
T h e Bulk-Synchronous Parallel
Random Access Machine

Alexandre Tiskin *

Oxford University Computing Laboratory
Wolfson Building

Parks Road
Oxford OXl 3QD
United Kingdom

email: tiskln~comlab, ox. ac .uk

Abstrac t . The model of bulk-synchronous parallel (BSP) computation
is intended to provide a simple and realistic framework for general-
purpose parallel computing. Originally, BSP was defined as a distributed
memory model. In this paper we present a new model, called BSPRAM,
which is a variant of BSP based on a mixture of shared and distributed
memory. The two models are equivalent for some important classes of
algorithms. We identify two such classes: oblivious and coarse-block
algorithms. Finally, we present BSPRAM algorithms for dense matrix
multiplication and Fast Fourier Transform.

1 Introduction

T h e model of bulk-synchronous parallel (BSP) computat ion (see [14, 8, 10]) is
intended to provide a simple and realistic f ramework for general-purpose par-
allel computing. I ts main goal is to support the development of architecture-
independent and scalable parallel software.

Previously many communication complexity models were proposed for par-
allel computing. One of the main divisions between the models is in the type
of memory organisation: distributed or shared. Models based on shared mem-
ory provide the benefit of a single address space with uniform access. However,
the cost of support ing shared memory in hardware is much larger than tha t of
dis t r ibuted memory.

Originally, BSP was defined as a distributed memory model with point-to-
point communicat ion between the processors. In this paper we present a variant
of BSP based on a mixture of shared and distr ibuted memory. This variant,
called BSPRAM, is as simple and realistic as BSP. Its cost model is somewhat
different f rom the BSP cost model; however, in some impor tant cases the two
models are equivalent.

Following [15], we say tha t a model A can optimally simulate a model B if
there is a compilation algorithm tha t t ransforms any program with cost T(n)

*This work was supported in part by ESPRIT Basic Research Project 9072 - -
GEPPCOM (Foundations of General Purpose Parallel Computing).

328

on B to a program with cost O(T(n)) on A. If the compilation algorithm is
defined only for programs which implement algorithms from some particular
class, we say that A can optimally simulate B for that class of algorithms. We
say that two models are equivalent (for a particular class of algorithms) if they
can optimally simulate one another (for that class).

We identify two classes of algorithms (called oblivious and coarse-block algo-
rithms, respectively), for which the models BSPRAM and BSP are equivalent.
Algorithms from these two classes occur frequently in scientific computing. We
give an example of such algorithm and its BSPRAM implementation, which is
an adaptation of the McCoU-Valiant BSP matrix multiplication algorithm.

2 The B S P mode l

A BSP computer, introduced in [13, 15, 14], consists of p processors connected
by a communication network. Each processor has a fast local memory. The
processors may follow different threads of computation. A BSP computation is
a sequence of supersteps. A superstep consists of an input phase, a computation
phase and an output phase. In the input phase a processor receives data that
were sent to it in the previous superstep; in the computation phase it performs
local computations; in the output phase it can send data to be received by
other processors in the next superstep. The processors are synchronised between
supersteps; the computation within a superstep is completely asynchronous.

The cost unit is the cost of performing a basic arithmetic operation or a local
memory access. If for a particular superstep w is the maximum number of local
operations performed by each processor, h t (respectively h") is the maximum
number of data units received (respectively sent) by each processor, and h --
h ~ + h ' , then the cost of the superstep is defined as w + h . g + l . Here g
and l are parameters of the computer. The value g is called communication
throughput ratio (also sometimes bandwidth inefficiency or gap), the value I - -
communication latency (also sometimes synchronisation periodicity). We write
BSP (p, g,l) for an instance of BSP with the given values of p, g and I. The
values of w and h typically depend on the number of processors p and on the
problem size. If a computation consists of S supersteps with costs wr + hr.g + l,
1 < r < S, then its total cost is W + H .g + S. l, where W = ~-~r wr, H = ~ r hr.

The BSP model does not support special broadcasting or combining facil-
ities. The papers [15, 14] address the issue of simulating a PRAM on a BSP
computer with constant throughput ratio. Since the considered version of PRAM
is CRCW, such simulation provides a mechanism for broadcasting and combin-
ing. In [5, 6] the BSP model augmented by explicit broadcasting and combining
mechanisms is suggested; however, arbitrary broadcasting and combining of mes-
sages at constant cost are dismissed in [6] as unrealistic. In the following sections
we present a new approach to broadcasting and combining in BSP and show that
in some important cases it can be efficiently implemented in standard BSP.

Being a general-purpose computation cost model, BSP is also intended to
serve as a basis for a simple and efficient programming model. PRAM may be

329

used as such a model via the simulation from [15, 5]; however, this approach
is efficient only for small values of g, and even in these cases is rather com-
plex. Generally, in order to utilise efficiently the computer resources a typical
BSP program should consider the values p, g and 1 as configuration parame-
ters. Therefore, the goal is to design parametrised parallel software. For most
problems, a balanced distribution of data and computation work will lead to al-
gorithms that simultaneously achieve optimal computation, communication and
synchronisation costs; however, for some other problems a need to trade off these
costs will arise. For example, broadcasting of a single value from a processor
exhibits a communication-synchronisation tradeoff: it can be performed with
H ---- S -- O(logp) by a balanced binary tree, or with H -- O(p) and S -- O(1)
by sending the value directly to every processor. However, if p values are to
be broadcast from one processor, the tradeoff disappears: by scattering the val-
ues so that each one resides in a separate processor, and then performing total
exchange, the problem can be solved with H = O(p) and S = O(1), which is ob-
viously optimal. The domain of matrix computation provides further examples
of both kinds of problems: for instance, matrix multiplication can be done op-
timally in communication and synchronisation, but matrix inversion exhibits a
communication-synchronisation tradeoff with a polynomial range of parameters.

The BSP model is successful in capturing the important features of a large
number of existing parallel systems. This primarily due to its generality and
simplicity. However, in certain situations the BSP model still appears to be
unnecessarily prescriptive. One such area is subset synchronisation of processors.
If BSP is used purely as an abstract algorithm development platform, the need
to synchronise some of the processors, rather than all of them, does not arise
frequently. On the other hand, the ability to set aside a subset of processors to
perform a particular independent task is desirable, and sometimes even essential,
for a programming model based on BSP. The need for subset synchronisation
was acknowledged in [14] but no sufficiently general cost model for BSP subset
synchronisation has been proposed so far.

Another feature lacking in standard BSP is an input-output model. This
forces an algorithm designer to make assumptions on input and output that are
not inherent to the nature of the problem solved. For example, the BSP ma-
trix multiplication algorithm from [1{3] requires that the multiplied matrices are
distributed evenly across the processors' local memories, and forms the product
distributed in the same way. Effectively, the input and output data distribution
forms a part of the problem, and does not necessarily reflect the actual algorith-
mic context in which the problem is being solved. Results on PRAM simulation
are intended to overcome this difficulty; however, efficient PRAM simulation is
possible only when the communication throughput is constant.

In the following sections of this chapter we propose a different solution: to
introduce elements of shared memory architecture into BSP, while retaining the
bulk-synchronous computation structure and the parameters g and I. This is
done in two steps: first, we define an intermediate model BSP+, in which mes-
sages can stay in the network for more than one superstep, so the network may

330

be regarded as single-write, single-read memory for the messages. After that, we
consider a BSP-type model in which the network is implemented as a conven-
tional random-access shared memory unit. We call the new model BSPRAM.
It is as simple and realistic as BSP, and we will identify some important cases
when it is equivalent to BSP. At the same time the BSPRAM model is more
convenient for algorithm design and programming than plain BSP.

3 A m o d i f i c a t i o n o f B S P

This section describes the first step in augmenting BSP by random-access shared
memory.

We start with the variant of standard BSP in which non-local data access
is expressed by explicit send and receive statements. Consider the following
example. A value x, which is at the beginning of superstep 0 local to a processor
0, must be used at some point by each of the p processors. However, not all
the processors need it at the same time. Processor 1 starts computation with
x at superstep 1, processor 2 at superstep 2, and so on until the processor
p - 1, which needs x starting from superstep p - 1. Such dependency pattern
arises, for example, when solving a triangular linear system by forward- or back-
substitution, or a general linear system by Gaussian elimination (see e.g. [9, 10]).
A simple broadcast in superstep 0 would solve the problem, as would the policy of
sending x from processor 0 directly to processor q at superstep q - 1. However,
these are not necessarily the most efficient ways. For example, the paper [9]
presents a systolic-type algorithm, which consists in sending x from processor
q - 1 to processor q at superstep q - 1. Our goal is to obtain a generic method
unifying all these different approaches.

Let us relax the requirement that corresponding send and receive statements
must be issued in the adjacent supersteps. The computation still proceeds in
asynchronous supersteps and synchronised between the supersteps; however,
once sent, a message may stay in the network for indefinitely many supersteps
before it is received. We call a message slow if its receipt is delayed by at least
one superstep. The cost of the send and receive statements in the extended
model is determined in the same way as in the standard BSP model. A message
is counted in the cost when it sent or received; no cost is incurred by keeping a
message in the network for as many supersteps as necessary.

We call the new model BSP+. It is more powerful than BSP, in the sense
tha t it allows some computations to be performed at a lower cost than in BSP.
However, the two models are equivalent for the following important class of algo-
rithms. We call an algorithm oblivious if every processor executes the sequence
of instructions that does not depend on the input (the data processed by these
instructions may, of course, be different for different inputs). From this defini-
tion it follows tha t the size of the input to an oblivious algorithm must be fixed
(otherwise it would be impossible to read the input always by an identical se-
quence of instructions). For example, any algorithm that can be represented by
an arithmetic circuit is oblivious. For oblivious algorithms we have the following
result.

331

L e m n m 1. The model BSP+ is equivalent to the standard BSP for the class of
oblivious algorithms.

Proof. Since the sequence of operations in an oblivious algorithm is known in
advance, we only need to show that any computation on BSP+ can be performed
on the standard BSP at the same asymptotic cost. Let us consider one superstep
of such computation with communication cost h = h' + h", where h ~ (respec-
tively h ') is the cost of the input (respectively, output) phase. Partition the
instructions of the input (respectively, output) phase into h ~ (respectively h")
sets, so that in each set all the instructions are performed by different processors.
Represent the whole computation as a graph G in which the nodes correspond
to the sets of input-output instructions, and the edges represent messages. Two
nodes vl and v2 are connected by an edge e if the message represented by e is
sent by one of the instructions in the set represented by vl and received by one
of the instructions in the set represented by v2. The graph G is bipartite with
maximum degree at most p. By a well-known property of bipartite graphs (see
e.g. [2], p. 247), there is a colouring of the edges of such a graph with not more
than p colours, where all the edges connected to one and the same vertex are
coloured differently. The simulation is achieved by using the local memory of
the processor corresponding to the color of an edge e as intermediate storage
for the message represented by e. For each message, an extra receive and an
extra send are needed; however, by the graph colouring construction, this in-
creases the communication cost by not more than a factor of 2. Also, an extra
superstep between every two supersteps of the original computation is neces-
sary; this increases the synchronisation cost by not more than a factor of 2. The
computation cost remains unchanged. �9

The use of slow messages can have a significant impact on algorithm per-
formance. Some inter-processor links will inevitably be less efficient than the
others, and therefore may be dedicated specifically to routing slow messages.
From the programmer's point of view, however, BSP+ does not differ much
from BSP, since they both support distributed memory programming with mes-
sage passing primitives. To allow shared-memory style BSP programming, the
BSP+ model needs further modification, which is carried out the next section.

4 T h e B S P R A M m o d e l

In the BSP+ model introduced in the previous section, the network acts not
only as a message delivery mechanism, but also as a memory for keeping slow
messages as long as necessary. The only significant aspect in which it differs
from conventional random-access memory is that each message has an explicit
destination address, whereas it is not generally known in advance which processor
will read from a memory location. However, in some important cases it is still
possible to organise computation so that when a value is being written, one can

332

determine which processor will read it, and at what superstep it will happen.
This is always the case, for example, when the executed algorithm is oblivious.

The above observation justifies the introduction of a new model based on
BSP, which in addition to the processors' local memories has a random-access
shared memory unit replacing the point-to-point communication network. Apart
from simplifying the programming, this new version of BSP provides a basic
general purpose input-output model, in which the data are input from and output
to the shared memory.

Thus, a two-level memory model of parallel computation is proposed. Since
it is closely related both to BSP and to PRAM, we will call it BSPRAM. Like
a BSP computer, a BSPRAM consists of p processors with fast local memories.
In addition, there is a single shared main memory. As in BSP, the computation
proceeds by supersteps. A superstep consists of an input phase, a computation
phase, and an output phase. In the input phase a processor can read data from
the main memory; in the computation phase it performs local computation;
in the output phase it can write data to the main memory. The processors
are synchronised between supersteps; the computation within a superstep is
completely asynchronous.

The PRAM is usually considered in a number of versions. Among them
are EREW PRAM, which requires that every location is read from or written
to by not more than one processor in any step, and CRCW PRAM, which al-
lows several processors to read from of write to a location concurrently in one
step. Similarly, the definition of BSPRAM leaves a choice of allowing or dis-
allowing concurrent access to the main memory in one superstep. We consider
an exclusive-read, exclusive-write BSPRAM (EREW BSPRAM), in which ev-
ery location of the main memory can be read from and written to only once
in every superstep, and a concurrent-read, concurrenL-write BSPRAM (CRCW
BSPRAM), which has no restrictions on concurrent access to the main memory.
For convenience of algorithm design we assume that if a value x is being written
to a main memory location containing the value y, the result may be determined
by any prescribed function of x and y, computable in constant time. Similarly,
if values x l , . . . , x , are being written concurrently to a main memory location
containing the value y, the result may be determined by any prescribed function
of x l , . . . , x,~, y, computable in time linear in n. This corresponds to resolving
concurrent writing in PRAM by combining (see e.g. [4]).

The cost of a BSPRAM superstep is defined, similarly to the BSP model, as
w + h. g -t- I. Here w is the maximum number of local operations performed by
each processor, and h = h ~ § h ' . The value of h t (respectively h") is defined as
the maximum number of data units read from (respectively written to) the main
memory by each processor in the superstep. As in BSP, the values g and l are
fixed parameters of the computer. We write BSPRAM (p, g, l) for an instance
of BSPRAM with the given values of p, g and l. The cost of a computation
consisting of several supersteps is defined as W + H . g + S- l, where W, H and
S have the same meaning as in the BSP model.

It is clear that EREW BSPRAM can optimally simulate BSP. For oblivious
algorithms the converse is also true.

333

T h e o r e m 1. BSP (p, g, l) can optimally simulate E R E W BSPRAM (p, 9, l)]or
the class of oblivious algorithms.

Proof . Having established Lemma 1, we only need to show how BSP+ can
optimally simulate an oblivious EREW BSPRAM algorithm.

Consider an EREW BSPRAM computation. First, we transform it so that
every used location in the main memory is read from and written to exactly
once. In order to do this, we replace every read instruction by a read-write
instruction pair. The read instruction in the pair reads the value from the
main memory; the write instruction, performed in the output phase, writes the
value back the main memory to a previously unused location. We also replace
every write instruction (which possibly involves combining of the value being
written with the value already stored in the target location) by a read-write
instruction pair. The read instruction in the pair is performed in the input
phase; it reads the value previously stored in the target location, if any. The write
instruction writes the output value, possibly combined with the old contents of
the target location, to a previously unused location. There is no interference,
since reading and writing within a superstep are exclusive. The transformation
increases the communication cost by not more than a factor of 2, and leaves the
synchronisation cost unchanged.

To achieve the BSP+ simulation of the transformed EREW BSPRAM com-
putation, it only remains to replace all main memory access instructions by
corresponding message passing ones. Namely, writing to a main memory lo-
cation is simulated by sending a message (the destination address of which is
known since the algorithm is oblivious), and subsequent reading from the same
location is simulated by receiving the message. This part of the simulation leaves
the communication and synchronisation costs unchanged. �9

In the following sections we shall give examples of using EREW BSPRAM for
executing oblivious algorithms. We now consider a different class of structured
algorithms, which occur even more frequently in scientific computation. We say
that a set of locations in the main memory of BSPRAM constitutes a block, if in
any given superstep any processor that reads from (respectively, writes to) one
of the locations reads from (respectively, writes to) all of them. Informally, a
block is treated as "one whole piece of data". For example, if the contents of n
main memory locations of CRCW BSPRAM is broadcast to all the processors
by concurrent reading from the locations, then the locations form a block of size
n. The communication cost of such broadcast is H = O(n).

We say that a BSPRAM computation is coarse-block if all the data in the
main memory are organised in blocks of size not less than p. Thus, the broad-
casting algorithm mentioned above is coarse-block if n _> p. In the latter case it
is possible to simulate the algorithm optimally in BSP by applying the "scatter
and total-exchange" technique described in Section 2. The same principle lies
behind the McColl-Valiant matrix multiplication algorithm from [10]. The idea
can be generalised in the following way.

334

T h e o r e m 2. BSP ~,g , l) can optimally simulate CROW BSPRAM (p, g, l) for
the class of coarse-block algorithms.

Proof. Choose an arbitrary balanced distribution of every main memory block
across the processors. Reading from and writing to a block are simulated by
corresponding send and receive instructions. The simulation increases the com-
munication and synchronisation costs by not more than a factor of 2. �9

In comparison with BSP, the BSPRAM model allows an easier design and
analysis of parallel algorithms. It may also prove to be more convenient for prac-
tical programming. In particular, the algorithm designer is no longer required to
specify the distribution of input and output, since for most nontrivial problems
it is natural to assume that they are kept in the main memory. For algorithms
composed from several stages, each with its own input and output, the new
model will help to ensure that the data distribution is consistent throughout the
algorithm.

On some parallel computers, a direct implementation of the BSPRAM model
may prove practical. In any case, the proofs of Theorems 1 and 2 show that a
BSP computer can execute many important BSPRAM algorithms within a low
constant factor of their BSPRAM cost. The next sections give two examples of
such algorithms.

5 M a t r i x m u l t i p l i c a t i o n in B S P R A M

In this section we develop and analyse a BSPRAM algorithm for one of the most
common problems in scientific computation: dense matrix multiplication. The
cost analysis of the algorithm, as well as of most B~P algorithms in general,
is carried out in the assumption that the input size n is sufficiently large with
respect to p. Since the natural "degree of parallelism" of an algorithm is a
function of n, the requirement that n should be large is essentialy the parallel
slackness requirement, which is a necessary condition for simulation o f a PRAM
on BSP (see [14]). However, we exploit this slackness in a different way, obtaining
a direct CRCW BSPRAM algorithm, rather than performing it on a simulated
PRAM under the condition of constant g. The cost analysis is directly applicable
to a computation in the BSP model as well, since the algorithm is coarse-block
(for sufficiently large problem size).

The problem is to compute the matrix product X Y = Z, where X, Y, Z
are arbitrary n x n matrices in main memory. This problem is of great im-
portance, and, somewhat surprisingly, significant theoretical complexity. Since
the groundbreaking paper by Strassen [12] much work on the sequential cost of
matrix multiplication has been done. However, no lower bound asymptotically
better than trivial J2(n 2) has been found; nor there is any indication that the
current O(n 2'376) algorithm from [3] is close to optimal.

We aim at parallelising the standard O(n 3) method without using fast matrix
multiplication techniques. The method consists in a straightforward computa-

335

~ . k
Y

Yjk . \

X
I | ~ 1 7 6 1 7 6

x i j

\ \

Vijk

\
V

a

Zik

Z

Figure 1: McColl-Valiant matrix multiplication: data dependencies�9

tion of the family of bilinear forms

zik = B xijyjk 1 < i, k < n (1)
j = l

The algorithm is derived from the McColl-Valiant- BSP algorithm for matrix
multiplication described in [10], which in turn is based on an idea from [1].
Following (1), we need to compute the array of products V = (vijk), where

Vijk = xijYjk 1 < i , j , k < n

We represent the array V as a cube of volume n 3 in integer three-dimensional
space (see Figure 1). Each of the arrays X, Y, Z is represented as the projection
of this cube onto the coordinate planes k = 0, i = 0 and j = 0, respectively. The
element vijk depends on its first two projections xij and Yjk and contributes to
the computation of its third projection zik. It only remains to partition the cube
in a straightforward way. We divide the cube V into a regular grid of p smaller
cubic subarrays of volume n3/p, and assign to each processor the problem of
computing one of the subarrays.

Algorithm 1. Multiplication of square matrices of size n (see Figure 1).

I npu t : matrices X = (xij) and Y = (yij), 1 _< i , j < n.

Outpu t : a matrix Z = (zij), 1 < i , j < n, which is the product of X and Y.

336

Descript ion. The CRCW BSPRAM computation proceeds in one superstep.
Every projection of a subarray constitutes a block. A processor reads from the
main memory the projections of a subarray along the axes k and i, computes
the subarray elements and sums the elements in groups along the axis j . The
result of local computation is the combined contribution of the subarray to its
projection along the axis j; we call this contribution a partial projection of the
subarray along the axis j . The processors write the computed partial projections
concurrently to the main memory. Concurrent writing is resolved by addition
of the values written; this combines the partial projections of the subarrays into
the full projection of the array V. The resulting array Z is the matrix product
of X and Y. The slackness required by Theorem 2 is n > pS/S, but this can be
easily improved to n > pl/2.

Cost analysis. The computation cost W is clearly O(n3/p). The communi-
cation cost is proportional to the block size, i.e. the integer area of a block
projection: H = O(n2/p2/3). The synchronisation cost is S = O(1). It can be
shown that these cost values are optimal for any BSPRAM parallelisation of the
standard matrix multiplication method. The algorithm is coarse-block, therefore
this cost analysis also applies to the BSP model by Theorem 2. The algorithm
is also oblivious; however, Theorem 1 does not apply, since the CRCW version
of BSPRAM is used. �9

Note that, unlike [10], no assumption on the distribution of input and output
data was necessary. All the input and output data are assumed to reside in the
main memory. The optimality of Algorithm 1 can be shown by an input-output
complexity argument.

Algorithm 1 can serve as a building block for development of more advanced
matrix algorithms, such as matrix inversion or linear system solvers.

6 Fast Fourier Transform in B S P R A M

Fast Fourier Transform is one of the most important algorithms in scientific
computing (see e.g. [4, 7]). Its data dependency pattern, the butterfly dag, also
arises in other algorithms - - for example, it can be used for computing parallel
prefix. As observed in [11, 14], the butterfly graph can be partitioned in a
way perfectly suitable for bulk-synchronous parallel computation. Every level of
the butterfly consists of n/2 independent tasks, each of size 2. Similarly, any k
consecutive levels consist of n/2 k independent tasks, each of size 2 ~. Independent
parallel tasks may be performed in one superstep on different processors. I f
the slackness is sufficiently large, two supersteps will suffice to complete the
computation.

Figure 2 shows the two-superstep FFT algorithm in the case of n = 16. Each
superstep consists of four independent tasks of size 4; therefore, the slackness
is suffcient for the use of p < 4 processors. In the following general BSPRAM
algorithm it is assumed that the input and output data reside in the main mem-
ory.

337

)

Figure 2: Fast Fourier Transform of 16 values.

I I

A l g o r i t h m 2. Fast Fourier Transform of n elements (see Figure ~ for n = 16).

Input: an array x = (xi), 0 _< i < n.

Output: the Fourier transform of the array x.

Description. The log n levels of the n-input butterfly are computed on EREW
BSPRAM (p, g, l). The computation proceeds in two supersteps, each comprising
1/2. logn levels. Each of the supersteps is composed of n 1/2 independent FFT
tasks of size n x/2; therefore, each processor is assigned n 1/2/p tasks. The required
slackness is n > p2.

Cost analysis. The computation cost W is clearly O(n log n/p). The commu-
nication cost is H = O(n/p). The synchronisation cost S is constant. The values
of W, H and S are trivially optimal. The algorithm is oblivious, therefore this
cost analysis also applies in the BSP model by Theorem 1. The algorithm is
coarse-block if the slackness is at least n > pS. []

The question of reducing the slackness required for BSP implementation of
Fast Fourier Transform is addressed in [14].

7 C o n c l u s i o n s

A new model for bulk-synchronous parallel computing, the BSPRAM model, has
been presented. It was shown that it in some important cases it is equivalent to
the BSP model. BSPRAM contains elements of shared memory and therefore
simplifies the design and analysis of bulk-synchronous parallel algorithms. We
have given two examples of algorithm design in the BSPRAM model. In these
examples, the BSPRAM algorithms for standard (non-fast) matrix multiplica-
tion and Fast Fourier Transform were derived from the corresponding optimal
BSP algorithms. The BSPRAM approach has allowed to express the algorithms

338

in the shared-memory style, and to remove the assumption of even input and
ou tpu t distribution, which was necessary in their BSP versions.

References

I. A Aggarwal, A K Chandra, and M Snir. Communication complexity of PRAMs.
Theoretical Computer Science, 71:3-28, 1990.

2. C Barge. Graphs, volume 6, part 1 of North-Holland Mathematical Library. North-
Holland, second revised edition, 1985.

3. D Coppersmith and S Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9:251-280, 1990.

4. T H Cormen, C E Leiserson, and R L Rivest. Introduction to Algorithms. The
MIT Electrical Engineering and Computer Science Series. The MIT Press and
McGraw-Hill, 1990.

5. A V Gerbessiotis and L G Valiant. Direct bulk-synchronons parallel algorithms.
Technical Report TR-10-92 (Extended version), Aiken Computation Laboratory,
Harvard University, 1992. Shorter version appears in Proc. 3rd Scandinavian Work-
shop on Algorithm Theory, July 8-10, 1992, LNCS Vol. 621, pp. 1-18, Springer-
Verlag.

6. M Goodrich. Communication-efficient parallel sorting. In Proceedings of the 28th
ACM Syrup. on Theory of Computing (May I996).

7. J J&l~. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.
8. W F McColl. General purpose parallel computing. In A Gibbons and P Spirakis,

editors, Lectures on parallel computation, volume 4 of Cambridge International
Series on Parallel Computation, chapter 13, pages 337-391. Cambridge University
Press, 1993.

9. W F McCoU. Special purpose parallel computing. In A Gibbons and P Spiralds,
editors, Lectures on parallel computation, volume 4 of Cambridge International
Series on Parallel Computation, chapter 13, pages 261-336. Cambridge University
Press, 1993.

10. W F McColl. Scalable computing. In J van Leeuwen, editor, Computer Science To-
day: Recent Trends and Developments, volume 1000 of Lecture Notes in Computer
Science, pages 46-61. Springer-Verlag, 1995.

11. C H Papadimitriou and M Yannakakis. Towards an architecture-independent anal-
ysis of parallel algorithms. In Proceedings of the 20th Annual Symposium on Theory
of Computing, pages 510-513, 1988.

12. V Strassen. Ganssian elimination is not optimal. Numerische Mathematik, 13:354-
356, 1969.

13. L G Valiant. Bulk-synchronous parallel computers. In M Reeve, editor, Parallel
Processing and Artificial Intelligence, chapter 2, pages 15-22. John Wiley & Sons,
1989.

14. L G Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103-111, August 1990.

15. L G Variant. General purpose parallel architectures. In J van Leeuwen, editor,
Handbook of Theoretical Computer Science, chapter 18, pages 943-971. Elsevier,
1990.

