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Abstrac t .  The model of bulk-synchronous parallel (BSP) computation 
is intended to provide a simple and realistic framework for general- 
purpose parallel computing. Originally, BSP was defined as a distributed 
memory model. In this paper we present a new model, called BSPRAM, 
which is a variant of BSP based on a mixture of shared and distributed 
memory. The two models are equivalent for some important classes of 
algorithms. We identify two such classes: oblivious and coarse-block 
algorithms. Finally, we present BSPRAM algorithms for dense matrix 
multiplication and Fast Fourier Transform. 

1 Introduction 

T h e  model  of bulk-synchronous parallel (BSP) computat ion (see [14, 8, 10]) is 
intended to provide a simple and realistic f ramework for general-purpose par- 
allel computing.  I ts  main goal is to support  the development of architecture- 
independent  and scalable parallel software. 

Previously many  communication complexity models were proposed for par- 
allel computing.  One of the main divisions between the models is in the type  
of memory  organisation: distributed or shared. Models based on shared mem-  
ory provide the benefit of a single address space with uniform access. However, 
the  cost of support ing shared memory in hardware is much larger than  tha t  of 
dis t r ibuted memory.  

Originally, BSP was defined as a distributed memory  model with point-to- 
point  communicat ion between the processors. In this paper  we present a variant  
of BSP based on a mixture of shared and distr ibuted memory. This  variant,  
called BSPRAM, is as simple and realistic as BSP. Its cost model is somewhat  
different f rom the BSP cost model; however, in some impor tant  cases the two 
models are equivalent. 

Following [15], we say tha t  a model A can optimally simulate a model B if 
there  is a compilation algorithm tha t  t ransforms any program with cost T(n) 
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on B to a program with cost O(T(n)) on A. If the compilation algorithm is 
defined only for programs which implement algorithms from some particular 
class, we say that A can optimally simulate B for that class of algorithms. We 
say that two models are equivalent (for a particular class of algorithms) if they 
can optimally simulate one another (for that class). 

We identify two classes of algorithms (called oblivious and coarse-block algo- 
rithms, respectively), for which the models BSPRAM and BSP are equivalent. 
Algorithms from these two classes occur frequently in scientific computing. We 
give an example of such algorithm and its BSPRAM implementation, which is 
an adaptation of the McCoU-Valiant BSP matrix multiplication algorithm. 

2 The  B S P  mode l  

A BSP computer, introduced in [13, 15, 14], consists of p processors connected 
by a communication network. Each processor has a fast local memory. The 
processors may follow different threads of computation. A BSP computation is 
a sequence of supersteps. A superstep consists of an input phase, a computation 
phase and an output phase. In the input phase a processor receives data that 
were sent to it in the previous superstep; in the computation phase it performs 
local computations; in the output phase it can send data to be received by 
other processors in the next superstep. The processors are synchronised between 
supersteps; the computation within a superstep is completely asynchronous. 

The cost unit is the cost of performing a basic arithmetic operation or a local 
memory access. If for a particular superstep w is the maximum number of local 
operations performed by each processor, h t (respectively h") is the maximum 
number of data units received (respectively sent) by each processor, and h -- 
h ~ + h ' ,  then the cost of the superstep is defined as w + h . g + l .  Here g 
and l are parameters of the computer. The value g is called communication 
throughput ratio (also sometimes bandwidth inefficiency or gap), the value I - -  
communication latency (also sometimes synchronisation periodicity). We write 
BSP (p, g,l) for an instance of BSP with the given values of p, g and I. The 
values of w and h typically depend on the number of processors p and on the 
problem size. If a computation consists of S supersteps with costs wr + hr.g + l, 
1 < r < S, then its total cost is W + H .g + S. l, where W = ~-~r wr, H = ~ r  hr. 

The BSP model does not support special broadcasting or combining facil- 
ities. The papers [15, 14] address the issue of simulating a PRAM on a BSP 
computer with constant throughput ratio. Since the considered version of PRAM 
is CRCW, such simulation provides a mechanism for broadcasting and combin- 
ing. In [5, 6] the BSP model augmented by explicit broadcasting and combining 
mechanisms is suggested; however, arbitrary broadcasting and combining of mes- 
sages at constant cost are dismissed in [6] as unrealistic. In the following sections 
we present a new approach to broadcasting and combining in BSP and show that 
in some important cases it can be efficiently implemented in standard BSP. 

Being a general-purpose computation cost model, BSP is also intended to 
serve as a basis for a simple and efficient programming model. PRAM may be 
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used as such a model via the simulation from [15, 5]; however, this approach 
is efficient only for small values of g, and even in these cases is rather com- 
plex. Generally, in order to utilise efficiently the computer resources a typical 
BSP program should consider the values p, g and 1 as configuration parame- 
ters. Therefore, the goal is to design parametrised parallel software. For most 
problems, a balanced distribution of data and computation work will lead to al- 
gorithms that simultaneously achieve optimal computation, communication and 
synchronisation costs; however, for some other problems a need to trade off these 
costs will arise. For example, broadcasting of a single value from a processor 
exhibits a communication-synchronisation tradeoff: it can be performed with 
H ---- S -- O(logp) by a balanced binary tree, or with H -- O(p) and S -- O(1) 
by sending the value directly to every processor. However, if p values are to 
be broadcast from one processor, the tradeoff disappears: by scattering the val- 
ues so that each one resides in a separate processor, and then performing total 
exchange, the problem can be solved with H = O(p) and S = O(1), which is ob- 
viously optimal. The domain of matrix computation provides further examples 
of both kinds of problems: for instance, matrix multiplication can be done op- 
timally in communication and synchronisation, but matrix inversion exhibits a 
communication-synchronisation tradeoff with a polynomial range of parameters. 

The BSP model is successful in capturing the important features of a large 
number of existing parallel systems. This primarily due to its generality and 
simplicity. However, in certain situations the BSP model still appears to be 
unnecessarily prescriptive. One such area is subset synchronisation of processors. 
If BSP is used purely as an abstract algorithm development platform, the need 
to synchronise some of the processors, rather than all of them, does not arise 
frequently. On the other hand, the ability to set aside a subset of processors to 
perform a particular independent task is desirable, and sometimes even essential, 
for a programming model based on BSP. The need for subset synchronisation 
was acknowledged in [14] but no sufficiently general cost model for BSP subset 
synchronisation has been proposed so far. 

Another feature lacking in standard BSP is an input-output model. This 
forces an algorithm designer to make assumptions on input and output that are 
not inherent to the nature of the problem solved. For example, the BSP ma- 
trix multiplication algorithm from [1{3] requires that the multiplied matrices are 
distributed evenly across the processors' local memories, and forms the product 
distributed in the same way. Effectively, the input and output data distribution 
forms a part of the problem, and does not necessarily reflect the actual algorith- 
mic context in which the problem is being solved. Results on PRAM simulation 
are intended to overcome this difficulty; however, efficient PRAM simulation is 
possible only when the communication throughput is constant. 

In the following sections of this chapter we propose a different solution: to 
introduce elements of shared memory architecture into BSP, while retaining the 
bulk-synchronous computation structure and the parameters g and I. This is 
done in two steps: first, we define an intermediate model BSP+, in which mes- 
sages can stay in the network for more than one superstep, so the network may 
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be regarded as single-write, single-read memory for the messages. After that, we 
consider a BSP-type model in which the network is implemented as a conven- 
tional random-access shared memory unit. We call the new model BSPRAM. 
It is as simple and realistic as BSP, and we will identify some important cases 
when it is equivalent to BSP. At the same time the BSPRAM model is more 
convenient for algorithm design and programming than plain BSP. 

3 A m o d i f i c a t i o n  o f  B S P  

This section describes the first step in augmenting BSP by random-access shared 
memory. 

We start with the variant of standard BSP in which non-local data  access 
is expressed by explicit send and receive statements. Consider the following 
example. A value x, which is at the beginning of superstep 0 local to a processor 
0, must be used at some point by each of the p processors. However, not all 
the processors need it at the same time. Processor 1 starts computation with 
x at  superstep 1, processor 2 at superstep 2, and so on until the processor 
p - 1, which needs x starting from superstep p - 1. Such dependency pattern 
arises, for example, when solving a triangular linear system by forward- or back- 
substitution, or a general linear system by Gaussian elimination (see e.g. [9, 10]). 
A simple broadcast in superstep 0 would solve the problem, as would the policy of 
sending x from processor 0 directly to processor q at superstep q - 1. However, 
these are not necessarily the most efficient ways. For example, the paper [9] 
presents a systolic-type algorithm, which consists in sending x from processor 
q - 1 to processor q at superstep q - 1. Our goal is to obtain a generic method 
unifying all these different approaches. 

Let us relax the requirement that  corresponding send and receive statements 
must be issued in the adjacent supersteps. The computation still proceeds in 
asynchronous supersteps and synchronised between the supersteps; however, 
once sent, a message may stay in the network for indefinitely many supersteps 
before it is received. We call a message slow if its receipt is delayed by at least 
one superstep. The cost of the send and receive statements in the extended 
model is determined in the same way as in the standard BSP model. A message 
is counted in the cost when it sent or received; no cost is incurred by keeping a 
message in the network for as many supersteps as necessary. 

We call the new model BSP+. It is more powerful than BSP, in the sense 
tha t  it allows some computations to be performed at  a lower cost than in BSP. 
However, the two models are equivalent for the following important class of algo- 
rithms. We call an algorithm oblivious if every processor executes the sequence 
of instructions that  does not depend on the input (the data  processed by these 
instructions may, of course, be different for different inputs). From this defini- 
tion it follows tha t  the size of the input to an oblivious algorithm must be fixed 
(otherwise it would be impossible to read the input always by an identical se- 
quence of instructions). For example, any algorithm that  can be represented by 
an arithmetic circuit is oblivious. For oblivious algorithms we have the following 
result. 



331 

L e m n m  1. The model BSP+ is equivalent to the standard BSP for the class of 
oblivious algorithms. 

Proof. Since the sequence of operations in an oblivious algorithm is known in 
advance, we only need to show that any computation on BSP+ can be performed 
on the standard BSP at the same asymptotic cost. Let us consider one superstep 
of such computation with communication cost h = h' + h", where h ~ (respec- 
tively h ' )  is the cost of the input (respectively, output) phase. Partition the 
instructions of the input (respectively, output) phase into h ~ (respectively h") 
sets, so that in each set all the instructions are performed by different processors. 
Represent the whole computation as a graph G in which the nodes correspond 
to the sets of input-output instructions, and the edges represent messages. Two 
nodes vl and v2 are connected by an edge e if the message represented by e is 
sent by one of the instructions in the set represented by vl and received by one 
of the instructions in the set represented by v2. The graph G is bipartite with 
maximum degree at most p. By a well-known property of bipartite graphs (see 
e.g. [2], p. 247), there is a colouring of the edges of such a graph with not more 
than p colours, where all the edges connected to one and the same vertex are 
coloured differently. The simulation is achieved by using the local memory of 
the processor corresponding to the color of an edge e as intermediate storage 
for the message represented by e. For each message, an extra receive and an 
extra send are needed; however, by the graph colouring construction, this in- 
creases the communication cost by not more than a factor of 2. Also, an extra 
superstep between every two supersteps of the original computation is neces- 
sary; this increases the synchronisation cost by not more than a factor of 2. The 
computation cost remains unchanged. �9 

The use of slow messages can have a significant impact on algorithm per- 
formance. Some inter-processor links will inevitably be less efficient than the 
others, and therefore may be dedicated specifically to routing slow messages. 
From the programmer's point of view, however, BSP+ does not differ much 
from BSP, since they both support distributed memory programming with mes- 
sage passing primitives. To allow shared-memory style BSP programming, the 
BSP+ model needs further modification, which is carried out the next section. 

4 T h e  B S P R A M  m o d e l  

In the BSP+ model introduced in the previous section, the network acts not 
only as a message delivery mechanism, but also as a memory for keeping slow 
messages as long as necessary. The only significant aspect in which it differs 
from conventional random-access memory is that each message has an explicit 
destination address, whereas it is not generally known in advance which processor 
will read from a memory location. However, in some important cases it is still 
possible to organise computation so that when a value is being written, one can 
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determine which processor will read it, and at what superstep it will happen. 
This is always the case, for example, when the executed algorithm is oblivious. 

The above observation justifies the introduction of a new model based on 
BSP, which in addition to the processors' local memories has a random-access 
shared memory unit replacing the point-to-point communication network. Apart 
from simplifying the programming, this new version of BSP provides a basic 
general purpose input-output model, in which the data are input from and output 
to the shared memory. 

Thus, a two-level memory model of parallel computation is proposed. Since 
it is closely related both to BSP and to PRAM, we will call it BSPRAM. Like 
a BSP computer, a BSPRAM consists of p processors with fast local memories. 
In addition, there is a single shared main memory. As in BSP, the computation 
proceeds by supersteps. A superstep consists of an input phase, a computation 
phase, and an output phase. In the input phase a processor can read data from 
the main memory; in the computation phase it performs local computation; 
in the output phase it can write data to the main memory. The processors 
are synchronised between supersteps; the computation within a superstep is 
completely asynchronous. 

The PRAM is usually considered in a number of versions. Among them 
are EREW PRAM, which requires that every location is read from or written 
to by not more than one processor in any step, and CRCW PRAM, which al- 
lows several processors to read from of write to a location concurrently in one 
step. Similarly, the definition of BSPRAM leaves a choice of allowing or dis- 
allowing concurrent access to the main memory in one superstep. We consider 
an exclusive-read, exclusive-write BSPRAM (EREW BSPRAM), in which ev- 
ery location of the main memory can be read from and written to only once 
in every superstep, and a concurrent-read, concurrenL-write BSPRAM (CRCW 
BSPRAM), which has no restrictions on concurrent access to the main memory. 
For convenience of algorithm design we assume that if a value x is being written 
to a main memory location containing the value y, the result may be determined 
by any prescribed function of x and y, computable in constant time. Similarly, 
if values x l , . . . ,  x ,  are being written concurrently to a main memory location 
containing the value y, the result may be determined by any prescribed function 
of x l , . . . ,  x,~, y, computable in time linear in n. This corresponds to resolving 
concurrent writing in PRAM by combining (see e.g. [4]). 

The cost of a BSPRAM superstep is defined, similarly to the BSP model, as 
w + h.  g -t- I. Here w is the maximum number of local operations performed by 
each processor, and h = h ~ § h ' .  The value of h t (respectively h") is defined as 
the maximum number of data units read from (respectively written to) the main 
memory by each processor in the superstep. As in BSP, the values g and l are 
fixed parameters of the computer. We write BSPRAM (p, g, l) for an instance 
of BSPRAM with the given values of p, g and l. The cost of a computation 
consisting of several supersteps is defined as W + H .  g + S- l, where W, H and 
S have the same meaning as in the BSP model. 

It is clear that EREW BSPRAM can optimally simulate BSP. For oblivious 
algorithms the converse is also true. 
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T h e o r e m  1. BSP (p, g, l) can optimally simulate E R E W  BSPRAM (p, 9, l) ]or 
the class of oblivious algorithms. 

Proof .  Having established Lemma 1, we only need to show how BSP+ can 
optimally simulate an oblivious EREW BSPRAM algorithm. 

Consider an EREW BSPRAM computation. First, we transform it so that 
every used location in the main memory is read from and written to exactly 
once. In order to do this, we replace every read instruction by a read-write 
instruction pair. The read instruction in the pair reads the value from the 
main memory; the write instruction, performed in the output phase, writes the 
value back the main memory to a previously unused location. We also replace 
every write instruction (which possibly involves combining of the value being 
written with the value already stored in the target location) by a read-write 
instruction pair. The read instruction in the pair is performed in the input 
phase; it reads the value previously stored in the target location, if any. The write 
instruction writes the output value, possibly combined with the old contents of 
the target location, to a previously unused location. There is no interference, 
since reading and writing within a superstep are exclusive. The transformation 
increases the communication cost by not more than a factor of 2, and leaves the 
synchronisation cost unchanged. 

To achieve the BSP+ simulation of the transformed EREW BSPRAM com- 
putation, it only remains to replace all main memory access instructions by 
corresponding message passing ones. Namely, writing to a main memory lo- 
cation is simulated by sending a message (the destination address of which is 
known since the algorithm is oblivious), and subsequent reading from the same 
location is simulated by receiving the message. This part of the simulation leaves 
the communication and synchronisation costs unchanged. �9 

In the following sections we shall give examples of using EREW BSPRAM for 
executing oblivious algorithms. We now consider a different class of structured 
algorithms, which occur even more frequently in scientific computation. We say 
that  a set of locations in the main memory of BSPRAM constitutes a block, if in 
any given superstep any processor that reads from (respectively, writes to) one 
of the locations reads from (respectively, writes to) all of them. Informally, a 
block is treated as "one whole piece of data". For example, if the contents of n 
main memory locations of CRCW BSPRAM is broadcast to all the processors 
by concurrent reading from the locations, then the locations form a block of size 
n. The communication cost of such broadcast is H = O(n). 

We say that a BSPRAM computation is coarse-block if all the data in the 
main memory are organised in blocks of size not less than p. Thus, the broad- 
casting algorithm mentioned above is coarse-block if n _> p. In the latter case it 
is possible to simulate the algorithm optimally in BSP by applying the "scatter 
and total-exchange" technique described in Section 2. The same principle lies 
behind the McColl-Valiant matrix multiplication algorithm from [10]. The idea 
can be generalised in the following way. 
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T h e o r e m  2. BSP ~,g ,  l) can optimally simulate CROW BSPRAM (p, g, l) for 
the class of coarse-block algorithms. 

Proof.  Choose an arbitrary balanced distribution of every main memory block 
across the processors. Reading from and writing to a block are simulated by 
corresponding send and receive instructions. The simulation increases the com- 
munication and synchronisation costs by not more than a factor of 2. �9 

In comparison with BSP, the BSPRAM model allows an easier design and 
analysis of parallel algorithms. It may also prove to be more convenient for prac- 
tical programming. In particular, the algorithm designer is no longer required to 
specify the distribution of input and output, since for most nontrivial problems 
it is natural to assume that they are kept in the main memory. For algorithms 
composed from several stages, each with its own input and output, the new 
model will help to ensure that the data distribution is consistent throughout the 
algorithm. 

On some parallel computers, a direct implementation of the BSPRAM model 
may prove practical. In any case, the proofs of Theorems 1 and 2 show that a 
BSP computer can execute many important BSPRAM algorithms within a low 
constant factor of their BSPRAM cost. The next sections give two examples of 
such algorithms. 

5 M a t r i x  m u l t i p l i c a t i o n  in  B S P R A M  

In this section we develop and analyse a BSPRAM algorithm for one of the most 
common problems in scientific computation: dense matrix multiplication. The 
cost analysis of the algorithm, as well as of most B~P algorithms in general, 
is carried out in the assumption that the input size n is sufficiently large with 
respect to p. Since the natural "degree of parallelism" of an algorithm is a 
function of n, the requirement that n should be large is essentialy the parallel 
slackness requirement, which is a necessary condition for simulation o f a  PRAM 
on BSP (see [14]). However, we exploit this slackness in a different way, obtaining 
a direct CRCW BSPRAM algorithm, rather than performing it on a simulated 
PRAM under the condition of constant g. The cost analysis is directly applicable 
to a computation in the BSP model as well, since the algorithm is coarse-block 
(for sufficiently large problem size). 

The problem is to compute the matrix product X Y  = Z, where X, Y, Z 
are arbitrary n x n matrices in main memory. This problem is of great im- 
portance, and, somewhat surprisingly, significant theoretical complexity. Since 
the groundbreaking paper by Strassen [12] much work on the sequential cost of 
matrix multiplication has been done. However, no lower bound asymptotically 
better than trivial J2(n 2) has been found; nor there is any indication that the 
current O(n 2'376) algorithm from [3] is close to optimal. 

We aim at parallelising the standard O(n 3) method without using fast matrix 
multiplication techniques. The method consists in a straightforward computa- 
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Figure 1: McColl-Valiant matrix multiplication: data dependencies�9 

tion of the family of bilinear forms 

zik = B xijyjk 1 < i, k < n (1) 
j = l  

The algorithm is derived from the McColl-Valiant- BSP algorithm for matrix 
multiplication described in [10], which in turn is based on an idea from [1]. 
Following (1), we need to compute the array of products V = (vijk), where 

Vijk = xijYjk 1 < i , j ,  k < n 

We represent the array V as a cube of volume n 3 in integer three-dimensional 
space (see Figure 1). Each of the arrays X, Y, Z is represented as the projection 
of this cube onto the coordinate planes k = 0, i = 0 and j = 0, respectively. The 
element vijk depends on its first two projections xij and Yjk and contributes to 
the computation of its third projection zik. It only remains to partition the cube 
in a straightforward way. We divide the cube V into a regular grid of p smaller 
cubic subarrays of volume n3/p, and assign to each processor the problem of 
computing one of the subarrays. 

Algorithm 1. Multiplication of square matrices of size n (see Figure 1). 

I npu t :  matrices X = (xij) and Y = (yij), 1 _< i , j  < n. 

Outpu t :  a matrix Z = (zij), 1 < i , j  < n, which is the product of X and Y. 
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Descript ion.  The CRCW BSPRAM computation proceeds in one superstep. 
Every projection of a subarray constitutes a block. A processor reads from the 
main memory the projections of a subarray along the axes k and i, computes 
the subarray elements and sums the elements in groups along the axis j .  The  
result of local computation is the combined contribution of the subarray to its 
projection along the axis j; we call this contribution a partial projection of the 
subarray along the axis j .  The processors write the computed partial projections 
concurrently to the main memory. Concurrent writing is resolved by addition 
of the values written; this combines the partial projections of the subarrays into 
the full projection of the array V. The resulting array Z is the matrix product 
of X and Y. The slackness required by Theorem 2 is n > pS/S, but this can be 
easily improved to n > pl/2. 

Cost analysis.  The computation cost W is clearly O(n3/p). The communi- 
cation cost is proportional to the block size, i.e. the integer area of a block 
projection: H = O(n2/p2/3). The synchronisation cost is S = O(1). It can be 
shown that these cost values are optimal for any BSPRAM parallelisation of the 
standard matrix multiplication method. The algorithm is coarse-block, therefore 
this cost analysis also applies to the BSP model by Theorem 2. The algorithm 
is also oblivious; however, Theorem 1 does not apply, since the CRCW version 
of BSPRAM is used. �9 

Note that, unlike [10], no assumption on the distribution of input and output 
data was necessary. All the input and output data are assumed to reside in the 
main memory. The optimality of Algorithm 1 can be shown by an input-output 
complexity argument. 

Algorithm 1 can serve as a building block for development of more advanced 
matrix algorithms, such as matrix inversion or linear system solvers. 

6 Fast Fourier Transform in B S P R A M  

Fast Fourier Transform is one of the most important algorithms in scientific 
computing (see e.g. [4, 7]). Its data dependency pattern, the butterfly dag, also 
arises in other algorithms - -  for example, it can be used for computing parallel 
prefix. As observed in [11, 14], the butterfly graph can be partitioned in a 
way perfectly suitable for bulk-synchronous parallel computation. Every level of 
the butterfly consists of n/2  independent tasks, each of size 2. Similarly, any k 
consecutive levels consist of n/2 k independent tasks, each of size 2 ~. Independent 
parallel tasks may be performed in one superstep on different processors. I f  
the slackness is sufficiently large, two supersteps will suffice to complete the 
computation. 

Figure 2 shows the two-superstep FFT algorithm in the case of n = 16. Each 
superstep consists of four independent tasks of size 4; therefore, the slackness 
is suffcient for the use of p < 4 processors. In the following general BSPRAM 
algorithm it is assumed that the input and output data reside in the main mem- 
ory. 
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) 

Figure 2: Fast Fourier Transform of 16 values. 

I I 

A l g o r i t h m  2. Fast Fourier Transform of n elements (see Figure ~ for n = 16). 

Input:  an array x = (xi), 0 _< i < n. 

Output: the Fourier transform of the array x. 

Description.  The log n levels of the n-input butterfly are computed on EREW 
BSPRAM (p, g, l). The computation proceeds in two supersteps, each comprising 
1/2. logn levels. Each of the supersteps is composed of n 1/2 independent FFT 
tasks of size n x/2; therefore, each processor is assigned n 1/2/p tasks. The required 
slackness is n > p2. 

Cost analysis. The computation cost W is clearly O(n log n/p). The commu- 
nication cost is H = O(n/p). The synchronisation cost S is constant. The values 
of W, H and S are trivially optimal. The algorithm is oblivious, therefore this 
cost analysis also applies in the BSP model by Theorem 1. The algorithm is 
coarse-block if the slackness is at least n > pS. [] 

The question of reducing the slackness required for BSP implementation of 
Fast Fourier Transform is addressed in [14]. 

7 C o n c l u s i o n s  

A new model for bulk-synchronous parallel computing, the BSPRAM model, has 
been presented. It was shown that it in some important cases it is equivalent to 
the BSP model. BSPRAM contains elements of shared memory and therefore 
simplifies the design and analysis of bulk-synchronous parallel algorithms. We 
have given two examples of algorithm design in the BSPRAM model. In these 
examples, the BSPRAM algorithms for standard (non-fast) matrix multiplica- 
tion and Fast Fourier Transform were derived from the corresponding optimal 
BSP algorithms. The BSPRAM approach has allowed to express the algorithms 
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in the shared-memory style, and to remove the assumption of even input and 
ou tpu t  distribution, which was necessary in their BSP versions. 
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