
Goodness of Time-Processor Optimal P R A M
Simulations

Ville Lepp/inen

Department of Computer Science, University of Turku, Finland

A b s t r a c t . We address the question 'how to measure goodness of time-
processor optimal PRAM simulations'. Instead of measuring only the
asymptotic complexity of simulation time, we attempt to take into ac-
count all aspects of simulations exactly. We present a goodness function
framework and propose a generic function for measuring the goodness.

1 I n t r o d u c t i o n

A simulation of an N-processor PRAM on a P-processor distributed memory
machine (DMM) is time-processor optimal, if simulation of a PRAM step suc-
ceeds in time O(N/P) (with high probability). The simulation time is lower
bounded by the diameter r of the routing machinery and the expected memory
congestion 7. If the DMM is symmetric and memory requests can be satisfied
by only one memory module (one hash function), expected length ~ of memory
request route is ~ = 0(r If the total routing capacity is e P (r packets per
physical processor per step), two necessary conditions for time-processor opti-
mality are that the load ~ - NIP (parallel slackness factor) is ~ = ~(maz{r ~})
and r = ~(r Many such solutions can be derived [3, 4, 5, 6, 9].

Often when simulation results are reported, the asymptotic complexity of
simulation time is highlighted while other aspects are almost ignored. "Better"
results can be obtained by assuming stronger graph theoretical properties (larger
degree A, smaller r and/or stronger (shared resource) contention resolution pro-
tocols. Comparison of PRAM simulations should account for implementation of
routing machinery properties, since a PRAM simulation is basically a routing
problem! How to account for routing machinery implementation? Using the VLSI
cost model to implement communication graphs has been studied extensively.
The basic VLSI components are transistors and wires, and the success in model-
ing the cost leans on the fact that the size of basic components is approximately
the same. Extension to processor&memory modules and connections between
them is possible, but the size issue can be severely off balance. Using optics in-
stead of VLSI to implement communication has been suggested in [7, 10] - more
or less in the form of static multichannel mesh of optical buses.

A SMcMOB(s, d, p) consists of a d-dimensional mesh of optical buses - the
side length along each axis is s nodes. Each node is connected to a bus along each
axis with p receivers and transmitters. Each transmitter (receiver) connected to
a bus is assumed to have a fixed unique channel. (In [8], a hardware configuration
capable of supporting 250 channels per bus is discussed. Each of them operates

304

at rate ~ 1 Gbit/s. The configuration is claimed to be able to support up to 5000
channels.) We assume that a PRAM simulation S is implemented on a logical
architectural model (of a routing machinery) which in turn is implemented by
embedding it into a SMcMOB. Our goodness function parameters come from
simulation, architectural model and embedding of the communication graph.

An embedding s = (G, H) of graph G into H = SMcMOB(s, d, p) assigns
nodes of G on nodes of H; maps a channel for each transmitter and receiver prop-
erly; and sets a path to each directed edge of G. A stepwise emulation yr assigns
a collision-free schedule for the movement of packets according to the paths.
Let ~t denote the length of schedule. Besides ~t, we are interested of stretch
~, , which is the largest stretch of a channel in H. If a channel connects nodes
(x t , . . . , xi , . . . , xd) and (~ 1 , . . . , Xi--1, Yi, Xi+I , �9 - . , Xd), the stretch of channel is
]xi - Yil. Above kind of embedding and emulation has been studied in [7, 10].

2 G o o d n e s s f u n c t i o n s

Let Z be an implementation of an EREW simulation S running on a DMM .~4 so
that 2: is based on an emulation ~" on an embedding g = (Ad, SMcMOB(s, d, p)).

Informally our goodness]unctions map a certain set of PRAM implementa-
tion related parameters to scalar values. The best value a goodness function can
give for an implementation is 1. Besides ~t and ~, , we see the following parame-
ters of • and ~q relevant: the number of processors and memory modules P; the
number of routing machinery nodes Q; the routing machinery communication
capacity ~ (expressed in packets); the logical diameter r the maximum degree
,5 of nodes and processor&memory modules; the size of queues q; the size of
packets z; and the load-cost function of simulation C. The function C measures
simulation cost per simulated PRAM processor on load g. If S uses at most
T(N, P) steps to simulate an N-processor PRAM step on a P-processor DMM
.A4 (with high probability), the load-cost]unction of S is C(~) = T(N, P)/L

2.1 G e n e r a l f r a m e w o r k

In our model the cost of a PRAM implementation 2: comes from (i) extrane-
ous hardware needed to implement communication (useless from the calculation
point of view); (ii) unit step concept; and (iii) PRAM simulation algorithm. The
total cost G(2:) we form by multiplying the cost of individual factors.

We model the total cost of hardware by Ciron (Z) = Cp+M + CQ,a + C#,q,z,
where Cp+M is the cost of processor&memory modules; Cq,a is the cost of rout-
ing machinery nodes (their internal logic); and C#,q,z is the cost of communication
capacity (hardware cost of queues + network interfaces). The cost of extraneous
hardware is obtained from Ciron (2:) by dividing it by basic costs: Cp+M.

Several factors put stress on the concept of unit time. We assume that in a
time unit a packet can be moved to any neighboring node (in .44) and over each
directed connection; and the routing machinery can accomplish one elementary

305

routing round. Moreover, the amortized packet processing t ime (fetch/store, sim-
ple arithmetic operation, fetch next operation, calculate addresses, . . .) should
not exceed the unit time. Therefore, Cstep(:Z) = max{Cs,z,t, CM,p, CA}, where
C~,z,t represents the cost due to stretch of embedding, size of packets, and emu-
lation time; CM,p represents the unit t ime cost of processor&memory modules;
and Ca models the functional complexity of underlying routing machinery nodes.

The cost of PRAM simulation algorithm we model by C~im(Z) = C c x Cr
where Cc charges for the properties of the load-cost function in general and C~
represents cost for the slackness needed to achieve certain simulation cost level.

In our opinion, ~(Z) allows us model problems related to (a) the concept of
unit time, (b) the implementation of a topology, (c) the properties of load-cost
function C, and (d) the load requirement. The shape of C is not everything that
matters and the cost of extraneous hardware can be put into right perspective.

2.2 A generic instance of the framework

We reduce the number of parameters to four by introducing a generic goodness
function g~,z,~,~. We model processor and memory module hardware costs by

Cp+M - - P x C'p+M, where Cp+ M is the hardware cost of a processor& memory
module. We assume that routing machinery nodes are homogeneous and model
CQ,A = Q(H) x CQ x C'~14 and Cr -- p x d x Q(H) x C'q,z, where CQ is
hardware cost of the routing logic of a simple router node. We take a binary tree

e

node as a reference node. The C a expresses the maximum number of "paths"
form incoming edges to outgoing edges via a node (4 for a binary tree node).
We expect the cost of router node logic to grow linearly with C~. The C'q, z is
hardware cost of a buffer of size q and width z plus the cost of a network interface
(~ a t ransmit ter and a receiver). The ratio of extraneous hardware is now

I ! S

Cp+M P x Cp.{_ M -

where a = max { CQ, C'q, z }/C'p+M represents the hardware ratio of simple rout-
ing machinery element and processor~memory module.

What can we say about a? Experiments show that q = 4 , . . . , 8 is sufficient,
and in simulation algorithms z is at most ~ 250b. Since typically tens or hun-
dreds of megabytes of memory is attached to a processor and processors contain
several million VLSI components, we claim that the ratio CQ/C'p+ M can well be

1/105. The prevailing idea is that the network interface is based on optics - we
find it difficult to estimate the complexity of such an interface. In our opinion,
a can be 1/104, or more, but the "current" value of a is obviously much less.

How to model C,t~p? Let CM,p = 1. The clockrate of processors is currently
0.1GHz - 0.5GHz. Techniques to push amortized memory access t ime close to

�9 ! f

cycle time exist. We model Ca m terms of Ca/w. For Tera [2], C a ~ 20. Although
routing through a node requires 3 cycles in Tera, we take 20 to be a good
candidate for w. Tera can move a packet over each connection on every clock

306

tick. We conclude that Cs,~,t depends mainly on ~s and ~t, and propose formula
C~,z,t = ~t x ~ /) 3 x r d - ~ / ' ~] , where F d-~/~-21 represents the unit length of
stretch (side length sn of a router node) and)3 represents the amount of nodes
a signal can pass by in a time unit. If sn ~ lcm, the current clockrates suggest
that)3 can be ~ 10 ~. The value of ~ has a great impact on the shape of ideal
routing machinery, since the length of free "jumps" depends on it.

Next we model Cc and Cr According to our experience, on a DAG the load-
cost function C(t) of a greedy routing + synchronization wave based simulation
is of the form C(t) ~, bL x max{t, er} + O(1) / t , where er is the length of longest
"source F-~ target ~-~ source" path and bt is almost a constant. We set Cc = b2r
since bl often approaches 1 freely and is close to its best when 2r < t < 5r

What is the cost Cr of slackness (e.g., ~ 2 r required to achieve a good
simulation cost considering machine design and usage? Tera supports 128 threads
whereas SB-PRAM [1] supports 32 x 32 threads. Representation of a thread
requires ~ 1-3Kb - obviously hardware support for a large number of threads
is possible. More essential is that the operating system (OS) is able to provide
enough threads for each physical processor. The OS can do this via concurrent
applications, but luckily several common problems (e.g., matr ix multiplication
and sorting) have work-optimal NC-class EREW solutions. This suggests that
applications can provide a large number of threads. In our opinion, the cost of
slackness to is not t0 but much less. Should a sublinear function be used and/or
should some threshold value be applied to s We model Cr = 7(2r Choosing
a fair 7 is difficult, but we find tempting to try, e.g., log 2 x and max{l, x/10}.

R e f e r e n c e s

1. F. Abolhassan, R. Drefenstedt, J. Keller, W. Paul, and D. Scheerer. On the Phys-
ical Design of PRAMs. The Computer Journal, 36(8), 756 - 762, 1993.

2. R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and
B. Smith. The Tera Computer System. Comp. Arch. News, 18(3):1 - 6, 1990.

3. A. Czumaj, F. Meyer auf der Heide, and V. Stemann. Shared Memory Simulations
with Triple-Logarithmic Delay. In Proceedings of ESA '95, 46 - 59, 1995.

4. L. Goldberg, Y. Matias, and S. Rao. An Optical Simulation of Shared Memory. In
SPAA '9~, Symposium on Parallel Algorithms and Architectures, 257 - 267, 1994.

5. F. Leighton, B. Maggs, A. Ranade, and S. Rao. Randomized Routing and Sorting
on Fixed-Connection Networks.]. of Algorithms, 17(1):157 - 205, 1994.

6. V. Lepps and M. Penttonen. Work-Optimal Simulation of PRAM Models on
Meshes. Nordic Journal on Computing, 2(1):51 - 69, 1995.

7. W.F. McColl. General Purpose Parallel Computing. In Proceedings of 1991 AL-
COM Spring School on Parallel Computation, 337-391, 1993.

8. A. Nowatzyk and P. Prucnal. Are Crossbars Really Dead? The Case for Optical
Multiprocessor Interconnect Systems. Comp. Arch. News, 23(2):106 - 115, 1995.

9. A.G. Ranade. How to Emulate Shared Memory. Journal of Computer and System
Sciences, 42:307-326, 1991.

10. S.B. Rao. Properties of an Intercormection Architecture based on Wavelength
Division Multiplexing. Report TR-92-009-3-0054-2, NEC Research Institute, 1992.

