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Abs t r ac t .  We illustrate the application of the hyperbolic model, which 
generalizes standard two-parameter dedicated-link models for communi- 
cation costs in message-passing environments, to four distributed-memory 
architectures: Ethernet NOW, FDDI NOW, IBM SP2, and Intel Paragon. 
We first evaluate the parameters of the model from simple communica- 
tion patterns. Then overall communication time estimates, which com- 
pare favorably with experimental measurements, are deduced for the 
message traffic in a scientific application code. For transformational com- 
puting on dedicated systems, for which message traffic is describable in 
terms of a finite number of regular patterns, the model offers a good 
compromise between the competing objectives of flexibility, tractability, 
and reliability of prediction. 

1 I n t r o d u c t i o n  
Most communicat ion models are based on an empirically inferred linear depen- 
dence of the t ime needed to send a message between two communicat ing parties 
on the size of the message. For example, various hardware and software overheads 
in a parallel environment that  are modeled by a fixed component,  independent 
of the message size, and by a variable component,  proport ional  to the message 
size, are identified in [1]. However, such models (with constant coefficients) can- 
not accommodate  contention in a general fashion. Schemes for part ial ly avoiding 
contention in routing architectures (e.g., a hypercube in [5]) and for obtaining 
probabilistic guarantees for propagat ion times have been proposed, but the prob- 
lem of quantifying the effect of coexisting messages over the same link on the 
end-to-end communicat ion performance requires more attention. 

The hyperbolic model [4] is a variation on the two-parameter  models. Its main  
goal is to address in a uniform way the modular i ty  increasingly present in mod-  
ern parallel computing environments, where a message pa th  between two com- 
municating parties crosses multiple processing modules having clearly defined 
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interfaces and distinct functionality. If the twin parameters of every module on 
a message path are known (either by measurement or functional specification), 
the hyperbolic model allows them to be combined by a set of simple rules into a 
single pair of end-to-end parameters. In contrast to models that a t tempt  to glob- 
ally characterize communication costs independently of data paths, the modular 
hyperbolic representation is data-driven. It can take advantage of knowledge 
of connectivity and component parameters along the communication paths to 
adapt the parameters to specific patterns of communication. 

2 The Hyperbolic Communication Model 

Given a set of source nodes S, a set of destination nodes D, and a set of messages 
M in a parallel processing environment such that: (1) every message in M is sent 
by a node in S to a node in D, (2) every node in S sends at least one message 
and all messages it sends are in M, and (3) every node in D receives at least 
o n e  message and all messages it receives are in M, our goal is to estimate the 
transmission time for every message in M. 

This simply described task is rendered difficult in practice by the multilay- 
eredness of a communication network, by the possibility of message contention, 
and by message packetization. A message can be latency-bound or bandwidth- 
bound, depending upon its size and packet granularity, and the layer of the 
network that  is "critical" can shift as message size varies, since each layer may 
have different latency and bandwidth characteristics. In systems with message 
contention for network paths, the effective latency and bandwidth seen by a given 
message can be functions of the other messages present. This paper describes a 
means of deriving just such an effective overall pair of latency and bandwidth 
parameters by algebraic combination rules of component-wise parameters. 

The sets D, S, and M determine the state of the communication system, 
which is represented as a directed graph called a communication graph (CG). 
A CG has two types of nodes: terminal nodes and internal nodes. The terminal 
nodes represent the end processes that  initiate the sending and receiving of data. 
Between any pair of terminal nodes the data is passed in messages of various 
sizes. An internal node or Communication Block (CB)  is an abstract module 
that  embeds all the functions performed by the communication protocols in one 
or more layers of software and hardware, in order to deliver data from source 
to destination. A C B  manipulates data in units of limited size, called packets. 
Passing a message to a C B  may result in splitting it into packets. We say that  two 
or more CBs are dependent if they share a common resource and therefore only 
one of them can process data at a given moment,  and independent otherwise. 
For example, two CBs running on different processors are independent, while if 
they run on the same processor they are dependent. 

The most important  measure characterizing a CB is the time required to 
process a message of size x, called the total service time. We consider that  the 
packet processing time has two components: a fixed service time that  is indepen- 
dent of the packet size (e.g., the overhead associated with memory management,  
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interrupt processing and context switching, the propagation delay) and an incre- 
men ta l  service t ime that  is proportional to the packet size (e.g., data movement 
between different protocol layers, building and verifying of the CRC or checksum, 
packet transmission on the communication network). 

Consider a CB characterized by the following parameters: the maximum 
packet size p (bytes), the fixed service time per packet a, and the incremental 
service time per byte m. The total service time t for a message of size x is given 
by 

t(z;a,m,p) = arZ-1 + mz, (1) 
p 
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Fig. 1. The total service time t(x;a, m, p) versus the continuous function T(x; a, b) 
used to approximate it (a = 1, m = 0.5 and p = 2). 

where [:c/p] is the number of packets of maximum size p being processed. We 
approximate the total service time with 

a 2 

T ( x ;  a,b)  - - -  Jr bx, (2) 
a + b x  

where b = a / p  + m (see Fig. 1). This is the equation of a hyperbola in the 
(x, t) plane, hence the name of the model. The improvement of (2) over a linear 
latency (~) / reciprocal transfer rate (fl) model, T ( x ;  a , f l )  = c~ + t3x, is not 
so much in the fit of a continuous curve to the sawtooth form of a packetized 
transmission, but in the analytical simplicity with which the parameters (a, b) 
for a C G  may be derived in terms of its elemental CBs,  as shown by the four 
combination rules below. Using Ti to estimate the total service t ime required by 
C B i  to process a message of a given size, we derive rules for reducing n CBs  
interconnected in various structures to a single equivalent CB, with service t ime 
T ( a l ,  bl, a2, b2, . . . ,  an, bn). Evaluating the reduced CG at extreme limits of mes- 
sage size and number of processors permits extraction of the salient parameters 
for the individual CBs.  A detailed discussion motivating the form of (2) and the 
combination rules is available in [4]. 

Ser ia l  I n t e r c o n n e c t i o n .  We say that  n communication blocks C B i  (1 _< 
i < n) are serially interconnected with respect to a message m if every packet of 
m is processed sequentially by every C B i .  2 

2 Notice that this definition does not imply that a message is processed in its entirety 
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R u l e  1 Given n serially interconnected communication blocks CBi(ai ,  bi), (1 _< 
i <_ n), this structure is equivalent to a single communication block CB(aI ,  bl) 
(for independent blocks) or CB(aD,  bD) (for dependent blocks), where: 

al = aD = ai; bt = max{b l ,b2 , . . . , bn} ;  bD = bi �9 
i=1  i=1  

P a r a l l e l  I n t e r c o n n e c t i o n .  We say that  n communicat ion blocks CBi (1 < 
i < n) are parallel interconnected with respect to a message m if any packet of 
m can be processed by any CBi.  Assuming that  the packets are processed such 
that  the total  service t ime of the message is minimized, we have the following: 

R u l e  2 Given n parallel interconnected communication blocks CBi(ai ,  bi), (1 _< 
i <_ n), this structure is equivalent to a single communication block CB(a~, b~) 
(for independent blocks) or CB(aD,  bD) (for dependent blocks), where: 

n 

at = aD = min{al ,  a2,. ., an}; bI = ( Z  ~_~)-1. bD = min{bl, b2, . . ,  bn} 
i=1  

C o n c u r r e n t  P r o c e s s i n g .  Next we analyze the general case in which a CB 
simultaneously receives for processing n messages ml ,  m2, . . . ,  m ,  of sizes xl ,  z2, 
�9 .., zn. Since we cannot tell exactly when a particular message mi is processed, 
we consider the t ime required to process mi being bounded by the t ime required 
to process all messages, i.e., mi is the last message being processed. 

R u l e  3 A communication block CB(a ,b)  that processes n messages ml ,  m2, 
�9 .., mn of sizes xl ,  x~, . . . ,  xn, respectively, is equivalent to a structure of n 
independent communication blocks CB l (a l ,  bl), CB2(a2, b2), . . . ,  CBn (an, bn), 
where every CBi processes the message mi and has parameters: 

a i = na; bi : b .  ~in--1 x i  
xi 

G e n e r a l  R e d u c t i o n  R u l e .  The previous reduction rules are based on the 
assumption that  the communicat ion graph is identical for both  small (packet 
size) and very large messages�9 Although this is true for many  cases, for complex 
communication pat terns  this assumption is no longer valid (see the example of 
a tree-based broadcast in [4]). We therefore have the following general reduction 
rule, which interpolates hyperbolically between limiting cases: 

R u l e  4 Given two terminal nodes s and d such that s sends a message m of 
size x to d, then the total service time for the message m is given by Eq. (2), 
where a is the service time when sending a small message (x --~ 0), while b is 
the service time per data unit when sending a large message (x ---* ~ ) .  

by one CB and only after that by the next CB. In fact, if the message is larger than 
the maximum packet size and the CBs are independent, as soon as CB1 dehvers a 
packet, CB~ can start to process it. 
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3 C o m m u n i c a t i o n  P a r a m e t e r s  

In principle, one can determine CB parameters a and b by considering the hard- 
ware characteristics of the computation nodes and the communication network 
(e.g., the processor speed, the memory access time, the internal bus speed etc.) 
and the communication protocol implementation details (e.g., the number of 
times a data  buffer is copied while passed through various protocol layers, the 
algorithms used to compute checksums etc.). Although this approach appears to 
allow accurate evaluation of CB parameters,  it is hard to apply it in practice due 
to software and hardware heterogeneity, and due to difficulties in determining 
the aggregate latency and bandwidth in a complex layered communication ar- 
chitecture, such as the ones embedded in the general purpose operating systems 
running on the processing nodes. 3 

~ C B  w ~  

Ethemet/FDDl 

CBp CBp 

IBM SP2 

CB CB p 

Intel paragon 

Fig. 2. Communication graphs and their reduction to the equivalent CBs for sending 
one message between two processors (Pattern 1 in Table 1). 

Architecture Pattern 1 Pattern 2 
a b a ] b 

Ethernet/FDDI 2a~ + ar max(b~, be) 4(n - 1)a~Zc max(2(n - 1)b~,, 
n(n -- i)ac n(n -- 1)be) 

IBM SP2 2ap+ac max(bp,b~) 2ap+nac max(bp, nbc) 
Paragon 2ap -F 2ac max(bp, be) 2ap + 2nac max(bp, abe) 

T a b l e  1. Communication parameters for the equivalent CBs  in Figs. 2 and 3. 

As an alternative, we propose a simple experimental approach to determine 
the communication parameters. For each architecture we consider two communi- 
cation patterns. In the first, we measure the communication times between two 

3 This is because of various factors like interrupt processing, context switching, mem- 
ory management etc., and other hardware features like the presence of a cache mem- 
ory system. 
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l n t e l  P a r a g o n  

Fig. 3. Communication graphs and their reduction to the equivalent CBs for the 
all-to-all communication pattern (Ethernet/FDDI}, and for the pattern in which each 
processor i (n < i) sends a message to the processor 2 n - i +  1 (SPe/Paragon) (Pattern 
P in Table 1). 

end-nodes for messages of various sizes. Figure 2 shows the corresponding com- 
municat ion graphs and their reduction (by using Rule 1 for independent blocks) 
to the equivalent CBs for Ethernet NOW, FDDI NOW, IBM SP2, and Intel 
Paragon. In the E the rne t /FDDI  case CBc models the communication network, 
while the workstations are modeled by the same CBw irrespective of whether 
a message is sent or received. In the IBM SP2 case CBp models a processor, 
CBc models the communication switch, and CBz models a communication link 
between two end-nodes. 4 Finally, in the Paragon case CBc models the dedicated 
communicat ion processor that  resides on each node. 

In the second communication pat tern  we try to send as many  messages as 
possible in order to achieve a communicat ion bottleneck in the network and 
"expose" the CBc parameters  ( that  otherwise are "shadowed" by the C B w / C B p  
parameters) .  For E the rne t /FDDI  we use an all-to-all communication pattern,  in 
which every workstation sends/receives a message to / f rom all others. We were 
not able to use the same pat tern for SP2, since for large messages the program 
hang. (We suspect buffer overflow within the communicat ion switch is the cause.) 
We have therefore replaced it with a pa t te rn  in which each node sends/receives 

4 Each logical node (processor) of an SP2 belongs to a logical frame, which is a two- 
stage switch that provides any permutation between 16 bidirectional links to/from 
16 processors. In this case, the CBc parameters are dependent on the interconnec- 
tion topology. For example, as long as the interconnection topology provides separate 
paths for all pairs of end-nodes exchanging messages, the communication link be- 
tween any two end-nodes is modeled simply as CBl. 
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a message to / f rom exactly one other node. The same communication pattern is 
used for the Paragon. Figure 3 depicts communication graphs for each case as 
well as their reductions (by using Rules 3 and 1) to the equivalent CBs.  Table 1 
shows the communication parameters of the equivalent CBs for each case. 

IA, '~hit~r ,~ ,  o~ ap ] bw or bp I ac bc or bl I 
Ethernet 750#sec 1.05#sec/byte 250#sec 0.95#sec/byte 
FDDI 
IBM SP2 

380#sec 0.13#sec/byte 5#sec 
62#sec -at~2 0.025#sec/byte 124#sec -2a  v 
120#sec -ac 0.031#sec/byte 120#sec -ap Paragon 

0.11#sec/byte 
0.0285#sec/byte 
0.012#sec/byte 

Table  2. Communication parameters for the CBs in Figs. 2 and 3. 

Next, by measuring the communication times for small and very large mes- 
sages (0.5 MB) for each communication pattern, we determine the parameters 
a and b of the equivalent CBs shown in Figs. 2 and 3 (recall from Eq. (2) that  
lirn~_~0 T(x ,  a, b) = a, and lim~._.o~ T(x ,  a, b) = b). Finally, from the formulae 
in Table 1 we can determine the values of the communication parameters for 
different blocks (see Table 2). In two cases (SP2 and Paragon) we are not able 
to independently compute ac and ap, since we can not achieve a communication 
bottleneck for very short messages. However, this is not a problem in practice 
since it is unlikely that  an application will separately expose these parameters. 

4 T e s t  A p p l i c a t i o n  
A model parallel scientific application [2], chosen because of the high scaling 
of its communication requirements relative to computation requirements, was 
rewritten in MPI and instrumented for use as a test program for the hyper- 
bolic model. To verify its accuracy, we select for graphical comparison estimates 
of the communication times and corresponding measurements. The estimates 
derive from the archetypal communication operations as described in [4], with 
parameters evaluated for each platform as in Section 3. 

The model application is transient simulation of Navier-Stokes flow in a 
square fluid-filled cavity, driven by an oscillating rigid lid. Space parallelism is 
achieved through domain partitioning, with one processor per subdomain. Time 
parallelism is achieved by assigning identically spatially decomposed time planes 
to disjoint sets of processors. The motivation for time parallelism is the degrada- 
tion of efficiency in space parallelism that  is due both to increasing perimeter-to- 
area (surface-to-volume) ratio and to slowing of convergence as spatial coupling 
is sacrificed. In the limit of pure time parallelism, p processors work concurrently 
on p different time planes of the transient solution. In the limit of pure space 
parallelism, only one time plane is computed at a time. The communication 
patterns and the amount of traffic vary with the allocation of available proces- 
sors between space and time, as well as with the refinement of the spatial grid. 
However, for time parallelism, the asymptotic computation and communication 
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complexity are of equal order, since full planes of data  must be transmitted 
between time levels for every plane-based computational update. 

We derive overall communication parameters for the traffic consisting of inter- 
plane grid transfers, which are dominant in overall communication complexity. 
On a homogeneous set of processors this pattern should exhibit contention since 
all transfers will start  at "almost"  the same time. Figure 4 shows the communi- 
cation graphs corresponding to this communication pat tern for Ethernet /FDDI,  
IBM SP2, and Intel Paragon, as well as the reduction to an equivalent C B .  In 
the case of the SP2 we assume that  every pair of nodes communicates through 
a "dedicated" link (represented by CBt ) .  Table 3 shows the expressions of the 
communication parameters for the intermediate communication graph, as well 
as for the final C B .  These parameters are computed for the bi-directional case 
where neither nodes i nor i + 1 are associated with the first or last planes (i.e., 
i = 2, 3 , . . . ,  n - 2 ) .  For the first and last planes, communication is uni-directional 
only and the parameters can be computed in the same manner.  

E~emeffF'DDl IBM SP-2 Inlel Paragon j 

~ Rule 3 

I I 

Fig. 4. The communication graph and its reduction to an equivalent CB ]or the main 
communication pattern induced by the time-parallel application in the time-parallel limit 
]or: Ethernet/FDDI, I B M  SP2 and Intel Paragon 

Architecture [ C B ~  CB~ C B  
ap bp ac b c a [ b 

Ethernet/FDDI 2 aw 2 b~ (n - 1)ac (n - 1)be 4a~ + (n - 1)ac max{2b~o, (n - 1)be} 
IBM SP2 ]2 a p 2  bp at 'bt 4 ap 4- at max{2bp, bt} 
Intel Paragon 12 ap 2 bp 2 ac 2 bc 4 ap + 2 ac max{2bp, 2b~} 

T a b l e  3. Communica t ion  parameters  for  the C B s  shown in Fig. 6. 

The application has been ported under MPI to the four platforms evaluated 
in Section 3. For Ethernet and FDDI we run the experiments on up to 8 SUN 
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SPARCstation 20s. For the SP2 and Paragon, in choosing the maximum numbers 
of nodes, our goal is to minimize as much as possible the interference of other 
users. Therefore, on the SP2 we run the experiments by using up to the maximum 
number of processors on a frame (i.e., 16), and for the Paragon we run the 
experiments on up to 12 nodes, since this is the maximum number of nodes we 
can allocate along a mesh column. (By allocating all the nodes on one side of 
the mesh we eliminate any potential interference.) 

Figure 5 shows the predicted versus the measured values for the total com- 
munication times corresponding to one iteration in the algorithm. For FDDI, the 
SP2, and the Paragon the predicted data are within 20% of the measurements. 5 
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(c) (d) 

Fig. 5. Predicted versus measured communication times .for: (a) Ethernet NOW, (b) 
FDD1 NOW, (c) IBM SP2, (d) lntel Paragon. 

On the other hand, for Ethernet the difference between the predicted data 
and the measurements (the "asynchronous" curve) is much larger and tends to 
increase with the number of processors. The main reason is that  the hyperbolic 
model assumes that all processors send data at the same time, which yields an 
upper bound on the communication time. Though the application is inherently 

5 The exception is the seven-processor experiment under FDDI, which we believe was 
primarily due to communication interference from other workstations on the same 
subnet. (We reserved only the individual workstations; we could not reserve the 
entire subnet.) 
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synchronous, in practice the probabilistic protocol employed by Ethernet "de- 
stroys" the synchronicity. At the beginning of each iteration all workstations 
a t tempt  to send messages "almost" at the same time, and therefore the proba- 
bility of collision is high. When a workstation detects such a collision, it waits 
a random amount of t ime [3], before retransmitting the packet. In time, this 
results in workstations sending out paackets at slightly staggered intervals. Con- 
sequently, the degree of overlap between messages sent by different processors is 
much lower than is assumed in the model. For validation purposes, we changed 
the algorithm to force synchronization at intermediate points during an itera- 
tion. As shown in Fig. 5, the measured overall communication time in this case 
(the "synchronous" curve) is very close to the predicted value. 

The key contrast between the NOWs and the tightly-coupled machines, as 
predicted by the model and as borne out in the experiments, is in the asymptotic 
behavior of the communication time with respect to the number of processors. 
For the NOWs it is linear, since the communication network is a shared resource 
of limited capacity: adding more nodes decreases the share of communication 
bandwidth allocated to each processor. 

For the SP2 and the Paragon, the communication times remain practically 
constant as the number of nodes increases. This is expected from the scalability 
of the communication subsystems employed by these platforms. The difference 
in the t ime to complete the communication in going from two to three processors 
for the SP2 and the Paragon is due to the presence, for more than two processors, 
of at least one processor (in between) which both sends and receives data. In the 
two-processor case each processor either sends or receives (but not both), which 
reduces by nearly half the overall message processing time at the end nodes. 

In conclusion, the two-parameter hyperbolic model [4] for parallel commu- 
nication complexity on general dedicated networks has been applied, using a 
uniform set of rules, to a variety of architectures employing a variety of mes- 
sage topologies. The model is flexible and reasonably accurate in predicting the 
communication times for an archetypal application. 
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