensional cells. The points are end points of the cracks and therefore the 
corners of the pixels. Points are zero-dimensional ceUs. 

Fig. 1. Example of a two-dimensional complex 
with the crack bov:adary of the shaded subset 

As demonstrated in [Kov89], considering the plane as a cell complex brings many 
advantages: there are no more counectivity paradoxes, a boundary becomes a thin 
curve with a zero area, the boundary of a region and that of its complement are the 
same etc. The definition and the processing of digital curves and especially that of 
digital straight lines becomes simpler and clearer. The most important advantage 
from the point of view of economical encoding and exact reconstruction of images is 
the possibility to fill the interior of crack boundaries by an extremely simple and fast 
algorittnn [Kov84], [Kov94a] which cannot be applied when representing boundaries 
as sets of pixels. 
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The rest of this section contains a short summary of the topological notions 
important for this presentation. Please refer to [Kov89] for more details and 
topological foundations. The reader acquainted with cell complexes may skip the rest 
of this section. 
An D-dimensional cell complex is a structure consisting of abstract elements called 
cells. Each cell is assigned an integer value from 0 to D called its dimension. There 
is a bounding relation imposed onto the cells: a cell of a lower dimension may bound 
some ceils of a higher dimension. _An example of a two-dimensional complex is 
shown in Fig. 1. 
The pixels are represented in Fig. 1 as the interiors of the squares, the cracks as the 
sides of the squares and the points, i.e. the 0-ceils, are the end points of the cracks 
and simultaneously the comers of the pixels. 
Now let us introduce some notions which we shall need in the sequel. A boundary 
crack of a subset S of a complex is a crack separating a pixel belonging to S from 
another pixel not belonging to S. The boundary cracks of the shaded subset in Fig. 1 
are drawn as bold lines. The boundary (also known as crack boundary, 
[RosKaak82]) of a subset S is the set of all boundary cracks of S and all end points of 
these cracks. A boundary contains no pixels and is therefore a ,,thin" set whose area 
is zero. A connected subset of a boundary is called a boundary curve. For the notion 
of counectedness please refer to [Kov89]. 

3 The Coordinates 

We consider the digital plane as a Cartesian two-dimensional complex [Kov94b], i.e. 
as a Cartesian product of two one-dimensional complexes which are the coordinate 
axes of the plane. The X-coordinate is the row number, the Y-coordinate is the line 
number. We use here the coordinate system of computer graphics, i.e. the positive 
X-axis runs from left to right, the positive Y-axis runs from top to bottom. 
We often need Euclidean coordinates to discuss problems of digitizing Euclidean 
objects. To remain in the frame of cell complexes we suggest to consider Euclidean 
coordinates as rational numbers with a relatively great denominator. This 
corresponds to any computer model since the floating point variables in computers 
are rational numbers with great denominators. 
It is possible to introduce additionally to the complex of the digital plane another cell 
complex, the fine complex, whose ceils are obtained by subdividing the original cells 
into many smaller cells. The coordinates in the fine complex are rational numbers. 
Both coordinate systems of the original and the fine complex may be adjusted to each 
other in such a way that the 0-cells (i.e. the points) of the original complex have 
integer coordinates. Then we have the possibility to consider other points lying 
inside the pixels and cracks. These point have fractional coordinates. Particularly 
important for this presentation are the points in the middle of the pixels. They have 
,,half-integer" coordinates, i.e. fractional coordinates with an odd nmnerator and the 
denominator equal to 2: e.g. 0.5, 1.5, 2.5 etc. 
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4 Classification of Digital Curves 

Curves are considered in the classical geometry as objects with zero width and zero 
area. In digital geometry" we consider the number of pixels (being elementary areas) 
in a subset S as the measure of the area of S. A boundary curve is a sequence of 
cracks. It contains no pixels and thus it exactly corresponds to the classical notion of 
a curve. Although a boundary curve contains no pixels, it is possible to make it 
visible on the screen of a computer. If we are ready to make a magnified 
representation of a complex, then we draw a 2-cell as a small square consisting of 
NxN screen pixels. The cracks can be represented as thin vertical or horizontal bars 
one screen pixel wide and N screen pixels long. A digital curve is then a sequence of 
such vertical an horizontal bars. If one does not want to magnify the complex then 
each crack of a curve may be represented by a single screen pixel whose coordinates 
correspond to the upper or to the left end of the crack. Such a representation has two 
drawbacks: 

1. The image of the curve is slightly displaced relative to the positions of pixels 
which may be simultaneously represented on the screen; 

2. The image of the curve is too thick at some places where an upper end point of a 
vertical crack is simultaneously the left end point of a horizontal crack. The image 
of the curve is not a ,,thin" sequence of screen pixels. It is not a skeleton. 

To overcome these drawbacks we suggest here to consider in computer graphics two 
classes of curves: the boundary curves as sequences of cracks and the visual curves 
as sequences of pixels. Boundary curves are important as a means to exactly specif T 
the boundaries of subsets. They are a most suitable tool to draw areas filled by some 
color: the filling algorithm of [Kov94a] being applicable in this case is much simpler 
and faster then any- algorithm suitable to •l the interior of a closed sequence of 
pixels. The exact visual representation of boundary curves is less important. 
Visual curves must be used in the cases when a Euclidean curve, e.g. specified by its 
equation, must be displayed in such a way that it gives a visual impression of the 
mathematically specified curve as exact as possible, including the impression of 
homogeneous thickness. For the last purpose the so called antialiasing methods have 
been developed in computer graphics. The author has developed a new universal 
algorithm for drawing visual curves of arbitrary width with antialiasing. The 
algorithm may draw any curve specified by an equation of the form F(x~v)=0. The 
equation may be given as a function in a programming language while having 
floating point arguments and returning a floating point value. The algorithm 
implicitly calculates two curves displaced from F(x~v)=0 by the half of the desired 
width along and against the gradient of F(x,y) and estimates the area of the part of 
each pixel (in the vicinity of F(x,y)=O) which part lies between the two displaced 
curves. The color of the pixel to be drawn depends upon the estimated area. The 
estimation is realized without use of a finer raster (as e.g. in [Whit83]) and is 
therefore very fast and precise. 
In the following sections we consider only boundary curves and a method of 
subdividing a digital curve in digital straight line segments of maximal possible 
length. The segments are also boundary segments. 
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5 Properties of Digital Straight Segments 
We are speaking here about digital straight segments (DSS) rather then about digital 
lines because in practice we always consider finite subsets of the digital plane. Such 
a subset can only contain a subset of a Line, i.e. a line segment. 
It is natural to define a digital straight segment as a result of the digitization of a 
Euclidean straight segment. Various digitization schemes of digitizing curves were 
suggested (e.g. [AndKim85]). Most of them are based on testing the crossings of the 
given curve, with the grid lines. It is rather difficult to mathematically justify these 
schemes or speci~ some reasons for preferring one of them. Therefore we are 
suggesting here one scheme more which follows from the commonly used practical 
way of digitizing regions in raster images. 
The natural way of digitizing a region in the Euclidean plane consists in subdividing 
the plane in regularly spaced elementary areas corresponding to the pixels and in 
measuring for each pixel its portion covered by the given Euclidean region. The 
measured value must be compared with a threshold. A pixel must be set to 1 if the 
measured portion is greater than the threshold and set to 0 otherwise. We call this 
method digitizing by thresholding. 
This scheme may be applied to digitizing Jordan curves in the following way: 

1) Given a Euclidean Jordan curve JC construct the Euclidean region R which is 
the interior of JC; 

2) Digitize R by thresholding and place the results into the 2-dimensional cell 
complex thus defining a digital region DR; 

3) Find the boundary of DR. This is the digital image of JC. 

The above scheme is slightly bothersome because of the necessity to measure area 
portions for each pixel. There is however a simple particular case of the scheme. 
Consider first the digitization of a straight line. The corresponding region R is a 
half-plane H. Let us digitize H with a threshold equal to 0.5. Then digitization may 
be performed without calculating area portions since a half-plane covers more than 
0.5 of a rectangular elementary area iff the middle point of the area is inside H 
which may be found by substituting the coordinates of the middle point into the 
inequality of H. The same scheme may be used for digitizing curves with restricted 
curvature. A simple calculation shows that the error in estimating the area portion is 
less than 1% if the curvature radius is greater than 6 times the side of a pixel. 
Thus we arrive at the following digitization scheme for Euclidean curves (e.g. given 
by equations): 
I) Subdivide the plane in regularly spaced squares and define tile middle point of 

each rectangle; 
2) Establish a mapping of the set of the squares onto the 2-dimeusional complex 

while mapping the squares onto the 2-cells (pixels) and their sides onto the 1-cells 
(cracks). 

3) Find two adjacent pixels whose middle points lie on different sides of the given 
Euclidean curve. If the curve is given by an equation like F(x,y)=0, then the 
values 9 f F(x~v) at the said two middle points must have different signs. The crack 
between the two pixels is then a boundary crack. It belongs to the digital curve. 
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The well-known properties of DSS's (see e.g. [AndKim85]) may be easily derived 
from our digitization scheme as follows. Consider a half-plane whose inequality is 
H(x~v)=P.x+Q.y+R>O, where P and Q are integers. The middle points of all pixels 
are subdivided into two subsets: those with positive and those with non-positive 
values of H(x,y). Let us call them ,,positive" and ,,negative" middle points. For every 
0-cell C belonging to the boundary of these subsets (Fig. 2) there exist four adjacent 
middle points whose distance to C is equal to x/~2 of the length of a pixel side. We 
shall consider since now the length of a pixel side as the unit of measurement. The 
four middle points compose two diagonal pairs (MP1, .MP4) and (MP2, MP3) each 
having the 0-cell C in the middle. These pairs are shown in Fig,2. Consider that of 
the two pairs for which the absolute difference of the values of H(x,y) is greater (or 
equal) to that for the other pair (the absolute differences are equal only for haft- 
planes with horizontal or vertical boundaries). Let us call the corresponding diagonal 
direction the main diagonal for H. It, is (MP2, MP3) in Fig. 2. 

o o 

• O 0 

MP~ MP4 

Fig. 2. The positive and the negative middle points of a half-plane 
and the main diagonal (MP2, MP3) of the half-plane 

Since the vector connecting the middle points of a pair has both its X- and 
Y-components equal to +1, it is easy to see that the maximum absolute difference is 
equal to JPJ+IQI. The values of the points belonging to the same pair must have 
different signs or, more exactly, one value must be positive and the other negative or 
zero, Thus the maximum positive value of H(x,y) for all ,positive" middle points 
adjacent to a boundary point like C cannot be greater than fl+LQI and the adjacent 
,,negative" middle points have all values strongly greater than -(IPI+IQI). Since the 
0-cells of the boundary lie exactly in the middle between the middle points of each 
mean diagonal pair, the values of H(x,y) for the 0-cells must satisfy the condition: 

-(IPI+IQt)/2 < H(x~v) <_+(tPI+IQ])/2. (1) 

This is an important property of the points of a DSS which may be used for fast 
recognition of the DSS's. 
The next important property of a DSS is its periodicity. Consider a 0-cell C with 
coordinates (X,Y) belonging to the DSS which belongs to the boundary of the half- 
plane H(x,y)=P.x+Q.y+R>_O. Another 0-cell with coordinates (X+a,Y+b) will have 
the same value of H(x,y) if the condition P.a+Q.b=O holds. Let P=P~.GCD and 
Q=Q, oGCD where GCD is the greatest common divisor of P and Q. Then the 
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smallest values of a and b must satisfy the condition P=. a+Q=. b=0 or a=Q= and 
b=-P=. Therefore the vector (a, b) defines the period of the DSS. It is not correct to 
affirm that every DSS is periodic: it may consist of exactly one period. In such a case 
the assertion about the periodicity has no sense. A correct assertion is: any DSS has a 
subsequence, called its period, such that any multiple repetition of the period always 
produces a DSS. These properties enable the recognition of DSS's: given a digital 
curve CV as a sequence of 0-cells and cracks it is possible to find the longest segment 
of CVwhich is a DSS. 

Let us remind some definitions introduced in [Kov90], namely that of the base of a 
DSS and of its starting and end points. Consider the ,,negative" and ,,positive" 
subsets of pixels corresponding to a given half-plane inequality H(x,y)>O as 
mentioned above. A connected subset of the boundary of these subsets is a DSS. It 
consists of cracks and points and contains no pixels. The Euclidean straight line 
containing the longest edge of the convex hull of the points is called the base of the 
DSS (the same as the ,,nearest support" of [=amdI~m85]). There is another base 
touching the hull on the opposite side and being parallel to the first one. 

StartR StartL X 

fight base " ~ , ~  ..... iiiili!iiiii~ . . . . .  ..... ==~i iliiliiiiii!!i iiiiliiiiii!i~iii!iiiiii!iiiiiiiiiiii]iiiiii!iiiiiiiiiiiiiiiiiil iiiiii!iliiii! Iiiiiiiliiiii! 

.....      iiiiiii|i iiiiliiiiiiiii!iil!ii!iiiiiiiliiiiiiiiiil i "  ._"==     iiiilII®!NIIi!ilii!Iii!iilii!![ 
",'==iliiii; iiiiiiiiii  iiiiliii!!ili '= }   iiiiiiilliiiil 

"'~IiiiiiiiliiiiI 

E~dR ....... 

Fig.3. The bases ofa DSS and their end points 

Let us give the DSS such an orientation (arrows in Fig. 3) that the ,,positive" pixets 
are to the left hand side of the DSS. Correspondingly we call one of the bases the left 
and the other the right base. In Fig. 3 the positive half-plane is shown as the shaded 
region. The cracks of the corresponding DSS are drawn as bold lines. StartL and 
EndL are the vectors of the end points of the left base; StartR and EndR are those of 
the right base. 
Let us choose the constant R in the inequality H(x,y)=P.x+Q.y+R>O such that 
H(x~v) be equal to zero for points lying on the right base. The difference between the 
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minimum and the maximum values of H(x,y) at all points of the DSS remains 
unchanged. Therefore according to (1) the values of/-I(x~v) must be now in the 
range: 

0 <__ H(x,y) < ~[+]Qt. (2) 

If P and Q are relatively prime then the difference between the maximum value of 
It(x,y) and ~PI+IQI has the smallest possible integer value 1. Therefore for all points 
of a DSS the following inequality holds: 

0 <_ H(x,y) ~ ]P]+[Qt-1. (3) 

The values of P and Q may be considered, as the components of the normal to the 
Euclidean line specified by H(x,y)=O. It is more convenient for our purpose to 
consider a vector along the base of the DSS whose components are relatively prime. 
The vector is obviously perpendicular to the nounal and has the X-component N---Q~ 
and the Y-component M=P~. Thus we can rewrite the above inequalities as: 

H(x~v)=g~r. (x-X,.)-N, (y- Y,); ( 4 ) 

0 _< n(x,v) _< ~q+leq-~; 

where Xr and Yr are coordinates of a point on the right base. 

(5) 

Inequalities (5) give us the possibility the decide whether a point belongs to a DSS 
with given parameters M, b~ AT, and Yr. A more complicated problem is the inverse 
one: given a sequence of points find vchether there exist such values of the 
parameters M, iV, Xr and Yr that the sequence satisfies (5)° The author has suggested 
a solution of this problem in [Kovg0]. A short explanation of the solution follows. 

The main idea of the solution consists in starting with the parameters for a trivial 
DSS consisting of a single crack and in actualizing the parameters after each step 
along the given sequence of points and cracks. To explain the actualization one more 
property of the DSS's must be demonstrated. We have showed that the difference of 
the values of H(x,y) for any two points of a DSS must be less than )MI+IN] (compare 
(5)). The value of H(x,y) may be interpreted according to (4) as being proportional to 
the projection of the vector P-Pr onto the normal, where P=-(x,y) is the actual point 
of the sequence to be tested and P, =(Xr, Y~) is a point on the right base. If H(x,y)) at 
P becomes exactly equal to ~/~+iNI (or respectively to -1) while it was in the range of 
(5) for all other already tested points, then there is the possibility to slightly rotate 
the normal in such a way, that/-/(xiv) at P becomes slightly less (respectively greater) 
thus satisfying the conditions (5) and the values of H(x,y) for all other points remain 
m the permitted range. The author has proved that this rotation must be performed 
by moving the end point of one of the bases to the actual point P. This is the end 
point closest to P and belonging to the base closest to P. This idea is realized in fl:~e 
following algorithm. 
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6 Recognition of Digital Straight Segments 

The recognition algorithm uses the inequality (5) of a DSS. We consider all points as 
vectors. We denote the components of a vector V as VX and K IT. The pair of values 
(N, M) is also a vector denoted as TANG (,,tangent"): TANGX=N, TANG.Y=M. The 
instruction ,,continue" in the following description of the algorithm means ,,change 
nothing, get the next point of the sequence". The instruction ,,break" means ,,the 
actual point P does not belong to the DSS; store the point preceding P as the end 
point of the DSS; return a break message". We shall denote by HL(x,y)=O the 
equation of the left and by HR(x,y)=O that of the right base. The notations StartL, 
gndL etc. were explained in the previous section (Fig. 3). 
Take the first two points P1, P2 of the given curve and set StartL=StartR=P1; 
gndL=EndR=P2. Set the starting values of TANG=EndL-StartL (M and N take the 
values of either to 0 or +1). Set the half-plane values HL=HR=O. 
1. Store the first two different directions of cracks appearing since the start. 
2. For every next point P of the curve: 

2.1 Test the direction of the last step, whether it is equal to one of the two 
directions having appeared until now: 
If it is not, then break (the sequence is no more a DSS); 
else increase HL by - (M  . STEP X - N  . STEP.Y) and HR by 
(M°STEP2f-N°STEP.Y), where STEP is the unity vector having the 
direction of the last step. (Note that one of the components of STEP is zero 
and the other is equal to +1). 

2.2 Test the value of HR: 
HR is positive: 
HR is zero: 
HR is equal to -1: 

HR is less than - 1: 

continue; 
set EndR=P, continue; 
calculate the new values of TANG, EndR, StartL, 
HL (the only two multiplications); set HR=0; 
continue; 
break. 

2.3 Test in a similar way the -value of HL. 
End of the algorithm. 

After a "break" the point PP directly preceding the actual point P must be stored as 
the end point of the DSS. The next DSS begins at PP while PP is the first and P the 
second point of the new DSS and so on. 

7 Encoding of curves 

The Crack Code 
A well-known way of encoding digital curves is that of the Freeman code [Fre6t]. 
Boundary curves in a two-dimensional complex are sequences of cracks and points. 
Oriented cracks may have only four directions. Therefore they may be encoded by a 
Freeman code with four directions which is also well-known as the crack code (see 
e.g. ~osKaak82]). 
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This way of encoding curves is a rather economical one especially if only two bits per 
crack are used. Its main drawback is the difficulty of performing geometrical 
transformations: only a translation is easy to realizer Rotation and scaling are hardly 
realizable without converting the crack code into some other code more suitable for 
geometrical transformations. 

End Points o f  DSS' s 
Another way of encoding curves consists in decomposing the curve into as long as 
possible DSS's and recording the coordinates of their end points. This code makes 
geometrical transformations easily realizable: it suffices to multiply the vectors 
corresponding to all end points with the matrix of the desired transformation, 
eventually in homogeneous coordinates. However this code does not allow an exact 
reconstruction of the original digital curve since there exist many different DSS's 
ha~4ng the same end points. The distance between any two such DSS's is never 
greater than the pixel's diagonal. Therefore the difference between such two DSS' s 
may be considered in many applications as negligible. In such cases this way of 
encoding curves is the simplest and the most economical one, especially if we record 
coordinate increments rather then the coordinates itself. If however an exact 
reconstruction is necessary than the foUowing ways of encoding are possible. 

Floating Point Coordinates 
A DSS is uniquely specified by its end points and any Euclidean straight line which 
is a preimage of the DSS. The Euclidean line parallel to the bases and lying exactly 
in tile middle between them is such a line. We shall call the line the axis of  the DSS. 
The parameters of the axis and the location of the end points may be combined if we 
calculate the crossing points of the axis with the main diagonals (s. Section 5) 
containing the end points~ The crossing points uniquely define both the axis and the 
integer end points which are the integer points nearest to the crossing points. The 
drawbacks of this way of encoding are as foUows: 

a) the memory demand is relatively great, e.g. two ,,float" coordinates of each of 
two crossing points with two axes of subsequent DSS makes 4×2x2 bytes per 
end point; 

b) a common end point of two subsequent DSS~s of a digital polygon may be 
,,split" after geometrical transformations into two different integer points thus 
making the polygon disconnected. 

There are some rather complicated ways of overcoming one of the drawbacks but not 
both of them. 

Additional integer Parameters of  a DSS 
A DSS may be uniquely specified by its end points and by one of its bases. 
Specifying the base by the coordinates of its end points (which are mostly different 
from the end points of the DSS) is rather redundant, A more economical way of 
encoding consists in specifying two integers M and N for the direction of the base 
accompanied by the distance of the starting point of the DSS from the base. The 
distance itself is a small value and must be represented by a floating point variable. 
However there is a possibility to specify a positive integer L not greater than 



6t 

~/]+[N]-I which together with the values of M and N specifies the distance uniquely. 
The coordinates of the end points of the DSS may also be encoded economically: 
only the coordinates of the starting point of the curve must be specified explicitly; all 
other coordinates may be defined by means of the number NC of cracks in the 
current DSS. Thus we need four integers per DSS: NC, L, M and N. Since the 
majority of the DSS's are relatively short, these integers are mostly small ones: all 
four integers may be packed into a word of 2 bytes. For longer DSS's a longer word 
of 3 or 4 bytes may be needed, but the frequency of such long words is low. Therefore 
the average number of bytes per one DSS lies between 2 and 3. 

8 Experiments 

The author has developed a program which traces the boundaries of regions with 
constant gray levels in an image of 1 byte per pixel, dissects the boundaries in as 
long as possible DSS's and encodes them by the code described in the previous 
section. Another program reconstructs the image from the code. The reconstructed 
image is always identical with the original one. Numerous experiments have shown 
that the average number of bytes per one DSS is of order of 2.3. This leads to an 
economical encoding of images: the compression rate is of the order of about 20 to 
40 for images with a low density of fine details and of about 3 for images with many 
fine details or many gray levels. The length of the code is approximately inversely 
proportional to the number of gray levels in the original image. To obtain a high 
compression rate the image must be properly smoothed and quantized. 

Fig. 4. An example of an encoded image 

Fig. 4 shows an image of 390x480=187200 pixels with 32 gray levels. It was 
encoded with 60080 bytes. Thus the compression rate was about 3.1. 
When encoding the same images by means of the crack code, the compression rate is 
about 1.5 for a low density of details and about 0.15 (no compression) for images 
with many fine details. Thus the encoding by means of the DSS's brings a much 
higher compression rate than that of crack codes. The suggested method is less 
efficient then the well-known ARJ method, but our method represents the image in a 
,,geometrical" way: i.e. it is possible to extract from the code the boundaries of the 
regions and thus perform image analysis by means of the code. 
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