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Abs t rac t .  In this paper we compare simple load metrics with neural 
networks which have been trained to predict the expected delay of an 
application from the sampled load informations. The results show that 
the proposed load metric performs well in heterogeneous environments. 
Further, neural networks can improve the performance of load balancing 
facilities. 

1 Introduction and Definition of Load Metrics 

Clusters of workstations are an increasingly popular platform for parallel com- 
puting. Some of the main differences to 'real' parallel computers, as far as re- 
source management  is concerned, are (configurational) heterogeneous nodes and 
(interactive) users running their applications concurrently. The observed work- 
load is also heterogeneous and consists of jobs with highly varying service de- 
mands, long running batch jobs, and interactive applications with a high per- 
centage of I/O-operations. 

Load metrics for homogeneous systems have been examined by e.g. Ferrai 
and Zhou [1] and by Kunz [3]. Here, we present and compare two load metrics 
which aim to predict the delay of an application under the given load situation. 

D e f i n i t i o n  o f  D e l a y  F a c t o r s  To minimize the response times, we want to 
assign an arriving job to the processor with most free processing capacity. In 
a heterogeneous system, this does not only depend on the current load of the 
machines, but  also on the speed characteristics of the machines. 
The delay factor of an application on machine M/ under load load~ is defined as 

runt irne(  Mi,loadi ) 
dclay(Mi) := runtime(M,zow,O)' 

where Mslow denotes the machine architecture with the lowest processing capac- 
ity in the system. When there is no other load in the system, this delay is equal 
to the speed factor ~i of machine Mi: 

runt ime(Mi ,O)  
Oli :"~ runtirne(Mslo~,O) " 

However, this definition of the delay factors is of no use for computing 
them. While runtime(Mslow, O) is the result of one run for each application, 
runtime(Mi,loadi) has to be calculated for every application, every machine, 
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and every load, which is impossible. Instead, we approximate the delay from the 
current load as 

delay(Mi) := ai (1 + loadi) , 
where loadi is an approximation for the current load. 

Our benchmark for calculating the speed factors is ISTEX , one of the most 
popular applications in our computing department. 

The simplest approximation for load is the CPU run queue length. Since the 
UNIX system statistics are gathered only every 5 seconds, we have decided to 
use the CPU run queue length smoothed over 30 seconds. The quality of this 
so-called YALB-delay 1 is evaluated in section 2. 

D e f i n i t i o n  o f  N e u r o - D e l a y  Our aim is to investigate, whether neural networks 
can learn to predict the expected delay more accurately. 

The analytic relation between resource statistic parameters and the resulting 
delay is unknown. The advantage of using a neural net is that  the net can learn 
the relation between load statistics and delay during the training phase. 

Mehra used neural networks to learn the relation between the resource statis- 
tics and the load index [4]. However, Mehra's method is not suited for real world 
use, because of the kernel modifications, and because the machines are needed 
exclusively for about ten days to sample the training patterns after changes in 
the configuration. 

We trained a neural net for each of the 5 architectures listed in table 1. 
We measured about 1500 benchmark runs to get training and test patterns 
for the nets. A pattern consists of the resource statistic parameters, which are 
sampled before a benchmark is started, and the execution time. Our example 
applications were gTEX , gcc, and the simulation program sgnuLan. The choice 
of the benchmarks was motivated by our system accounting. 

ISTEX gcc Mandelbrot PovRay dhrystone MIPS 
Sun SLC 1.00 1.00 1.00 1.00 1.00 1.00 
Sun IPC 0.83 0.75 0.55 0.73 0.84 0.79 
Sun ELC 0.70 !0.69 0.34 0.52 0.56 0.53 
Sun Classic 0.72 0.56 0.36 0.46 0.36 - 
Sun SS2 0.53 0.45 0.26 0.42 0.46 0.44 

Table 1. Speed factors of different applications. 

We used Backpropagation nets with 3 layers [2]. At the input layer the load 
patterns are presented to the neural net. The output  is the expected delay. 
During the training phase, the net compares its own calculated delay with the 
measured delay of the benchmark and tries to minimize its error. 

Since the networks learn to predict the delay compared to a reference machine 
(Sun SLC), the trained networks can be used in a heterogeneous environment. 

1 The name is motivated by the use of the delay factor in our experimental YALB 
(Yet Another Load Balancing) System. 
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It should be mentioned that  this approach avoids the need to calculate speed 
characteristics for the machines. 

In order to reduce the training effort, we first did a correlation analysis of 
the sampled vmstat parameter values, and eliminated the insignificant ones. The 
significant parameters for all machines turned out to be the run queue length, 
system call rate, percentage of time spent in system mode, context switch rate, 
device interrupts per second, and the number of pages on the free list. Addi- 
tionally, we used an average of the CPU run queue over 1 minute to smooth out 
inaccuracies of the UNIX statistics. 

Earlier experiences [6] have shown that nets which do not predict the ex- 
act value, but classify the input patterns, are easier to train. For classification, 
each output  node represents a class of delay factors. The center of a class is its 
representative. 

When a load pattern is presented to the net, the two classes with the high- 
est outputs out1 and out2 are determined. Let rl  and r2 be the corresponding 
class representatives. The Neuro-delay is then defined as the weighted mean: 

out l . r l  +out2.r2 Neuro-delay := outl+o~t2 
During our first training phase the network failure could not be minimized 

sufficiently. The neural nets seemed to be incapable to manage their task. We 
chose the percentage of user and system time of the applications as additional 
input parameters to give hints about the different runtime behavior of the ap- 
plications. These values can be predicted by the user quite easily. 

The results of the trained networks are presented in the next section. 

2 C o m p a r i s o n  o f  Y A L B -  a n d  N e u r o - D e l a y  

Both metrics predict the delay of an application on a machine compared to a 
reference machine. If they are used within a load balancing system, not the exact 
value of the delay is important ,  but the correct ranking of the machines. 

2.1 R a n k - C o r r e l a t i o n - C o e • c i e n t  

A suitable load metric ranks the machines in the same order as they would be 
ranked by the as yet unknown completion times of the application. 

If we want to compare the ranking of the load metric with the true ranking 
due to completion times, we have to measure the completion time of an ap- 
plication on every machine. We used artificial load to guarantee the same load 
situation for each of the n measurements. 

The different rankings are compared by Spearman's rank-correlation coeffi- 
cient [5]: 

r : = l - ~ ,  
where n is the number of ranked test cases equal to the number of machines in 
the system, and di is the difference between the two different ranks of the i th 
test case. 
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C o r r e l a t i o n  fo r  T r a i n i n g  P a t t e r n s  Here, we report the results for the training 
patterns used in section 1. For each tested application there are 107 samples 
(about 20 samples from each of the 5 architectures). Each sample is a triple 
consisting of the measured execution time, the YALB-delay, and the Neuro- 
delay (both calculated before the application was started). 

I$TEX gcc simuLan ~,TEX gcc simuLan 
Neuro 0.93 0.90 0.95 Neure 0.87 0.81 0.92 
Yalb 0.91 0.90 0.93 Yalb 0.87 0.65 0.83 

Table 2. Correlation for Training Patterns (left), and the same for medium and high 
load only (right). 

The correlation for all three benchmarks are very high for both metrics (see 
table 2 (left)). This means that  the neural networks are trained well to predict 
the expected delay. On the other hand, the simple YALB-delay has also good 
ranking qualities. 

Correlat ion u n d e r  M e d i u m  a n d  H i g h  L o a d  In this experiment, we wanted 
to test the metrics under medium and high load. Therefore, we removed all 
samples from hosts which had none or only one job running concurrently to the 
benchmark. This results in 41 patterns for the gcc and 84 patterns each for the 
IhTEX and slxnuLan application. 

The correlation coefficients decrease for both metrics (see table 2 (right)). 
The Neuro-delay behaves a little better than the YALB-delay. 

2.2 Simulat ion of  a Load Balancing System 

The simulated load balancing system determines the fastest available machine in 
the system based upon the current delay values. Then an application is started 
on that  machine, and the runtime is measured. This experiment is repeated 1000 
times and all run times are summed up. 

We re-used the samples from the rank correlation test for the simulation 
experiment. To simulate a system with n machines, we randomly choose n sam- 
ples from this set. These n samples represent the load situations on n different 
machines. The machine with the smallest delay value is chosen for execution. 

Then we compare the measured delays of all samples to determine the opti- 
mal placement of the application, i.e., the machine with the measured shortest 
runtime of the benchmark under the given load situation. This gives us the pos- 
sibility not only to compare YALB- and Neuro-delay, but also to evaluate how 
far away the results are from the possible optimal placement. 

The YALB-slowdown of a benchmark is defined as 
YALB-slowdown := ~ runtime(MyALB,IoadMyALB )-- C runtime( Mopt,lOadMopt ) 

C runtime(Mo~t,loadMop~ ) 
where MyALB is the machine with the shortest expected YALB-delay, and Mopt 
is the machine with the measured shortest delay. The Neuro-slowdown is defined 
analogous. 
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Resul t s  for Tra in ing P a t t e r n s  In case of the I.$TEX application the YALB- 
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Fig. 1. Slowdown for example applic&tions (left), and the same under medium and 
high load only (right). 

delay performs better, i.e., it yields a lower slowdown. For gcc and simuLan the 
Neuro-delay shows very good results (see figure 1 (left)). 

The slowdowns tend to get a little bit worse with increasing system size, 
because the probability to choose a sample of a lowly loaded machine increases, 
too, so that the optimal runtime(Mopt, loadMop~) decreases. When the metric 
favors a wrong sample as the fastest one, this mistake will be weighted stronger 
when a shorter optimal runtime is possible. 

Resul t s  u n d e r  M e d i u m  and  High Load Again, for this experiment the 
samples of lowly loaded hosts are removed. In this situation, the YALB-slowdown 
increases (see figure 1 (right)). The Neuro-slowdown is lower in most test cases 
and stays stable also for bigger systems. 
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R e s u l t s  fo r  U n k n o w n  A p p l i c a t i o n s  Our first experiences have shown a 
poor performance of the Neuro-Delay with unknown applications. Therefore, 
we trained even simpler networks with modified input parameter sets to also 
handle I /O intensive applications and applications with a higher percentage of 
floating point operations. The improved results of these experiments will be 
presented elsewhere [7]. 

3 Conc lus ions  

We compared two approaches for load metrics in heterogeneous systems: a simple 
load metric which uses only the current run queue length and the speed charac- 
teristics of the machines, and a metric which is calculated by neural networks. 

While the first is easy to calculate and performs satisfactory in heteroge- 
neous systems, the neural network approach yields better results, especially un- 
der medium and high load and when the system size increases. 

We want to thank Detlef Nauck of our Softcomputing department. Without 
him and his support in the field of neural networks this work would not have 
been done. 

Further information about our research activities can be found on our web 
page http ://www. ibr. cs. tu-bs, de/proj ect s/load/ . 
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