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Abst rac t .  Three Monte Carlo methods for Matrix Inversion (MI) are 
considered: with absorption, without absorption with uniform transition 
frequency function, and without absorption with almost optimal transi- 
tion frequency function. 
Recently Alexandrov, Megson and Dimov has shown that an n • n matrix 
can be inverted in 3n/2 + N + T steps on regular arrays with O(n2NT) 
cells. A number of bounds on N and T have been established (N is 
the number of chains and T is the length of the chain in the stochastic 
process, which are independent of matrix size n), which show that these 
designs are faster than the existing designs for large values of n. 
In this paper we take another implementation approach, we consider par- 
allel Monte Carlo algorithms for MI on MIMD environment, i.e. running 
on a cluster of workstations under PVM. The Monte Carlo method with 
almost optimal frequency function performs best of the three methods 
as it needs about six-ten times less chains for the same precision. 

1 I n t r o d u c t i o n  

The problem of inverting a real n x n matrix is of unquestionable importance in 
many scientific and engineering applications: for example real time speech cod- 
ing, digital signal processing, communications, stochastic modelling and many 
physical problems involving partial differential equations. The direct methods 
of solution require O(n 3) sequential steps when the usual elimination or annihi- 
lation schemes (e.g non-pivoting Gaussian Elimination, Gauss-Jordan methods) 
are employed [1]. Consequently the computation time for very large problems or 
for real-time problems can be prohibitive and prevents the use of many estab- 
lished algorithms. 

It is known that  Monte Carlo methods give statistical estimates for elements 
of the inverse matrix,  or for components of the solution vector of a SLAE, by 
performing random sampling of a certain chance variable, whose mathematical  
expectation is the desired solution [16, 18]. We concentrate on Monte Carlo 
methods for MI since: f i rs t ly ,  only O(NT) steps are required to find an element 
of the inverse matr ix  (N is a number of chains and T is a measure on the chains 
length in the stochastic process, which are independent of n) and secondly ,  the 
sampling process for stochastic methods is inherently parallel. 

Recently Megson, Alexandrov, and Dimov have presented regular arrays for 
Matrix Inversion by Monte Carlo method [13, 11], exploiting the inherent par- 
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allelism of the method.  The full matr ix  is inverted in 3 n / 2  + N + T steps on 
O ( n 2 N T )  cells. A number of bounds on N and T were established, which show 
tha t  these designs are faster than the existing ones for reasonably large values 
of n (see Table 1). Thus for sufficiently large n the Monte Carlo approach is 
theoretically more efficient than the usual direct and iterative methods[3]. 

A r r a y  
Robert-Trystram [14] 
Kung-Lo-Lewis [9] 
Megson [10] 
Rajopadhye [15] 
Delosme [5] 
Megson-Alexandrov-Dimov [13] 

A IV IAT 
n z 5n 5n 3 

n z 5n 5n ~ 

( 3 / 2 ) .  ~ - ( . / 2 )  4 .  6 .  ~ - 2 n  ~ 

n ~ 4n 4n 3 
5nZ/4 4n 5n 3 

n ~ N T  < 4n < 4 n 3 N T  

Table I .  Area-Time trade-off for various arrays for matrix inversion 

The purpose of this paper  is to consider the implementat ion of Monte Carlo 
algorithms in MIMD environment. We use a cluster of workstations running 
under PVM. 

The rest of this paper  is organised as follows. Section 2 briefly outlines the 
essential details of matr ix  inversion by Monte Carlo methods.  Section 3 intro- 
duces the concept of opt imal  and almost opt imal  frequency function. Section 4 
discusses the parallel implementation.  Section 5 outlines impor tan t  bounds on 
T and N.  Section 5 summarizes the results. 

2 Stochastic  methods  and matrix  inversion 

Assume that  the system of linear algebraic equations (SLAE) is presented in the 
form: 

z = Az + ~ (1) 

where A is a real square n • n matrix,  x = (x  l ,  x2 , . . . ,  xn)  t is a 1 • n solution vector 
and ~ = (!al, ~2, ..., tan) t is a given vector. (If we consider the system L x  = b, 

then it is possible to choose non-singular mat r ix  M such that  M L  = I - A and 
M b  = ~, and so L x  = b can be presented as x = A x + T . )  Assume tha t  A satisfies 
the condition maxl<i<n ~ ' = 1  lalJl < li which implies that  all the eigenvalues of 
A lie in the unit circle. The mat r ix  and vector norms are determined as follows: 
IIAII = maxl<i<~ ~-~j=l la~Jl, I1~11 = m ax l < i < .  llail. 

Suppose that  we have Markov chains with n - states. The random trajectory 
(chain) T/ of length i start ing in state k0 is defined as k0 --+ kl --+ - . .  --+ kj --4 
�9 .- --+ ki where k j  is the number  of the state chosen, for j = 1 , 2 , - . . , i .  The 
following probabil i ty definitions are also important :  P ( k o  = a )  = pc,, P ( k j  = 

f l l k j _ l  = a)  = pc,~ where Pa is the probabil i ty that  the chain starts  in s tate  
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and paz is the transition probabili ty to state ~ from state a.  Probabilities p~/~ 
n 

define a transition matr ix  P.  We require that  ~-]~:=1 Pa -- 1 , )-~=1 P~Z = 1 
for any a = 1, 2, ..., n, the distribution (Pl, ..., Pn) t is acceptable to vector g and 
similarly the distribution paz is acceptable to A [16]. 

Consider the problem of evaluating the inner product of a given vector g with 
the vector solution of (1) 

(g, = E:_-I  (2) 

It  is known [16] that  the mathemat ica l  expectation EO* [g] of random variable 
@*[g] is: 

EO*[g] = (g, x) 

oo 
where O*[g] = gko ~ j = 0  Wj~Ok~ (3) 

Pko  

and W0 = 1 Wj I~r. ak~_lk~ : * r 3 - - 1 p k j _ l k  j 

x--'i Wj~okj. We use the following notation for a partial  sum (3) 0i[9] = pko z_.,j=0 

According to the above conditions on the matr ix  A, the series ~-'j~j~176 Wj~okj 
converges for any given vector ~o and EOi[g] tends to (g, z) as i > oo. Thus 
04 [g] can be considered an est imate of (g, x) for i sufficiently large. 

Now we define the Monte Carlo method.  To find one component  of the solu- 
tion, for example the r-th component  of x, we choose g = e(r) = (0, ..., O, 1, O, ..., O) 
where the one is in the r-th place. It  follows that  (g ,z )  -- ~'J~:=l ea(r)x~ = zr  
and the corresponding Monte Carlo method is given by 

N 
1 

zr ~, ~ E Oi[e(r)], (4) 
s----1 

where N is the number  of chains and 0i [e(r)], is the value of Oi[e(r)] in the s-th 
chain. 

To find the inverse C of some mat r ix  B, we first compute the elements of 
mat r ix  A = I - B where I is the identity matrix;  clearly C = ~-']~i~o Ai which 
converges if HAIl < 1. To find the element Crr, of the inverse matr ix  C, we set 

= e(r'). The Monte Carlo method becomes 

N 
1 /5) Crr~ ~-~ -~  

8=1 (jlkj=r') 

where Wj = Wj -1  ~ and ( j lkj  = # )  means that  only Wj for which kj = # 
Pkj--lkj  

are included in the sum. Since Wj is included only into the corresponding sum 
for # = 1, 2, ..., n, t h e  s a m e  se t  o f  N cha ins  c a n  b e  u s e d  t o  c o m p u t e  a 
s ing le  r o w  o f  t h e  i n v e r s e  [16] with a consequent saving in computat ion.  
The p r o b a b l e  e r r o r  of the method,  is defined as r n  = 0.6745v/-D-~/N, where 
P{10-  E(e)l < rN} ~ 1/2 ~-, P{19 - E(e)l > rN}, if we have N independent 
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realizations of random variable (r.v.) 0 with mathematical expectation EO and 
average 0 [16]. 

It is clear from the formula for rg  that  the number of chains N can be reduced 
by a suitable choice of the transition probabilities that  reduces the variance for 
a given probable error. This idea leads to Monte Carlo methods with minimal 
probable error. 

3 M o n t e  C a r l o  m e t h o d s  w i t h  m i n i m a l  p r o b a b l e  e r r o r  

The key results concerning minimization of probable error and the definition of 
a l m o s t  optimal transition frequency for Monte Carlo methods applied to the 
calculation of inner product via iterated functions are presented in [13]. The 
main results and Theorems are outlined here. 

Define vectors ~ and !~ where 

a2 2 

r = (Ep  ~ ) ' / ~  and ~ = Ez la~#~zl Va = 1, 2, . . . ,n 
P~a 

L e m m a  1. The transition probability 

the Markov chain minimizes 

L e m m a  2. The probability 

minimizes 

sum y ~  g ~  and miap y':.~ g~r = ( ~ a  Igar 1) 2 
P~ P~ 

T h e o r e m  3. The frequency function ffi co Ig~ol i = r[j=l laaj-las I~,,  
co = (~C~ la~r -x minimizes the second moment EO~[g] of r.v. 

T h e o r e m  4. 

(6) 

p~z = la~z~zl l~  2 la~z~zl of 
r and minp r = r Va = 1, 2, ..., n 

-_ la~r in the Markov chain 
Pa ~-~z IgaCal 

where 

0dg]. 

I f  ~aiA(k-i)~ki  > 0 for any k > i, then the frequency function 

i 
~k,~ = colg~,ol ~ [a,~j_l~j [ [~,A(k- i)~,, ]  z/2 

j = l  

where co = (~/~ Ig/~r -1 minimizes E(Oj [g]0k[g]) �9 

According to Theorems 3 and 4 the minimizing frequency functions of the 
second moment EO*2~q] of r.v. O* [g] are Pi = co ]g~017[)=1 [a~- l~j  1~o~,, for  i = 

1, 2, ... and Pk,i = c0]g~o] 1-I~=1 ]aaj-laj [[~~ 1/2, for  i = 1, 2, ... 
where A k-i  = }-~+1 "'" }-~'~ aa,a,+~ . . .a~,_l~k ~va ~. The a l m o s t  o p t i m a l  fre-  

q u e n c y  is Pi = co ]g~o ] 1-I~=l [a~j-1 ~j [" 
In the Monte Carlo method we can employ either the o p t i m a l  or a l m o s t  

o p t i m a l  frequency function. According to the previous discussion and the prin- 
cipal of collinearity of norms [13] we can choose p~z proportional to the l a~ l .  

The algorithmic efficiency of Monte Carlo method for MI is discussed in 
section 5. 
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4 P a r a l l e l  I m p l e m e n t a t i o n  

We implement parallel Monte Carlo algorithms on a cluster of workstations 
under PVM. We assume virtual star topology and we apply the master/slave 
approach. 

Notice that  one row of the inverse matr ix can be computed in parallel on the 
same set of Markov chains. Thus the natural partitioning of inverse matr ix C, 
among the processors is to partit ion C into p blocks of In~p] consecutive rows 
and to allocate each block of rows on a separate processor. 

Inherently, the Monte Carlo method allows us to have minimal communica- 
tion, i.e. to pass the matr ix  A to every processor, to run the algorithm and to 
collect the results from slaves at the end without any communication between 
sending A and receiving C. The only communication is at the beginning and at 
the end of the algorithm execution which allows us to obtain very high efficiency 
of parallel implementation. Therefore, by allocating the master in the central 
node of the star and the slaves in the remaining nodes, the communication is 
minimized. 

5 P a r a m e t e r s  E s t i m a t i o n  a n d  D i s c u s s i o n  

Let us outline the method of estimation of N and T in case of M o n t e  C a r l o  
m e t h o d  w i t h o u t  a b s o r b i n g  s ta tes .  We will consider Monte Carlo meth- 
ods with uniform (UM) and with almost optimal (MAO) transition frequency 
function. We assumed that  the following conditions )'~Z=I Pa~ = 1 for any 

c~ : 1, 2, . . . ,n must be satisfied and transition matrix t5 might have entries 
la~l for a, f l =  1,2, . . . ,n .  = 

The estimator {9* for the matr ix inverse was defined as follows 

EO* ~] : (g, z), 

: g-~-x''~~ Wj~kj  where O*[g] P~o z_~j=o 

and W 0 = l  Wj = W. "akS-lkJ ' 3 - - 1 p k j _ l k j  �9 

(7) 

where ~okj ---- 5kjZ if a/3-th entry of inverse matr ix is computed. The sum for O* 
must be dropped when [[4~[ < 5 [16, 6], where (iis any given small number. Note 
that  

ar  cr 1 " " a ~ i _ l O t  i IW,'I = I ~ . . . ~  ] : I]AI] i < (f. (8) 

Then to reach IIAII i < 5 it follows that 

T = i < log 
- log IIAII" 

(9) 
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It is easy to find [161 that  IO*1 which means that  the variance of 
r.v. O* is bounded by its second moment: 

DO* <_ EO .2 - II I12 _< 1 (10) 
( i - I IAII)  u ( 1 - I I A I I )  2 

Now consider the M o n t e  Carlo m e t h o d s  w i th  a b s o r p t i o n  ( M A ) .  There 
are several possibilities to build Markov chains using one [6] or n absorbing states 
[2, 3]. The  Monte Carlo method in this case is following [6]: 

E T[g] = (g, 

where ~w[g] g-~-W; v~T (11) pu ~ T P~T' 

a n d  W0 = 1 , W T  ---- Wi : Wi -1  aki-lki 
p k i _ l k  i 

where rtr[g ] is the r.v. taken over the chain of random length T (T is m.e. 
of the length of the chain when absorption take place). From any transition 
probabilities pa~ such that  p ~  > 0, ~-~ p ~  < 1 ~/a = 1, 2, ..., n and P~n+l = 

n pa -- 1 - ) - ~ = 1 P ~  is the probability that  the trajectory ends in state (~, we 
choose Pa~ = l a~ l ,  for 1 < a < n, 1 < j3 < n. (For matr ix  inversion when c ~  
entry is computed ~kr ---- (fkrZ.) Later we use the notation 7" [g] for the r.v. TIT[g] 
taken over infinitely long Markov chain. 

The conditional mathematical  expectation of chain length E T  [17, 2, 3], if 
the chain starts in state r = ~ when p~z = (la~zl), is given by 

. 1 (12)  E(TIr  = ~) <_ m a x ~ z = l ( I §  P + p2 + . . . ) ~  < 

The variance of 7" [g] can be measured by the second moment  of r.v. 7/* [g] 
[2] and Dy*[g] < (I - K ) - I Q ~  2 where matr ix  K has entries a 2 ~ / p ~  and Q 
is a principal diagonal matr ix with entries 1/p~, ~ = 1, 2, ..., n on the principal 
diagonal. If we estimate the af~-th entry of inverse matr ix  the variance is bounded 
by: 

1 
Dy* [g],~ < ( I -  K ) ~ / p z  < ~ (13) 

According to the Central Limit Theorem for the given error c 

o.s745 ~ 1 (14) 0"6745~D'*[g] and thus N > - -  N >_ ~2 - ~ - ~ - - - ~  

is a lower bound on N which is independent of n. It is clear that  T and N 
depend only on the matr ix norm and precision. Furthermore, the size of N can 
be controlled by an appropriate choice of c once P and A are known. 

1 Consider N and T as functions of ~ .  It is obvious from (14) and (12) 

that  T = O(v / (N)) .  It is easy also to show that T = O ( v ~ N ) )  for MAO. In 
addition there are computational experiments in [4, 13] showing this fact that  
for sufficiently large N we can take T ~ x /~ .  
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Next we consider the results from computat ional  experiments involving differ- 
ent mat r ix  HAll norms and precision e for MI. The MAO and UM with stopping 
rules I Wil < g and MA have been implemented. 

To illustrate the algorithmic efficiency of the MAO, consider the inversion of 
3 • 3 mat r ix  B with B -1 found using MATLAB: 

0.7 - 0 . 2  - 0 . 0 ]  r l.4362 0.4287 0.0536] 
B = 0.0 0.67 -0 .1  B -1 = |0.0268 1.50050.1876 / 

-0 .1  0.0 0.8 /0.1795 0.0536 1.2567 / 
(15) 

The B -1 matrices calculated by applying the three methods - MA, MAO 
and UM are as follows: 

1.3897 0.3933 0.1159] 
0.1265 1.2350 0.3321| 
0.4869 0.1568 0.9895 J 

1.4721 0.4336 0.0751 ] 
0.0357 1.5468 0.2324 / 
0.2013 0.0372 1.2599J 

2.2203 0.9757 0.0855" 
0.0161 2.9538 0.3837 
0.3615 0.0871 1.4148 

The results are obtained with e = 0.05 and N = 727 for all the methods and 
with $ = 0.1 for the MAO and UM. The MAO attains the required precision 
for N = 727 chains. The other two methods need more chains: for example, the 
experiments show that  UM needs about  6-10 times more chains to reach the 
same precision in comparison with MAO. The minimal and maximal  values for 
the length of Markov chains Tmin  and T m a x  and bounds on N for this example 
are presented in Table 2. 

I IIAIII = 10.51 MAI IMAOI I UMI I 
[ N I e I df ITminITmaxITminlTmaxlTminlTmaxl 

45 0.2 0.2 1 7 3 5 3 7 
727 0.05 0.1 1 14 3 6 3 12 
4549 0.02 0.1 1 17 3 7 3 14 

Table  2. A comparison between parameters of MA, MAO and UM methods 

Further experiments has been carried out for matrices with different norms 
and different values of e. Experimental  results for Tmin,  T m a x  and N for MAO 
are summarized in Table 3. From Tables 2 and 3, it is seen that  the MAO needs 
fewer chains to reach a given precision. 

To consider the efficiency of parallel implementat ion,  we apply the three 
Monte Carlo methods to randomly generated 100 x 100 dense matr ix  which 
has an inverse. A comparison between MA and MAO with e = 0.02 for such 
mat r ix  is given in Table 4. The figures show that  both methods have efficient 
parallel implementat ion (efficiency above 0.9) but MA is about  two times slower 
(the t ime is in seconds) compared with MAO. The UM method has been also 
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N i 

0.5 0.1 0.9 8 16 181 - 1600 0.5 0 '  3 7 - 64 
0.2 0.1 0.9 6 17 1137 - 10000 0.5 0 4 45 - 399 
0.1 0.1 0.9 7 17 4549-40000 0.5 0 4 181-1599 

0.05 0.05 0.9 10 21 18198 - 160000 0.5 0 ..... 5 727 - 6398 
0.01 0.01 0.9 15 28 454950 - 4000003 0.5 0 6 18198 - 160000 

Table  3. Method without absorption 

[method[ nproc I 1 I 2 [ 3 I 4 [ 5 [ 10 I 
MA TIME 1308.9 664.417 447.029 338.392 272.4 142.52 
MA Efficiency 1 0.985 0.976 0.967 0.961 0.918 

MAO I TIME 1757.8291384.685[258.5561193:.9171156.671 79.31 I 
MAO IEfficiencyl 1 [ 0.987 [ 0.979 I 0.977 [0. 9671 0.955 I 

Table  4. A comparison between parameters of MA and MAO 

implemented,  but  needs 6-10 t imes more  chains to reach the same precision as 
MAO. 

Generally, The  results f rom the experiments  show tha t  MAO has fewer and 
shorter  chains compared  with MA. The  compar ison between M A O  and UM 
shows tha t  MAO methods  require about  six-ten t imes less chains to  reach the 
same given precision [13, 12]. In addit ion MAO is roughly  twice as fast as MA 
and faster than  UM. In addition, the experiments  show tha t  convergence is very 
slow when the mat r ix  norm is close to 0.9 or is tending to 1, so the quest ion 
of  fast Monte Carlo precondit ioning and reducing the no rm of  the ma t r ix  is 
still open. Further  experiments  are needed to investigate parallel Monte  Carlo  
me thods  for dense, sparse and s t ructured matr ices  and to identify the break-even 
points  compared  with other  best know parallel direct and i terative methods .  

6 C o n c l u s i o n  

In our parallel implementa t ion  we have to compu te  n rows in parallel. To com- 
pute  one row we need N independent  chains with length T, and for n rows in 
parallel we need nN such independent  chains of  length T, where N and T are 
the ma themat i ca l  expectat ions of  the number  of  chains and chain length,  respec- 
tively. So the execution t ime on p processors for  MI by Monte Carlo is bounded  
by O(nNT/p) (excluding communica t ion  t ime).  According to the discussion and 
results above N and T depend only on the mat r ix  no rm and precision and do 
not  depend on the mat r ix  size. Therefore the Monte Carlo me thods  can be ef- 
ficiently implemented on MIMD environment  and in par t icular  on a cluster of  
workstat ions  under  PVM. 
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In particular it should be noted that  the Monte Carlo methods are well suited 
to large problems where other solution methods are impractical or impossible for 
computa t ional  reasons, for calculating quick rough est imate of inverse matr ix ,  
and when only an element or one row of the inverse matr ix  are desired. Con- 
sequently, if massive parallelism is available and if low precision is acceptable, 
Monte Carlo algorithms could become favourable for n > >  N. 
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