
Load Management for Load Balancing on
Heterogeneous Platforms: A Comparison of

Tradit ional and Neural Network Based
Approaches

Bettina Schnor, Stefan Petri, Horst LangendSrfer

Institut fiir Betriebssysteme und Rechnerverbund, TU Braunschweig,
Bfiltenweg 74/75, D-38106 Braunschweig, Germany

scb.aor@ibr, ca. tu-bs, de

Abs t rac t . In this paper we compare simple load metrics with neural
networks which have been trained to predict the expected delay of an
application from the sampled load informations. The results show that
the proposed load metric performs well in heterogeneous environments.
Further, neural networks can improve the performance of load balancing
facilities.

1 Introduction and Definition of Load Metrics

Clusters of workstations are an increasingly popular platform for parallel com-
puting. Some of the main differences to 'real' parallel computers, as far as re-
source management is concerned, are (configurational) heterogeneous nodes and
(interactive) users running their applications concurrently. The observed work-
load is also heterogeneous and consists of jobs with highly varying service de-
mands, long running batch jobs, and interactive applications with a high per-
centage of I/O-operations.

Load metrics for homogeneous systems have been examined by e.g. Ferrai
and Zhou [1] and by Kunz [3]. Here, we present and compare two load metrics
which aim to predict the delay of an application under the given load situation.

D e f i n i t i o n o f D e l a y F a c t o r s To minimize the response times, we want to
assign an arriving job to the processor with most free processing capacity. In
a heterogeneous system, this does not only depend on the current load of the
machines, but also on the speed characteristics of the machines.
The delay factor of an application on machine M/ under load load~ is defined as

runt irne(Mi,loadi)
dclay(Mi) := runtime(M,zow,O)'

where Mslow denotes the machine architecture with the lowest processing capac-
ity in the system. When there is no other load in the system, this delay is equal
to the speed factor ~i of machine Mi:

runt ime(Mi ,O)
Oli :"~ runtirne(Mslo~,O) "

However, this definition of the delay factors is of no use for computing
them. While runtime(Mslow, O) is the result of one run for each application,
runtime(Mi,loadi) has to be calculated for every application, every machine,

616

and every load, which is impossible. Instead, we approximate the delay from the
current load as

delay(Mi) := ai (1 + loadi) ,
where loadi is an approximation for the current load.

Our benchmark for calculating the speed factors is ISTEX , one of the most
popular applications in our computing department.

The simplest approximation for load is the CPU run queue length. Since the
UNIX system statistics are gathered only every 5 seconds, we have decided to
use the CPU run queue length smoothed over 30 seconds. The quality of this
so-called YALB-delay 1 is evaluated in section 2.

D e f i n i t i o n o f N e u r o - D e l a y Our aim is to investigate, whether neural networks
can learn to predict the expected delay more accurately.

The analytic relation between resource statistic parameters and the resulting
delay is unknown. The advantage of using a neural net is that the net can learn
the relation between load statistics and delay during the training phase.

Mehra used neural networks to learn the relation between the resource statis-
tics and the load index [4]. However, Mehra's method is not suited for real world
use, because of the kernel modifications, and because the machines are needed
exclusively for about ten days to sample the training patterns after changes in
the configuration.

We trained a neural net for each of the 5 architectures listed in table 1.
We measured about 1500 benchmark runs to get training and test patterns
for the nets. A pattern consists of the resource statistic parameters, which are
sampled before a benchmark is started, and the execution time. Our example
applications were gTEX , gcc, and the simulation program sgnuLan. The choice
of the benchmarks was motivated by our system accounting.

ISTEX gcc Mandelbrot PovRay dhrystone MIPS
Sun SLC 1.00 1.00 1.00 1.00 1.00 1.00
Sun IPC 0.83 0.75 0.55 0.73 0.84 0.79
Sun ELC 0.70 !0.69 0.34 0.52 0.56 0.53
Sun Classic 0.72 0.56 0.36 0.46 0.36 -
Sun SS2 0.53 0.45 0.26 0.42 0.46 0.44

Table 1. Speed factors of different applications.

We used Backpropagation nets with 3 layers [2]. At the input layer the load
patterns are presented to the neural net. The output is the expected delay.
During the training phase, the net compares its own calculated delay with the
measured delay of the benchmark and tries to minimize its error.

Since the networks learn to predict the delay compared to a reference machine
(Sun SLC), the trained networks can be used in a heterogeneous environment.

1 The name is motivated by the use of the delay factor in our experimental YALB
(Yet Another Load Balancing) System.

617

It should be mentioned that this approach avoids the need to calculate speed
characteristics for the machines.

In order to reduce the training effort, we first did a correlation analysis of
the sampled vmstat parameter values, and eliminated the insignificant ones. The
significant parameters for all machines turned out to be the run queue length,
system call rate, percentage of time spent in system mode, context switch rate,
device interrupts per second, and the number of pages on the free list. Addi-
tionally, we used an average of the CPU run queue over 1 minute to smooth out
inaccuracies of the UNIX statistics.

Earlier experiences [6] have shown that nets which do not predict the ex-
act value, but classify the input patterns, are easier to train. For classification,
each output node represents a class of delay factors. The center of a class is its
representative.

When a load pattern is presented to the net, the two classes with the high-
est outputs out1 and out2 are determined. Let rl and r2 be the corresponding
class representatives. The Neuro-delay is then defined as the weighted mean:

out l . r l +out2.r2 Neuro-delay := outl+o~t2
During our first training phase the network failure could not be minimized

sufficiently. The neural nets seemed to be incapable to manage their task. We
chose the percentage of user and system time of the applications as additional
input parameters to give hints about the different runtime behavior of the ap-
plications. These values can be predicted by the user quite easily.

The results of the trained networks are presented in the next section.

2 C o m p a r i s o n o f Y A L B - a n d N e u r o - D e l a y

Both metrics predict the delay of an application on a machine compared to a
reference machine. If they are used within a load balancing system, not the exact
value of the delay is important , but the correct ranking of the machines.

2.1 R a n k - C o r r e l a t i o n - C o e • c i e n t

A suitable load metric ranks the machines in the same order as they would be
ranked by the as yet unknown completion times of the application.

If we want to compare the ranking of the load metric with the true ranking
due to completion times, we have to measure the completion time of an ap-
plication on every machine. We used artificial load to guarantee the same load
situation for each of the n measurements.

The different rankings are compared by Spearman's rank-correlation coeffi-
cient [5]:

r : = l - ~ ,
where n is the number of ranked test cases equal to the number of machines in
the system, and di is the difference between the two different ranks of the i th
test case.

618

C o r r e l a t i o n fo r T r a i n i n g P a t t e r n s Here, we report the results for the training
patterns used in section 1. For each tested application there are 107 samples
(about 20 samples from each of the 5 architectures). Each sample is a triple
consisting of the measured execution time, the YALB-delay, and the Neuro-
delay (both calculated before the application was started).

I$TEX gcc simuLan ~,TEX gcc simuLan
Neuro 0.93 0.90 0.95 Neure 0.87 0.81 0.92
Yalb 0.91 0.90 0.93 Yalb 0.87 0.65 0.83

Table 2. Correlation for Training Patterns (left), and the same for medium and high
load only (right).

The correlation for all three benchmarks are very high for both metrics (see
table 2 (left)). This means that the neural networks are trained well to predict
the expected delay. On the other hand, the simple YALB-delay has also good
ranking qualities.

Correlat ion u n d e r M e d i u m a n d H i g h L o a d In this experiment, we wanted
to test the metrics under medium and high load. Therefore, we removed all
samples from hosts which had none or only one job running concurrently to the
benchmark. This results in 41 patterns for the gcc and 84 patterns each for the
IhTEX and slxnuLan application.

The correlation coefficients decrease for both metrics (see table 2 (right)).
The Neuro-delay behaves a little better than the YALB-delay.

2.2 Simulat ion of a Load Balancing System

The simulated load balancing system determines the fastest available machine in
the system based upon the current delay values. Then an application is started
on that machine, and the runtime is measured. This experiment is repeated 1000
times and all run times are summed up.

We re-used the samples from the rank correlation test for the simulation
experiment. To simulate a system with n machines, we randomly choose n sam-
ples from this set. These n samples represent the load situations on n different
machines. The machine with the smallest delay value is chosen for execution.

Then we compare the measured delays of all samples to determine the opti-
mal placement of the application, i.e., the machine with the measured shortest
runtime of the benchmark under the given load situation. This gives us the pos-
sibility not only to compare YALB- and Neuro-delay, but also to evaluate how
far away the results are from the possible optimal placement.

The YALB-slowdown of a benchmark is defined as
YALB-slowdown := ~ runtime(MyALB,IoadMyALB)-- C runtime(Mopt,lOadMopt)

C runtime(Mo~t,loadMop~)
where MyALB is the machine with the shortest expected YALB-delay, and Mopt
is the machine with the measured shortest delay. The Neuro-slowdown is defined
analogous.

619

Resul t s for Tra in ing P a t t e r n s In case of the I.$TEX application the YALB-

i i i i I I i

Neuro-lndex ..e--
YALB.-lndex --i--.

50

40

30

20

10

50

E

i
o)

~. 4O

lO

50

i i i i i i i

Neuro-lndex -.e---
YALB-Index -.+--.

I | I I I I I

6 8 10 12 14 16 18 20
number of hosts

i i i i i i i

Neuro-lndex
YALB-Index -4--.

. p . 4 - "P "

. . ~p . . ~p . . . k . . , p . , , F "

6 8 10 12 ?4 ?6 18 20
number of hosts

i i i i i i i

Neuro-lndex
YALB-Index --i--.

{
o)

E

i

E
]
._E

i

50

40

30

20

10

0

50

40

30

20

10

0

50

40

30

20

~. 4O

so
E

j 20

. po .~ r .~ i . . . 4 . . ~ " I ' ' 4 ' ' P "

I I I I I I I

6 8 10 12 14 16 18 20
number of hosts

i i i i i i i

Neuro-lndex --e--
YALB-Index -+--

lO

I I I I I ! I

6 8 10 12 ?4 76 "{8 20
number of home

i ' i i i i I ~ .

Neuro-lndex
YAL~lndle~" .-+--.

21r

I r

6 8 10 12 14 1 18 20 6 8 10 12 14 16 1 20
number of hoers number of hosts

Fig. 1. Slowdown for example applic&tions (left), and the same under medium and
high load only (right).

delay performs better, i.e., it yields a lower slowdown. For gcc and simuLan the
Neuro-delay shows very good results (see figure 1 (left)).

The slowdowns tend to get a little bit worse with increasing system size,
because the probability to choose a sample of a lowly loaded machine increases,
too, so that the optimal runtime(Mopt, loadMop~) decreases. When the metric
favors a wrong sample as the fastest one, this mistake will be weighted stronger
when a shorter optimal runtime is possible.

Resul t s u n d e r M e d i u m and High Load Again, for this experiment the
samples of lowly loaded hosts are removed. In this situation, the YALB-slowdown
increases (see figure 1 (right)). The Neuro-slowdown is lower in most test cases
and stays stable also for bigger systems.

620

R e s u l t s fo r U n k n o w n A p p l i c a t i o n s Our first experiences have shown a
poor performance of the Neuro-Delay with unknown applications. Therefore,
we trained even simpler networks with modified input parameter sets to also
handle I /O intensive applications and applications with a higher percentage of
floating point operations. The improved results of these experiments will be
presented elsewhere [7].

3 Conc lus ions

We compared two approaches for load metrics in heterogeneous systems: a simple
load metric which uses only the current run queue length and the speed charac-
teristics of the machines, and a metric which is calculated by neural networks.

While the first is easy to calculate and performs satisfactory in heteroge-
neous systems, the neural network approach yields better results, especially un-
der medium and high load and when the system size increases.

We want to thank Detlef Nauck of our Softcomputing department. Without
him and his support in the field of neural networks this work would not have
been done.

Further information about our research activities can be found on our web
page http ://www. ibr. cs. tu-bs, de/proj ect s/load/ .

R e f e r e n c e s

1. D. Ferrari and S. Zhou. An empirical investigation of load indices for load balancing
applications. In Performance '87, pages 515-528. Elsevier Science Publishers, 1988.

2. S. Haykln. Neural Networks: A Comprehensive Foundation. Macmillian College
Publishing Company, New York, 1994.

3. T. Kunz, The Influence of Different Workload Descriptions on a Heuristic Load
Balancing System. IEEE Transactions on Software Engineering, 17(7):725-730,
July 1991.

4. Pankaj Mehra. Automated Learning of Load-Balancing Strategies for a Distributed
Computer System. PhD thesis, University of Illinois at Urbana-Champaign, 1993.
Available on ftp.ibr.cs.tu-bs.de.

5. I. Miller and J.E. Freund. Probability and Statistics for Engineers. Prentice-Hall,
Englewood Cliffs, 2nd edition, 1977.

6. B. Schnor, H. LangendSrfer, and S. Petri. Einsatz neuronaler Netze zur Lastbal-
ancierung in Workstationclustern. In Proc. Praxisorientierte ParaUelverarbeitung,
pages 154-165, Braunschweig, October 1994.

7. B. Schnor, S. Petri, and H. LangendSrfer. Using neural networks for prediction of
load indices in heterogeneous computing environments. In Preparation, 1996.

