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Abs t rac t .  Fourier-Motzkin elimination is a computationally expensive 
but powerful method to solve a system of linear inequalities for real and 
integer solution spaces. Because it yields an explicit representation of the 
solution set, in contrast to other methods such as Simplex, one may, in 
some cases, take its longer run time into account. 
We show in this paper that it is possible to considerably speed up 
Fourier-Motzkin elimination by massively parallel processing. We present 
a parallel implementation for a shared memory parallel computer, and 
sketch several variants for distributed memory parallelization. 

1 I n t r o d u c t i o n  

Given a system Ax _~ b, A 6 R n'm, b E R ~, of n linear inequalities in m 
variables, we ask for the existence of (1) a real solution x 6 R m of Ax ~_ b, and 
(2) an integer solution x E 7, m. Furthermore we are interested in an explicit 
representat ion of the set of solutions. 

Problem (1), a special case of linear programming,  is polynomial in time. 
Geometrically, it corresponds to determining whether the intersection polytope 
of n halfspaces of the m-dimensional  space is nonempty. It  is usually solved using 
the well-known Simplex algorithm (see e.g. [6] for a survey) which has expected 
run t ime O(nm(n + m)) but takes exponential t ime O(nm2 n) in the worst case. 
- -  Problem (2), the interior point problem for integer linear programming (cf. 
[6]) is NP-comple te .  Geometrically, it asks whether the intersection polytope of 
n halfspaces of the m-dimensional  space contains any integer point. 

Already in 1827, Fourier proposed an elimination method [4] tha t  solves both 
problems. As expected, this algorithm takes non-polynomial  run time. Indeed, 
the complexity can grow dramatically. Consequently, the method did not become 
widely known, and was re-invented several times, e.g. by Motzkin in 1936. For 
certain cases, however, it is a quite useful tool, because it is constructive: If a 
solution exists, it yields a representation of the convex intersection polytope. 
This representation may, of course, be used to determine the complete set of 
all feasible integer solutions x by an enumeration procedure, provided that  this 
set is finite. But  it can also be used to supply a symbolic solution. This feature 
is used e.g. when applying restructuring loop transformations to a numerical 
program with the goal of parallelizing it, see [3] for a detailed discussion. 

Clearly, its high worst-case computat ional  complexity made Fourier-Motzkin 
elimination impractical  as a general tool to solve the integer case. But even if 
medium-sized problems would already take too much time on a uniprocessor 

* The full version of this paper can be obtained from the author. 
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system, they could nevertheless be solved on a massively parallel computer .  We 
show tha t  Fourier-Motzkin elimination offers a great potential  for the exploita- 
tion of massive parallelism. We give an implementat ion for a sha red -memory  
multiprocessor and sketch variants for a d is t r ibuted-memory implementat ion.  

2 F o u r i e r - M o t z k i n  E l i m i n a t i o n  

Since the (sequential) algorithm is not widely known, we give a summary  of the 
excellent description given in [3]. 

The algorithm is subdivided into seven steps. 
S t e p  1: We are given A = (aij)i,j E R n'm and b E R n, representing the system 
A x  < b. We set up a "working system", consisting of a matr ix  T E R ~'m and a 
vector q E R ~. We initialize t i j  = aij and qi = bi for 1 < i < n, 1 _< j < m, and 
initialize the current problem sizes r, s by r = m and s = n. 
S t e p  2: We sort the s inequalities and determine indices n l ,n2  E N, 1 < nl  < 
n2 <: s such that ,  after renaming of the indices of the inequalities, ti~ > 0 for 
1 < i < n l ,  ti, r < 0 for nl  + 1 < i s < n2, and ti,,~ = 0 for n2 -}- 1 < i" < s. 
S t e p  3: We normalize the first n2 inequalities by tij = t i j / t i r  and qi = qi/ t ir  
for 1 < i < n2, 1 < j < r - 1. Now the system looks as follows: 

t i lX l  + ti2x2 Jr . . .  ~ - t i , r - lXr -1  ~- Xr ~_ qi, 1 < i < nl (1) 
t i ' l X l + t i ' 2 x 2 + . . . + t i , r - l X r - l + X r ~ _ q i , ,  n l + l  <i~ < n 2  (2) 

ti,,lXl + ti,,2x2 + . . .  +t i , r - lXr-1  ~_ qe' , n2 + 1 < i" < n2. (3) 

S t e p  4: From subsystem (1) we obtain xr < qi - ) -~-~ t i j x j  for 1 < i < nl ,  

thus B V ( x l , . . . , x ~ _ l )  m i n l < i < n , ( q i -  ~-1 = E j = I  t i j x j )  is an upper  bound for xr. If  

nl = 0, we set B V ( x l ,  . . . ,X~-l) = +co.  

In the same way, (2) yields x~ > qi, - ) -~-~ ti, j x j  for nl  + 1 < i '  < n2, thus 
L r--1 B~ (Xl, . . . ,X~-l)  = maxnl+l<i,<n2(qe - ~ j = l  t l , j x j )  is a lower bound for x~. 

L If  n2 = nl ,  we set Br (Xl,..., X~-l) = - c o .  Thus, the range BrL(xl, . . . , X r _ l  ) _~ 
x~ <_ B V ( x l ,  ..., x~ - l )  of feasible values for variable x~ is given in terms of feasible 
values for variables Xl,..., x r -1 .  We record these bounds for later use. 
S t e p  5: If  r -- 1, we are done, since the bounds B L, B v are constants (maybe 
• In this case we can return the answer to the original problem: 

If and only if B L < B1 v and qi,, >_ 0 for all i" ,  n~ + 1 _< i"  _< s, then the 
original system has a real solution x E R m. This feature installs correctness of the 
algorithm, provided tha t  exact ari thmetic has been used. A proof by induction 
is straightforward. 

Otherwise, if r > 1, we have to continue: 
S t e p  6: We eliminate x~. As minimizations and maximizations cannot  be di- 
rectly expressed in a linear system, we do this by setting each component  of the 
lower bound for x~ less than or equal to each component  of the upper  bound for 
xr. This produces nl(n2 - n l )  new inequalities in r -  1 variables: 

r--1 r--1 

q i , -~ -~ t i , j x j  < Xr < q i - ~ t i j x j  for all i , i ' ,  with 1 < i < nl ,  n l + l  < i '  < n2. 
j : l  j : l  

To these we add the s - n2 old inequalities from (3). This yields a new system 
with s ~ = s -  n2 + nl(n2 - n l )  inequalities in r -  1 variables. The new system has 
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a real solution iff system (1,2,3) has a real solution�9 By induction, we obtain tha t  
the new system has a real solution iff the original system has a real solution, 

If s I = 0, we are done; then the variables xl ,  ..., x r -1  can be chosen arbitrarily; 
the System has infinitely many  solutions�9 Otherwise, we continue: 
S t e p  7: In the new system, we renumber the coefficients a s  ti,j and q~ with 
1 < i < s I and 1 < j < r -  1. We set s = E, r = r -  1 and i terate from step 2. 

The algorithm determines whether A x  = b has a real solution x E R m, and, 
if yes, supplies, as a byproduct ,  an explicit representation of the solution set. 

Due to the construction of the algorithm, any real solution x E R 'n fulfills 
L Br  (Xl , - . - ,xr-1)  <_ x~ < B U ( x l , . . . , X r _ l )  for 1 < r < m. However, if an integer 

solution x E Z m is required, the answer "yes" by Fourier-Motzkin elimination 
does not suffice to guarantee an integer solution�9 This means tha t  we have to 
test  explicitly whether the following system is fulfilled: 

[B~(xl,...,xm-1)] <xm<_ [B~(xl,...,x~_~)J 
L U 

[ B m _ l ( X l , � 9 1 4 9  <_ Xm-I <_ l B ~ _ l ( X l , . . . , x m - 2 ) J  

(4) 
FBs < LB UJ 

If the (integer) solution set is finite, i.e. there are no infinite upper or lower 
bounds Br  v,  B L for some r, 1 _< r ___ m, the following loop nest produces the 
comple te  solution set: 

=, e {rB?I, ...,/B~J} 
forall x2 E {FB#(xl)I, . . . ,  LBr(=,)I} 

forall x,-,, e { F B ~ - , ( = I , . . . , = , , - , ) ] , . . . ,  u lB.._,  ( x , ,  ..., x . - , ) J  } 
print x 

This makes, of course, only sense if the solution set does not become too large; 
thus a-priori knowledge on the maximum size of the solution set is required here�9 
Clearly, if only the existence of an integer solution x is in question, it suffices to 
abor t  all these fo ra l l  loops after the first feasible x has been found. 

Moreover, if one is interested in a symbolic representation of the solution set, 
e.g. when determining the new loop limits for a restructured loop nest (see [3] 
for an example),  the bounds for x due to (4) directly supply this representation. 

The  run t ime of Fourier Motzkin elimination may be disastrous in the worst 
case because the number  of inequalities may square in each iteration (if always 
n l  = n2 = s /2 ) .  Nevertheless, on the average it should be considerably lower: 
The probabil i ty tha t  the first argument of T is maximal  in each recursion step is 
ra ther  small�9 Moreover, the spaxsity structure of A has a considerable influence 
on the run time, because n2 << s if the matr ix  contains many  zero elements. At 
least for the inequalities (3) tha t  do not part icipate in a specific elimination step, 
the sparsity pat tern  is preserved by the algorithm. For the other inequalities, the 
number  of non-zero coefficients may, in the worst case, double in each iteration�9 

3 Para l l e l i za t ion  for Shared M e m o r y  

We found the following shared data  structure useful for speeding up the sorting 
steps (2 and 7): Pointers to the inequalities of each iteration are stored in a 



69 

dynamically allocated array t with s entries. Thus, interchanging of inequalities 
can be done in constant time by just interchanging the pointers to them. 

-_ qol,o,l,oF, i l,o,t 

0 1 2 3 r 

The coefficients tij of each inequality i in r vari- 
ables are stored in a dynamically allocated array 
t [i] with r + 1 entries. For simplicity and space 
economy, we store the right hand side values qi 
as the zeroth entry t [i] [0] of each inequality 
array. The pointers t to the overall system of all 
iterations r are, in turn, stored in an array that  
later allows accessing the lower and upper bound 
expressions for each xr.  

If the original matrix A is sparse, it suffices to store the nonzero elements tij 
for each inequality, together with the column index j .  We implemented only the 
dense variant because (a) sparsity becomes worse in the course of the algorithm, 
and (b) exploiting sparsity only pays off if m exceeds a certain value, which, on 
the other hand, may lead to very long run times. 

We assume a multiprocessor with p processors. Each processor has constant 
time access to a large shared memory. Concurrent write operations are resolved 
by using an atomic fetch~add construct that  takes constant time, independent 
of the number of processors participating in this operation. A research prototype 
of a machine with this ideal behaviour, the SB-PRAM [1, 2], is currently being 
built by W.J. Paul's group at the University of Saarbriicken. As programming 
language, we use Fork95, an extension of ANSI C for general-purpose PRAM 
programming. See [5] and h t t p :  //www-wj p. cs .  u n i - s b ,  d e / f o r k 9 5 / f o r  further 
details. 

Step 2 of the algorithm can be done in parallel. The mpadd instruction, an 
atomic fetch~add primitive, performs in 1 CPU cycle on the SB-PRAM, regard- 
less of the number of participating processors. 

This feature is very helpful here; the over- 
all sorting step (see on the right) producing 
a sorted system t from an unsorted system 
t_old ,  is performed by p < s processors in 
time O(s/p). gforall(i,lb,ub,p) is a macro 
that  denotes a parallel loop whose (private) 
loop index variable i globally ranges from lb  
to ub-1,  with iterations being cyclically dis- 
t r ibuted over the participating p processors. If 
p exceeds the number u b - l b  of iterations, the 
remaining processors remain idle and could be 
used for further (interior) levels of parallelism. 
p r  is a type qualifier tha t  declares a variable 
as private to each processor. 

Step 3 contains n2(r + 1) divisions; these can 
completely execute in parallel provided that  a 
data  dependency cycle is resolved by a tempo- 
rary shared array f [] (see code on the right). 
Thus, step 3 runs in time O(n2(r + 1)/p) on 
p < n2(r + 1) processors. 

print mypos, i, j, ii; 
n2=O; nn = s-l; 
gforall (i, O, s, p ) { 

if (t_old[i] [r] != O) 
mypos = mpadd(&n2, I); 

else mypos = mpadd(&nn,-1); 
t[mypos] = t_old[i] ; } 

gforall (i, O, s, p ) 
t_old[i] = t[i]; 

nl = O; /* nn is now n2-1 */ 
gforall (i, O, n2, p ) { 

if (t_old[i] It] > O) 
mypos = mpadd(~nl, 1) ; 

else mypos = mpadd(~nn,-1); 
t[mypos] = t_old[i] ; ) 

free( t_old ); 

{determine pi,pj with pi*pj=p, 
pi<=min(nl,n2-nl) maximal } 

gforall (i, O, nl, pi) 
f [i] = i.O / t [i] [r] ; 

gforall (i, O, nl, pi) 
gforall (j, O, r+l, pj) 

t El] [j] *= f [i] ; 
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gforall (i, nl, n2, pi) 
Step 4 records the inequalities from (1) and (2) f [i] = - (1.0 / t [i] [r] ) ; 
tha t  install upper resp. lower bounds on xr, for g fo ra l l  ( i ,  n l ,  n2, pi) 
later use. Thus, storage for these inequalities g fo ra l l  ( j ,  0, r+l ,  pj) 
cannot be freed, t [i] [j] *= f [i] ; 
Step 5 handles the special case r = 1. Explicit computing of B [  and B1L is done in 
time O((n2 logp)/p) on p processors. If we are interested in an integer solution, 
we can, compared to conventional parallel minimization / maximization, save 
the logp factor using fast integer maximization/minimization which is supplied 
by the mpmax operator, a multiprefix maximization instruction that  performs in 
constant time on the SB-PRAM. 

Step 6 constructs a new system of inequal- 
ities (see the kernel on the right). If p _< 
nl (n2 - n l ) r ,  then this kernel executes in time 
O(nl ( n 2 - n l ) r / p ) .  Note that  we may here also 
compute the position of each new inequality 
as mypos = i *n2+ i i ,  without using the mpadd 
instruction, a l l o c  () performs memory alloca- 
tion of permanent shared heap blocks. Using 
mpadd, it runs in constant time, regardless of 
the number of participating processors. 

Appending the old s -  n2 inequalities from 
(3), we only need to copy the pointers to them 
(see code on the right), resulting in run time 
O((s - n2)/p) on p < s - n2 processors. 

The renumbering as indicated in step 7 is 
6; thus step 7 takes only constant time. 

{ comp. pi,pi• with pi max. 
and pi*pii*pj=p } 

gforall (i, O, nl, p• { 
gforall (• nl, n2, pii) { 

pr ineq myineq; 
farm { 
mypos = mpadd(&s new,l); 
myineq = (ineq) alloc( 

r*sizeof (double)) ; 
gforall (j, O, r, pj ) 
myineq[j] = t[i] [j] 

+ t[ii] [j] ;} 
t_new[mypos]=myineq; } } 

gforall (i, n2, s, p) 
t_new [mpadd (&s_new, 1) ] =t [i] ; 

implicitly performed during step 

R e s u l t s  Table 1 shows some measurements for our implementation. Since the 
SB-PRAM hardware is not yet operational, we use the SB-PRAM simulator 
running on a SUN workstation. The simulator produces exact timings; one SB- 
PRAM clock cycle (cc) will take 4 microseconds on the SB-PRAM prototype 
with 4096 processors currently being built at Saarbriicken University. 

We have ported the Fork95 program to a Cray EL98 with 8 processors, using 
Cray Microtasking. The vector units of this machine are exploited best if interior 
loops (e.g. the j loops) are vectorized, which is generally possible here. Longer 
vectors are possible if chaining features are exploited; this enables processing all 
inequalities owned by a processor as one large vector update operation. However, 
because there is no equivalent to mpadd() on the Cray, step 2 is sequentialized; 
thus the speedup observed is rather modest (1.55 for 4, and 2.6 for 8 processors, 
applied to a 27 • 4 random problem). 

4 Parallel ization for Distributed Memory 

We sketch 2 three different scenarios for distributing data  across p processors of 
a distributed memory system. Each possibility has advantages and drawbacks. 
(1) The s inequalities are equally distributed among the processors. Step 2 of 

each iteration installs the invariant that  each processor holds approximately 

2 For space limitations we cannot go into more detail here. See the full version. 
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D~NS~ n = 1 2 ,  m = 4  
p time [cc speedup 
1 15489470 1.00 
2 7794002 1.99 
4 3945966 3.93 
8 1999718 7.75 

16 1049920 14.75 
32 55316~ 28.00 
64 327088 47.36 

128 214408 72.24 

DENSE n----15, 
p time [cc] 
1 194009292 
2 97116338 
4 48602188 
8 24343832 

16 12648663 
32 6254904 
64 3166208 

128 1695908 
256 960648 
512 592964 

1024 341092 

m----4 
speedup 

1.00 
2.00 
3.99 
7.97 

15.34 
31.02 
61.27 

114.40 
201.96 
327.19 
568.79 

. . . . .  n = 2 0 0 ,  m = 1 0  
p time [cc] speedup 
1 52230692 1.00 
2 26178784 2.00 
4 13160404 3.97 
8 6649968 7.85 

16 3872185 13.49 
32 1769536 29.52 
64 957852 54.53 

128 554952 94.12 
256 363690 143.61 

Tab le  1. Measurements on the SB-PRAM for feasible dense random systems. All entries 
are nonzero and chosen such that n l  ~ n2 - n l  and n2 -- s in each iteration. Speedup is 
almost linear. Slight speedup degradations for large numbers of processors arise from many 
processors being idle in the first, least expensive iterations, and from some sequential over- 
head. Nevertheless, the combinatorial explosion, especially regarding space requirements, is 
discouraging for larger dense systems. - -  The right hand column shows measurements on 
the SB-PRAM for a sparse random system; 12.5% of the entries ai j  are nonzero. Sparsity 
considerably delays the combinatorial explosion. 

(2) 

(3) 

the same amount  of inequalities of each of the three categories (1), (2) and 
(3), namely nl /p ,  (n2 - n l ) / p ,  and (s - n 2 ) / p ,  respectively. Computa t ional  
load is perfectly balanced. This causes much communication for step 2 but  
modest  communication for step 6. 
The s inequalities are equally distributed among the processors, but  the lo- 
cal ratios of inequality categories do not necessary correspond to the global 
ratio of nl  to n2 to s. Computat ional  load is perfectly balanced. Less com- 
munication is required in step 2 but slightly more in step 6. 
The r variables are cyclically distributed among the processors. Computa-  
tional load is not perfectly balanced for the last p -  1 iterations which are 
probably computationally most expensive (requires thus combining with (1) 
or (2)). Steps 2 and 6 do not require any communication at  all, but  Step 3 
now requires a broadcast  for each inequality. 
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