
Parallel Four ier -Motzk in El iminat ion

Christoph W. Ke~ler*

Fachbereich 4 - Informatik
Universit~t Trier

D-54286 Trier~ Germany
e-maih kessler@psi, uni-trier, de

Abs t rac t . Fourier-Motzkin elimination is a computationally expensive
but powerful method to solve a system of linear inequalities for real and
integer solution spaces. Because it yields an explicit representation of the
solution set, in contrast to other methods such as Simplex, one may, in
some cases, take its longer run time into account.
We show in this paper that it is possible to considerably speed up
Fourier-Motzkin elimination by massively parallel processing. We present
a parallel implementation for a shared memory parallel computer, and
sketch several variants for distributed memory parallelization.

1 I n t r o d u c t i o n

Given a system Ax _~ b, A 6 R n'm, b E R ~, of n linear inequalities in m
variables, we ask for the existence of (1) a real solution x 6 R m of Ax ~_ b, and
(2) an integer solution x E 7, m. Furthermore we are interested in an explicit
representat ion of the set of solutions.

Problem (1), a special case of linear programming, is polynomial in time.
Geometrically, it corresponds to determining whether the intersection polytope
of n halfspaces of the m-dimensional space is nonempty. It is usually solved using
the well-known Simplex algorithm (see e.g. [6] for a survey) which has expected
run t ime O(nm(n + m)) but takes exponential t ime O(nm2 n) in the worst case.
- - Problem (2), the interior point problem for integer linear programming (cf.
[6]) is NP-comple te . Geometrically, it asks whether the intersection polytope of
n halfspaces of the m-dimensional space contains any integer point.

Already in 1827, Fourier proposed an elimination method [4] tha t solves both
problems. As expected, this algorithm takes non-polynomial run time. Indeed,
the complexity can grow dramatically. Consequently, the method did not become
widely known, and was re-invented several times, e.g. by Motzkin in 1936. For
certain cases, however, it is a quite useful tool, because it is constructive: If a
solution exists, it yields a representation of the convex intersection polytope.
This representation may, of course, be used to determine the complete set of
all feasible integer solutions x by an enumeration procedure, provided that this
set is finite. But it can also be used to supply a symbolic solution. This feature
is used e.g. when applying restructuring loop transformations to a numerical
program with the goal of parallelizing it, see [3] for a detailed discussion.

Clearly, its high worst-case computat ional complexity made Fourier-Motzkin
elimination impractical as a general tool to solve the integer case. But even if
medium-sized problems would already take too much time on a uniprocessor

* The full version of this paper can be obtained from the author.

67

system, they could nevertheless be solved on a massively parallel computer . We
show tha t Fourier-Motzkin elimination offers a great potential for the exploita-
tion of massive parallelism. We give an implementat ion for a sha red -memory
multiprocessor and sketch variants for a d is t r ibuted-memory implementat ion.

2 F o u r i e r - M o t z k i n E l i m i n a t i o n

Since the (sequential) algorithm is not widely known, we give a summary of the
excellent description given in [3].

The algorithm is subdivided into seven steps.
S t e p 1: We are given A = (aij)i,j E R n'm and b E R n, representing the system
A x < b. We set up a "working system", consisting of a matr ix T E R ~'m and a
vector q E R ~. We initialize t i j = aij and qi = bi for 1 < i < n, 1 _< j < m, and
initialize the current problem sizes r, s by r = m and s = n.
S t e p 2: We sort the s inequalities and determine indices n l ,n2 E N, 1 < nl <
n2 <: s such that , after renaming of the indices of the inequalities, ti~ > 0 for
1 < i < n l , ti, r < 0 for nl + 1 < i s < n2, and ti,,~ = 0 for n2 -}- 1 < i" < s.
S t e p 3: We normalize the first n2 inequalities by tij = t i j / t i r and qi = qi/ t ir
for 1 < i < n2, 1 < j < r - 1. Now the system looks as follows:

t i lX l + ti2x2 Jr . . . ~ - t i , r - lXr -1 ~- Xr ~_ qi, 1 < i < nl (1)
t i ' l X l + t i ' 2 x 2 + . . . + t i , r - l X r - l + X r ~ _ q i , , n l + l <i~ < n 2 (2)

ti,,lXl + ti,,2x2 + . . . +t i , r - lXr-1 ~_ qe' , n2 + 1 < i" < n2. (3)

S t e p 4: From subsystem (1) we obtain xr < qi -) -~-~ t i j x j for 1 < i < nl ,

thus B V (x l , . . . , x ~ _ l) m i n l < i < n , (q i - ~-1 = E j = I t i j x j) is an upper bound for xr. If

nl = 0, we set B V (x l , . . . ,X~-l) = +co.

In the same way, (2) yields x~ > qi, -) -~-~ ti, j x j for nl + 1 < i ' < n2, thus
L r--1 B~ (Xl, . . . ,X~-l) = maxnl+l<i,<n2(qe - ~ j = l t l , j x j) is a lower bound for x~.

L If n2 = nl , we set Br (Xl,..., X~-l) = - c o . Thus, the range BrL(xl, . . . , X r _ l) _~
x~ <_ B V (x l , ..., x~ - l) of feasible values for variable x~ is given in terms of feasible
values for variables Xl,..., x r -1 . We record these bounds for later use.
S t e p 5: If r -- 1, we are done, since the bounds B L, B v are constants (maybe
• In this case we can return the answer to the original problem:

If and only if B L < B1 v and qi,, >_ 0 for all i" , n~ + 1 _< i" _< s, then the
original system has a real solution x E R m. This feature installs correctness of the
algorithm, provided tha t exact ari thmetic has been used. A proof by induction
is straightforward.

Otherwise, if r > 1, we have to continue:
S t e p 6: We eliminate x~. As minimizations and maximizations cannot be di-
rectly expressed in a linear system, we do this by setting each component of the
lower bound for x~ less than or equal to each component of the upper bound for
xr. This produces nl(n2 - n l) new inequalities in r - 1 variables:

r--1 r--1

q i , -~ -~ t i , j x j < Xr < q i - ~ t i j x j for all i , i ' , with 1 < i < nl , n l + l < i ' < n2.
j : l j : l

To these we add the s - n2 old inequalities from (3). This yields a new system
with s ~ = s - n2 + nl(n2 - n l) inequalities in r - 1 variables. The new system has

68

a real solution iff system (1,2,3) has a real solution�9 By induction, we obtain tha t
the new system has a real solution iff the original system has a real solution,

If s I = 0, we are done; then the variables xl , ..., x r -1 can be chosen arbitrarily;
the System has infinitely many solutions�9 Otherwise, we continue:
S t e p 7: In the new system, we renumber the coefficients a s ti,j and q~ with
1 < i < s I and 1 < j < r - 1. We set s = E, r = r - 1 and i terate from step 2.

The algorithm determines whether A x = b has a real solution x E R m, and,
if yes, supplies, as a byproduct , an explicit representation of the solution set.

Due to the construction of the algorithm, any real solution x E R 'n fulfills
L Br (Xl , - . - ,xr-1) <_ x~ < B U (x l , . . . , X r _ l) for 1 < r < m. However, if an integer

solution x E Z m is required, the answer "yes" by Fourier-Motzkin elimination
does not suffice to guarantee an integer solution�9 This means tha t we have to
test explicitly whether the following system is fulfilled:

[B~(xl,...,xm-1)] <xm<_ [B~(xl,...,x~_~)J
L U

[B m _ l (X l , � 9 1 4 9 <_ Xm-I <_ l B ~ _ l (X l , . . . , x m - 2) J

(4)
FBs < LB UJ

If the (integer) solution set is finite, i.e. there are no infinite upper or lower
bounds Br v, B L for some r, 1 _< r ___ m, the following loop nest produces the
comple te solution set:

=, e {rB?I, ...,/B~J}
forall x2 E {FB#(xl)I, . . . , LBr(=,)I}

forall x,-,, e { F B ~ - , (= I , . . . , = , , - ,)] , . . . , u lB.._, (x , , ..., x . - ,) J }
print x

This makes, of course, only sense if the solution set does not become too large;
thus a-priori knowledge on the maximum size of the solution set is required here�9
Clearly, if only the existence of an integer solution x is in question, it suffices to
abor t all these fo ra l l loops after the first feasible x has been found.

Moreover, if one is interested in a symbolic representation of the solution set,
e.g. when determining the new loop limits for a restructured loop nest (see [3]
for an example), the bounds for x due to (4) directly supply this representation.

The run t ime of Fourier Motzkin elimination may be disastrous in the worst
case because the number of inequalities may square in each iteration (if always
n l = n2 = s /2) . Nevertheless, on the average it should be considerably lower:
The probabil i ty tha t the first argument of T is maximal in each recursion step is
ra ther small�9 Moreover, the spaxsity structure of A has a considerable influence
on the run time, because n2 << s if the matr ix contains many zero elements. At
least for the inequalities (3) tha t do not part icipate in a specific elimination step,
the sparsity pat tern is preserved by the algorithm. For the other inequalities, the
number of non-zero coefficients may, in the worst case, double in each iteration�9

3 Para l l e l i za t ion for Shared M e m o r y

We found the following shared data structure useful for speeding up the sorting
steps (2 and 7): Pointers to the inequalities of each iteration are stored in a

69

dynamically allocated array t with s entries. Thus, interchanging of inequalities
can be done in constant time by just interchanging the pointers to them.

-_ qol,o,l,oF, i l,o,t

0 1 2 3 r

The coefficients tij of each inequality i in r vari-
ables are stored in a dynamically allocated array
t [i] with r + 1 entries. For simplicity and space
economy, we store the right hand side values qi
as the zeroth entry t [i] [0] of each inequality
array. The pointers t to the overall system of all
iterations r are, in turn, stored in an array that
later allows accessing the lower and upper bound
expressions for each xr.

If the original matrix A is sparse, it suffices to store the nonzero elements tij
for each inequality, together with the column index j . We implemented only the
dense variant because (a) sparsity becomes worse in the course of the algorithm,
and (b) exploiting sparsity only pays off if m exceeds a certain value, which, on
the other hand, may lead to very long run times.

We assume a multiprocessor with p processors. Each processor has constant
time access to a large shared memory. Concurrent write operations are resolved
by using an atomic fetch~add construct that takes constant time, independent
of the number of processors participating in this operation. A research prototype
of a machine with this ideal behaviour, the SB-PRAM [1, 2], is currently being
built by W.J. Paul's group at the University of Saarbriicken. As programming
language, we use Fork95, an extension of ANSI C for general-purpose PRAM
programming. See [5] and h t t p : //www-wj p. cs . u n i - s b , d e / f o r k 9 5 / f o r further
details.

Step 2 of the algorithm can be done in parallel. The mpadd instruction, an
atomic fetch~add primitive, performs in 1 CPU cycle on the SB-PRAM, regard-
less of the number of participating processors.

This feature is very helpful here; the over-
all sorting step (see on the right) producing
a sorted system t from an unsorted system
t_old , is performed by p < s processors in
time O(s/p). gforall(i,lb,ub,p) is a macro
that denotes a parallel loop whose (private)
loop index variable i globally ranges from lb
to ub-1, with iterations being cyclically dis-
t r ibuted over the participating p processors. If
p exceeds the number u b - l b of iterations, the
remaining processors remain idle and could be
used for further (interior) levels of parallelism.
p r is a type qualifier tha t declares a variable
as private to each processor.

Step 3 contains n2(r + 1) divisions; these can
completely execute in parallel provided that a
data dependency cycle is resolved by a tempo-
rary shared array f [] (see code on the right).
Thus, step 3 runs in time O(n2(r + 1)/p) on
p < n2(r + 1) processors.

print mypos, i, j, ii;
n2=O; nn = s-l;
gforall (i, O, s, p) {

if (t_old[i] [r] != O)
mypos = mpadd(&n2, I);

else mypos = mpadd(&nn,-1);
t[mypos] = t_old[i] ; }

gforall (i, O, s, p)
t_old[i] = t[i];

nl = O; /* nn is now n2-1 */
gforall (i, O, n2, p) {

if (t_old[i] It] > O)
mypos = mpadd(~nl, 1) ;

else mypos = mpadd(~nn,-1);
t[mypos] = t_old[i] ;)

free(t_old);

{determine pi,pj with pi*pj=p,
pi<=min(nl,n2-nl) maximal }

gforall (i, O, nl, pi)
f [i] = i.O / t [i] [r] ;

gforall (i, O, nl, pi)
gforall (j, O, r+l, pj)

t El] [j] *= f [i] ;

70

gforall (i, nl, n2, pi)
Step 4 records the inequalities from (1) and (2) f [i] = - (1.0 / t [i] [r]) ;
tha t install upper resp. lower bounds on xr, for g fo ra l l (i , n l , n2, pi)
later use. Thus, storage for these inequalities g fo ra l l (j , 0, r+l , pj)
cannot be freed, t [i] [j] *= f [i] ;
Step 5 handles the special case r = 1. Explicit computing of B [and B1L is done in
time O((n2 logp)/p) on p processors. If we are interested in an integer solution,
we can, compared to conventional parallel minimization / maximization, save
the logp factor using fast integer maximization/minimization which is supplied
by the mpmax operator, a multiprefix maximization instruction that performs in
constant time on the SB-PRAM.

Step 6 constructs a new system of inequal-
ities (see the kernel on the right). If p _<
nl (n2 - n l) r , then this kernel executes in time
O(nl (n 2 - n l) r / p) . Note that we may here also
compute the position of each new inequality
as mypos = i *n2+ i i , without using the mpadd
instruction, a l l o c () performs memory alloca-
tion of permanent shared heap blocks. Using
mpadd, it runs in constant time, regardless of
the number of participating processors.

Appending the old s - n2 inequalities from
(3), we only need to copy the pointers to them
(see code on the right), resulting in run time
O((s - n2)/p) on p < s - n2 processors.

The renumbering as indicated in step 7 is
6; thus step 7 takes only constant time.

{ comp. pi,pi• with pi max.
and pi*pii*pj=p }

gforall (i, O, nl, p• {
gforall (• nl, n2, pii) {

pr ineq myineq;
farm {
mypos = mpadd(&s new,l);
myineq = (ineq) alloc(

r*sizeof (double)) ;
gforall (j, O, r, pj)
myineq[j] = t[i] [j]

+ t[ii] [j] ;}
t_new[mypos]=myineq; } }

gforall (i, n2, s, p)
t_new [mpadd (&s_new, 1)] =t [i] ;

implicitly performed during step

R e s u l t s Table 1 shows some measurements for our implementation. Since the
SB-PRAM hardware is not yet operational, we use the SB-PRAM simulator
running on a SUN workstation. The simulator produces exact timings; one SB-
PRAM clock cycle (cc) will take 4 microseconds on the SB-PRAM prototype
with 4096 processors currently being built at Saarbriicken University.

We have ported the Fork95 program to a Cray EL98 with 8 processors, using
Cray Microtasking. The vector units of this machine are exploited best if interior
loops (e.g. the j loops) are vectorized, which is generally possible here. Longer
vectors are possible if chaining features are exploited; this enables processing all
inequalities owned by a processor as one large vector update operation. However,
because there is no equivalent to mpadd() on the Cray, step 2 is sequentialized;
thus the speedup observed is rather modest (1.55 for 4, and 2.6 for 8 processors,
applied to a 27 • 4 random problem).

4 Parallel ization for Distributed Memory

We sketch 2 three different scenarios for distributing data across p processors of
a distributed memory system. Each possibility has advantages and drawbacks.
(1) The s inequalities are equally distributed among the processors. Step 2 of

each iteration installs the invariant that each processor holds approximately

2 For space limitations we cannot go into more detail here. See the full version.

71

D~NS~ n = 1 2 , m = 4
p time [cc speedup
1 15489470 1.00
2 7794002 1.99
4 3945966 3.93
8 1999718 7.75

16 1049920 14.75
32 55316~ 28.00
64 327088 47.36

128 214408 72.24

DENSE n----15,
p time [cc]
1 194009292
2 97116338
4 48602188
8 24343832

16 12648663
32 6254904
64 3166208

128 1695908
256 960648
512 592964

1024 341092

m----4
speedup

1.00
2.00
3.99
7.97

15.34
31.02
61.27

114.40
201.96
327.19
568.79

. n = 2 0 0 , m = 1 0
p time [cc] speedup
1 52230692 1.00
2 26178784 2.00
4 13160404 3.97
8 6649968 7.85

16 3872185 13.49
32 1769536 29.52
64 957852 54.53

128 554952 94.12
256 363690 143.61

Tab le 1. Measurements on the SB-PRAM for feasible dense random systems. All entries
are nonzero and chosen such that n l ~ n2 - n l and n2 -- s in each iteration. Speedup is
almost linear. Slight speedup degradations for large numbers of processors arise from many
processors being idle in the first, least expensive iterations, and from some sequential over-
head. Nevertheless, the combinatorial explosion, especially regarding space requirements, is
discouraging for larger dense systems. - - The right hand column shows measurements on
the SB-PRAM for a sparse random system; 12.5% of the entries ai j are nonzero. Sparsity
considerably delays the combinatorial explosion.

(2)

(3)

the same amount of inequalities of each of the three categories (1), (2) and
(3), namely nl /p , (n2 - n l) / p , and (s - n 2) / p , respectively. Computa t ional
load is perfectly balanced. This causes much communication for step 2 but
modest communication for step 6.
The s inequalities are equally distributed among the processors, but the lo-
cal ratios of inequality categories do not necessary correspond to the global
ratio of nl to n2 to s. Computat ional load is perfectly balanced. Less com-
munication is required in step 2 but slightly more in step 6.
The r variables are cyclically distributed among the processors. Computa-
tional load is not perfectly balanced for the last p - 1 iterations which are
probably computationally most expensive (requires thus combining with (1)
or (2)). Steps 2 and 6 do not require any communication at all, but Step 3
now requires a broadcast for each inequality.

References

1. F. Abolhassan, R. Drefenstedt, J. Keller, W.J. Paul, and D. Scheerer. On the phys-
ical design of PRAMs. Computer Journal, 36(8):756-762, Dec. 1993.

2. F. Abolhassan, J. Keller, and W.J. Paul. On the cost-effectiveness of PRAMs.
Proc. 3rd IEEE Symp. on Parallel and Distributed Processing, 2-9, 1991.

3. U. Banerjee. Loop Transformations for Restructuring Compilers: The Foundations.
Kluwer Academic Publishers, 1993.

4. J.B.J. Fourier. (reported in:) Analyse des travaux de l'Acad~mie Royale des Sci-
ences pendant l'ann~e 1824, Partie math~matique, 1827. Engl. transl. (partially) in:
D.A. Kohler, Translation of a report by Fourier on his work on linear inequalities,
Opsearch 10 (1973) 38-42.

5. C.W. Kefller and H. Seidl. Integrating Synchronous and Asynchronous Paradigms:
The Fork95 Parallel Programming Language. Proc. MPPM-95 Int. Conf. on Mas-
sively Parallel Programming Models, Berlin, Germany, 1995.

6. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

