Evaluating the Hyperbolic Model
on a Variety of Architectures

Ion Stoica, Florin Sultan, David Keyes *

Department of Computer Science,
Old Dominion University, Norfolk VA 23529-0162, USA
e-mail: {stoica, sultan, keyes}@cs.odu.edu

Abstract. We illustrate the application of the hyperbolic model, which
generalizes standard two-parameter dedicated-link models for communi-
cation costs in message-passing environments, to four distributed-memory
architectures: Ethernet NOW, FDDI NOW, IBM SP2, and Intel Paragon.
We first evaluate the parameters of the model from simple communica-
tion patterns. Then overall communication time estimates, which com-
pare favorably with experimental measurements, are deduced for the
message traffic in a scientific application code. For transformational com-
puting on dedicated systems, for which message traffic is describable in
terms of a finite number of regular patterns, the model offers a good
compromise between the competing objectives of flexibility, tractability,
and reliability of prediction.

1 Introduction

Most communication models are based on an empirically inferred linear depen-
dence of the time needed to send a message between two communicating parties
on the size of the message. For example, various hardware and software overheads
in a parallel environment that are modeled by a fixed component, independent
of the message size, and by a variable component, proportional to the message
size, are identified in [1]. However, such models (with constant coefficients) can-
not accommodate contention in a general fashion. Schemes for partially avoiding
contention in routing architectures (e.g., a hypercube in [5]) and for obtaining
probabilistic guarantees for propagation times have been proposed, but the prob-
lem of quantifying the effect of coexisting messages over the same link on the
end-to-end communication performance requires more attention.

The hyperbolic model [4] is a variation on the two-parameter models. Its main
goal is to address in a uniform way the modularity increasingly present in mod-
ern parallel computing environments, where a message path between two com-
municating parties crosses multiple processing modules having clearly defined
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interfaces and distinct functionality. If the twin parameters of every module on
a message path are known (either by measurement or functional specification),
the hyperbolic model allows them to be combined by a set of simple rules into a
single pair of end-to-end parameters. In contrast to models that attempt to glob-
ally characterize communication costs independently of data paths, the modular
hyperbolic representation is data-driven. It can take advantage of knowledge
of connectivity and component parameters along the communication paths to
adapt the parameters to specific patterns of communication.

2 The Hyperbolic Communication Model

Given a set of source nodes S, a set of destination nodes D, and a set of messages
M in a parallel processing environment such that: (1) every message in M is sent
by a node in S to a node in D, (2) every node in S sends at least one message
and all messages it sends are in M, and (3) every node in D receives at least
one message and all messages il receives are in M, our goal is to estimate the
transmission time for every message in M.

This simply described task is rendered difficult in practice by the multilay-
eredness of a communication network, by the possibility of message contention,
and by message packetization. A message can be latency-bound or bandwidth-
bound, depending upon its size and packet granularity, and the layer of the
network that is “critical” can shift as message size varies, since each layer may
have different latency and bandwidth characteristics. In systems with message
contention for network paths, the effective latency and bandwidth seen by a given
message can be functions of the other messages present. This paper describes a
means of deriving just such an effective overall pair of latency and bandwidth
parameters by algebraic combination rules of component-wise parameters.

The sets D, S, and M determine the state of the communication system,
which is represented as a directed graph called a communication graph (CG).
A CG has two types of nodes: terminal nodes and internal nodes. The terminal
nodes represent the end processes that initiate the sending and receiving of data.
Between any pair of terminal nodes the data is passed in messages of various
sizes. An internal node or Communication Block (CB) is an abstract module
that embeds all the functions performed by the communication protocols in one
or more layers of software and hardware, in order to deliver data from source
to destination. A C'B manipulates data in units of limited size, called packets.
Passing a message to a C B may result in splitting it into packets. We say that two
or more CBs are dependent if they share a common resource and therefore only
one of them can process data at a given moment, and independent otherwise.
For example, two CBs running on different processors are independent, while if
they run on the same processor they are dependent.

The most important measure characterizing a CB is the time required to
process a message of size z, called the total service time. We consider that the
packet processing time has two components: a fized service time that is indepen-
dent of the packet size (e.g., the overhead associated with memory management,
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interrupt processing and context switching, the propagation delay) and an incre-
mental service time that is proportional to the packet size (e.g., data movement
between different protocol layers, building and verifying of the CRC or checksum,
packet transmission on the communication network).

Consider a CB characterized by the following parameters: the maximum
packet size p (bytes), the fixed service time per packet a, and the incremental
service time per byte m. The total service time ¢ for a message of size « is given
by z

t(z;a,m,p) = af;] + mz, (1)
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Fig.1. The total service time t(r;a, m, p) versus the continuous function T(z; a, b)
used to approzimate it (a = 1, m = 0.5 and p = 2).

where [z/p] is the number of packets of maximum size p being processed. We
approximate the total service time with

T(z;a,b) =

a2

a+ bz
where & = a/p + m (see Fig. 1). This is the equation of a hyperbola in the
(z,t) plane, hence the name of the model. The improvement of (2) over a linear
latency (@) / reciprocal transfer rate (§) model, T(z;a,8) = « + Bz, is not
so much in the fit of a continuous curve to the sawtooth form of a packetized
transmission, but in the analytical simplicity with which the parameters (a,b)
for a CG may be derived in terms of its elemental CBs, as shown by the four
combination rules below. Using 7; to estimate the total service time required by
CB; to process a message of a given size, we derive rules for reducing n CBs
interconnected in various structures to a single equivalent CB, with service time
T(a1,b1,a2,bs,...,an,b,). Evaluating the reduced CG at extreme limits of mes-
sage size and number of processors permits extraction of the salient parameters
for the individual CBs. A detailed discussion motivating the form of (2) and the
combination rules is available in [4].

Serial Interconnection. We say that n communication blocks CB; (1 <
i < n) are serially interconnected with respect to a message m if every packet of
m is processed sequentially by every CB;.?

+ bz, (2)

2 Notice that this definition does not imply that a message is processed in its entirety
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Rule 1 Given n serially interconnected communication blocks CB;(a;,b;), (1 <

i < n), this structure is equivalent to a single communication block CB(ar,br)
(for independent blocks) or CB(ap,bp) (for dependent blocks), where

I:aD:Zai, b;:max{bl,bz,.. b} bD—Zb

i=1

Parallel Interconnection. We say that n communication blocks CB; (1 <
i < n) are parallel interconnected with respect to a message m if any packet of
m can be processed by any C B;. Assuming that the packets are processed such
that the total service time of the message is minimized, we have the following:

Rule 2 Given n parallel interconnected communication blocks CB;(ai, b;), (1 <
i < n), this structure is equivalent 1o a single communication block CB(ay,br)
(for independent blocks) or CB(ap,bp) (for dependent blocks), where:

"1
aI:aD:min{al,ag,...,an}; bjz(z-;)_l; bD:min{bl,bZ,,,_,bn},
i=1 '

Concurrent Processing. Next we analyze the general case in which a CB
simultaneously receives for processing n messages my, mo, ..., my, of sizes z1, 2,
.y &pn. Since we cannot tell exactly when a particular message m; is processed,
we consider the time required to process m; being bounded by the time required
to process all messages, i.e., m; is the last message being processed.

Rule 3 A communication block CB(a,b) that processes n messages my, mo,

.., My of sizes x1, Tg, ..., Ty, respectively, is equivalent to a structure of n
independent communication blocks C'Bi(a1,b1), CBa(az, b2), ..., CBy(an,b,),
where every CB; processes the message m; and has parameters:

bi=1b- —Ei:l il

Lq

a; = na;

General Reduction Rule. The previous reduction rules are based on the
assumption that the communication graph is identical for both small (packet
size) and very large messages. Although this is true for many cases, for complex
communication patterns this assumption is no longer valid (see the example of
a tree-based broadcast in [4]). We therefore have the following general reduction
rule, which interpolates hyperbolically between limiting cases:

Rule 4 Given two terminal nodes s and d such that s sends a message m of
size x to d, then the total service time for the message m is given by Eq. (2),
where a is the service time when sending a small message (x — 0), while b is
the service time per data unit when sending a large message (z — 00).

by one CB and only after that by the next CB. In fact, if the message is larger than
the maximum packet size and the CBs are independent, as soon as CB; delivers a
packet, CB; can start to process it.
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3 Communication Parameters

In principle, one can determine CB parameters a and b by considering the hard-
ware characteristics of the computation nodes and the communication network
(e.g., the processor speed, the memory access time, the internal bus speed etc.)
and the communication protocol implementation details (e.g., the number of
times a data buffer is copied while passed through various protocol layers, the
algorithms used to compute checksums etc.). Although this approach appears to
allow accurate evaluation of CB parameters, it is hard to apply it in practice due
to software and hardware heterogeneity, and due to difficulties in determining
the aggregate latency and bandwidth in a complex layered communication ar-
chitecture, such as the ones embedded in the general purpose operating systems
running on the processing nodes.3
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Fig.2. Communication graphs and their reduction to the equivalent CBs for sending
one message between two processors (Pattern 1 in Table 1).

Architecture Pattern 1 Pattern 2

a | b a | b
Ethernet/FDDI|[2aw + ac {max(bw, bc)[4(n — 1)aw+|max(2(n — 1)bw,
n{n —1ac |n(n — 1)b)
IBM SP2 2ap + ac |max(bp, bi) |2ap + na.  |max(bp, nbc)
Paragon 2ap + 2ac|max(bp, bc) {2ap + 2na. |max(by, nb.)

Table 1. Communication parameters for the equivalent CBs in Figs. 2 and 3.

As an alternative, we propose a simple experimental approach to determine
the communication parameters. For each architecture we consider two communi-
cation patterns. In the first, we measure the communication times between two

3 This is because of various factors like interrupt processing, context switching, mem-
ory management etc., and other hardware features like the presence of a cache mem-
ory system.
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Fig.3. Communication graphs and their reduction to the equivalent CBs for the
all-to-all communication pattern (Ethernet/FDDI), and for the pattern in which each
processori (n < i) sends a message to the processor 2n—i+1 (SP2/Paragon) (Pattern
2 in Table 1).

end-nodes for messages of various sizes. Figure 2 shows the corresponding com-
munication graphs and their reduction (by using Rule 1 for independent blocks)
to the equivalent CBs for Ethernet NOW, FDDI NOW, IBM SP2, and Intel
Paragon. In the Ethernet/FDDI case C' B, models the communication network,
while the workstations are modeled by the same CB,, irrespective of whether
a message is sent or received. In the IBM SP2 case C'B, models a processor,
C B, models the communication switch, and C B; models a communication link
between two end-nodes.* Finally, in the Paragon case C B. models the dedicated
communication processor that resides on each node.

In the second communication pattern we try to send as many messages as
possible in order to achieve a communication bottleneck in the network and
“expose” the C B, parameters (that otherwise are “shadowed” by the CB,,/CB,
parameters). For Ethernet/FDDI we use an all-to-all communication pattern, in
which every workstation sends/receives a message to/from all others. We were
not able to use the same pattern for SP2, since for large messages the program
hang. (We suspect buffer overflow within the communication switch is the cause.)
We have therefore replaced it with a pattern in which each node sends/receives

* Each logical node (processor) of an SP2 belongs to a logical frame, which is a two-
stage switch that provides any permutation between 16 bidirectional links to/from
16 processors. In this case, the C B, parameters are dependent on the interconnec-
tion topology. For example, as long as the interconnection topology provides separate
paths for all pairs of end-nodes exchanging messages, the communication link be-
tween any two end-nodes is modeled simply as CB;.
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a message to/from exactly one other node. The same communication pattern is
used for the Paragon. Figure 3 depicts communication graphs for each case as
well as their reductions (by using Rules 3 and 1) to the equivalent C'Bs. Table 1
shows the communication parameters of the equivalent CBs for each case.

[Architecture] aw orap | by orbd, | ac [ bcord |
Ethernet 750 usec 1.05usec/byte [250usec 0.95pusec/byte
FDDI 380usec 0.13usec/byte [5usec 0.11usec/byte

IBM SP2 ||62usec —a./2]|0.025usec/byte{124usec —2a,|0.0285usec/byte
Paragon 120pusec —a. {0.031usec/byte|120usec —a, |0.012usec/byte

Table 2. Communication parameters for the CBs in Figs. 2 and 3.

Next, by measuring the communication times for small and very large mes-
sages (0.5 MB) for each communication pattern, we determine the parameters
a and b of the equivalent CBs shown in Figs. 2 and 3 (recall from Eq. (2) that
limy_oT(2,a,b) = a, and limy—.oo T'(2,a,b) = b). Finally, from the formulae
in Table 1 we can determine the values of the communication parameters for
different blocks (see Table 2). In two cases (SP2 and Paragon) we are not able
to independently compute a. and a,, since we can not achieve a communication
bottleneck for very short messages. However, this is not a problem in practice
since it is unlikely that an application will separately expose these parameters.

4 Test Application

A model parallel scientific application [2], chosen because of the high scaling
of its communication requirements relative to computation requirements, was
rewritten in MPI and instrumented for use as a test program for the hyper-
bolic model. To verify its accuracy, we select for graphical comparison estimates
of the communication times and corresponding measurements. The estimates
derive from the archetypal communication operations as described in [4], with
parameters evaluated for each platform as in Section 3.

The model application is transient simulation of Navier-Stokes flow in a
square fluid-filled cavity, driven by an oscillating rigid lid. Space parallelism is
achieved through domain partitioning, with one processor per subdomain. Time
parallelism is achieved by assigning identically spatially decomposed time planes
to disjoint sets of processors. The motivation for time parallelism is the degrada-
tion of efficiency in space parallelism that is due both to increasing perimeter-to-
area (surface-to-volume) ratio and to slowing of convergence as spatial coupling
is sacrificed. In the limit of pure time parallelism, p processors work concurrently
on p different time planes of the transient solution. In the limit of pure space
parallelism, only one time plane is computed at a time. The communication
patterns and the amount of traffic vary with the allocation of available proces-
sors between space and time, as well as with the refinement of the spatial grid.
However, for time parallelism, the asymptotic computation and communication
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complexity are of equal order, since full planes of data must be transmitted
between time levels for every plane-based computational update.

We derive overall communication parameters for the traffic consisting of inter-
plane grid transfers, which are dominant in overall communication complexity.
On a homogeneous set of processors this pattern should exhibit contention since
all transfers will start at “almost” the same time. Figure 4 shows the communi-
cation graphs corresponding to this communication pattern for Ethernet/FDDI,
IBM SP2, and Intel Paragon, as well as the reduction to an equivalent C'B. In
the case of the SP2 we assume that every pair of nodes communicates through
a “dedicated” link (represented by C'B;). Table 3 shows the expressions of the
communication parameters for the intermediate communication graph, as well
as for the final CB. These parameters are computed for the bi-directional case
where neither nodes 7 nor i + 1 are associated with the first or last planes (i.e.,
i =2,3,...,n—2). For the first and last planes, communication is uni-directional
only and the parameters can be computed in the same manner.
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majmiifisaa i) r% heh ohe
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Fig.4. The communication graph and its reduction to an equivalent CB for the main

communication pattern induced by the time-parallel application in the time-parallel limit
for: Ethernet/FDDI, IBM SP2 and Intel Paragon

Architecture CB, CB. CB

ay | by a, | b a ] b
Ethernet/FDDI||2 aw|2 bw|{n — 1)ac|(n — 1)bc|[4aw + (7 — 1)acjmax{2by, (n ~ 1)b.}
IBM SP2 2 ap |2 bp |a b 4ap + a max{2b,, b}
Intel Paragon {]2 ap |2 b, |2 ac 2 b 4ap + 2 ac max{2b,, 2b. }

Table 3. Communication parameters for the CBs shown in Fig. 6.

The application has been ported under MPI to the four platforms evaluated
in Section 3. For Ethernet and FDDI we run the experiments on up to 8§ SUN
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SPARCstation 20s. For the SP2 and Paragon, in choosing the maximum numbers
of nodes, our goal is to minimize as much as possible the interference of other
users. Therefore, on the SP2 we run the experiments by using up to the maximum
number of processors on a frame (i.e., 16), and for the Paragon we run the
experiments on up to 12 nodes, since this is the maximum number of nodes we
can allocate along a mesh column. (By allocating all the nodes on one side of
the mesh we eliminate any potential interference.)

Figure 5 shows the predicted versus the measured values for the total com-
munication times corresponding to one iteration in the algorithm. For FDDI, the
SP2, and the Paragon the predicted data are within 20% of the measurements.®
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Fig.5. Predicted versus measured communication times for: (a) Ethernet NOW, (b)
FDDI NOW, (c¢) IBM SP2, (d) Intel Paragon.

On the other hand, for Ethernet the difference between the predicted data
and the measurements (the “asynchronous” curve) is much larger and tends to
increase with the number of processors. The main reason is that the hyperbolic
model assumes that all processors send data at the same time, which yields an
upper bound on the communication ttme. Though the application is inherently

® The exception is the seven-processor experiment under FDDI, which we believe was
primarily due to communication interference from other workstations on the same
subnet. (We reserved only the individual workstations; we could not reserve the
entire subnet.)
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synchronous, in practice the probabilistic protocol employed by Ethernet “de-
stroys” the synchronicity. At the beginning of each iteration all workstations
attempt to send messages “almost” at the same time, and therefore the proba-
bility of collision is high. When a workstation detects such a collision, it waits
a random amount of time [3], before retransmitting the packet. In time, this
results in workstations sending out paackets at slightly staggered intervals. Con-
sequently, the degree of overlap between messages sent by different processors is
much lower than is assumed in the model. For validation purposes, we changed
the algorithm to force synchronization at intermediate points during an itera-
tion. As shown in Fig. 5, the measured overall communication time in this case
(the “synchronous” curve) is very close to the predicted value.

The key contrast between the NOWs and the tightly-coupled machines, as
predicted by the model and as borne out in the experiments, is in the asymptotic
behavior of the communication time with respect to the number of processors.
For the NOWs it is linear, since the communication network is a shared resource
of limited capacity: adding more nodes decreases the share of communication
bandwidth allocated to each processor. ’

For the SP2 and the Paragon, the communication times remain practically
constant as the number of nodes increases. This is expected from the scalability
of the communication subsystems employed by these platforms. The difference
in the time to complete the communication in going from two to three processors
for the SP2 and the Paragon is due to the presence, for more than two processors,
of at least one processor (in between) which both sends and receives data. In the
two-processor case each processor either sends or receives (but not both), which
reduces by nearly half the overall message processing time at the end nodes.

In conclusion, the two-parameter hyperbolic model {4] for parallel commu-
nication complexity on general dedicated networks has been applied, using a
uniform set of rules, to a variety of architectures employing a variety of mes-
sage topologies. The model is flexible and reasonably accurate in predicting the
communication times for an archetypal application.
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