
C o m p a r i n g T a s k a n d D a t a P a r a l l e l E x e c u t i o n
S c h e m e s f o r t h e D I I R K M e t h o d

THOMAS I~AUBER GUDULA RUNGER *

Computer Science Dep., Universits des Saarlandes, 66041 Saarbriicken, Germany

Abs t r ac t . We investigate the parallel implementation of the diagonal-
implicitly iterated Runge-Kutta method, an iteration method which
is appropriate for the solution of stiff systems of ordinary differential
equations. We discuss different strategies for the implementation of the
method on distributed memory multiprocessors, which mainly differ in
the data distribution and the order of independent computations. In
particular, we consider a consecut ive i m p l emen ta t i on that executes the
steps of each corrector iteration in sequential order and distributes the
resulting equation systems among all available processors, and a group
i m p l e m e n t a t i o n that executes the steps in parallel by independent groups
of processors.

1 I n t r o d u c t i o n

We consider numerical methods for the solution of initial value problems (IVPs)
associated with systems of first order ordinary differential equations (ODEs)

dy(t) _ f(t,y(t)), y (t o) = y0, t0 < t < to~ (1)
dt - -

and the numerical approximation of their solution y : ~ ~ ~ n on distributed
memory multiprocessors (DMMs). The right hand side of System (1) is a non-
linear function f : /R • R " --~ ~ .

A class of solution methods called i l e ra t ed R u n g e - K u l t a methods have been
proposed for a para l l e l solution of IVPs [6, 3, 8]. I terated Runge-Kut ta meth-
ods are predictor-corrector (PC) methods based on implicit Runge-Kut ta (RK)
correctors, i.e., the correetor steps represent an iteration of the (implicit) basic
RK-me thod . These methods have a large degree of inherent parallelism and,
therefore, they are very attractive for a parallel implementation. The stability
properties of i terated RK methods depend on the way the corrector is iterated.
A functional iteration (fixed point iteration) of an implicit RK corrector results
in the IRK method. In [7, 8], IRK methods were proposed for a parallel imple-
mentat ion on shared memory machines with a small number s of processors (s
is the number of stages of the corrector RK-method) . In [4], IRK methods have
been parallelized for DMMs. But because of their relatively limited region of
stability those methods are only suitable for nonstiff ODEs. In this paper, we
consider the diagonal-implicit ly i terated Runge-Kut ta (DIIRK) method which
is appropriate for the integration of stiff systems [2, 8]. We investigate paral-
lel implementat ions of the DI IRK method on DMMs with an arbitrary number

* both authors are supported by DFG

53

of processors. We present strategies for the parallel implementation of the DI-
IRK method that differ in the data distributions and the order of computations.
The algorithms take into account special properties of the DIIRK method, e.g.,
the stepsize control with embedded solutions and a reduction of the number of
function evaluations by precomputations in the preceding corrector iteration.
In particular, we consider a consecutive implementation and a group implemen-
tation. The consecutive implementation breaks down each corrector step into
independent pieces and computes them in sequential order by distributing the
resulting equation systems among all available processors. The group implemen-
tation executes the pieces in parallel by independent groups of processors.

We have implemented the different parallel variants of the DIIRK method
on an Intel iPSC/860. The experiments take into account different numbers of
processors, different dimensions of the systems and different computational effort
for the right hand side f of the ODE system. The experiments show that the
performance of the implementations depends strongly on the function f: For
sparse functions, the group implementation is much better and reaches medium
range speedup values. For dense functions, the consecutive implementation is
superior and reaches good speedup values. The remaining part of this article is
organized as follows: Section 2 describes the diagonal-implicitly iterated Runge-
Kut ta method and some characteristic properties of the DIIRK method. Section
3 develops different parallel implementations. Section 4 presents the numerical
experiments on an Intel iPSC/860.

2 D i a g o n a l - I m p l i c i t l y I t e r a t e d R u n g e - K u t t a M e t h o d

One time step of the DIIRK method to compute the next approximation vector
Y~+I consists of a fixed number m of iteration steps, each computing s stage
vectors v~ j) for l = 1 , . . . , s and j = 1 , . . . , m. The initial iteration vector is
provided by the predictor method. Choosing a simple one-step predictor method
yields the following standard algorithm $ t d for the DIIRK method:

I ~) v = ya l = 1 , . . . , s (2)
8

v l /) = y ~ + h E (a t i - d t i) f (v } J - 1)) + h d t l f (v l i)) l = l , . . s j = i , . . r n (3)
i=1

Ya+l = Ya + h E b t f (v } m)) (4)
l-=1

One time step s --* ~+1 according to system (2), (3), (4) is called a macrostep.
The execution of one iteration step j -+ j + 1 of (3) is called a corrector step. The
number m of corrector steps determines the convergence order of the method. For
each corrector step j , an implicit nonlinear system of equations has to be solved
in order to get the vectors v~J),. . .v~ j). This is done by the Newton method
as described in [5]. Each step of the Newton method includes the computation
of a Jacobi matrix by forward difference approximations and the solution of a
linear equation system by the Gaussian elimination. The number of function
evaluations in the corrector step j + 1 for the computation of vf j+l), 1 = 1 , . . . s ,

54

can be reduced by exploiting the corrector step j. By a reformulation of (4) of
corrector step j we get the following reduced algorithm Red:

fvall~ = f(y~) l = 1 , . . . , s (5)
8

w } J) = h E (a l i - d l i) f v a l } J - 1) l = 1 , . . . , s ; j = 1 , . . . , m (6)
i=1

v}J)= y~ +w} j) + hdllf(v} j)) l = 1 , . . . , s ; j = 1 , . . . , m (7)

fvallJ) = (v l J) - y ~ - w l J)) / (h d z l) , l = 1 , . . . , s ; j = 1 , . . . , m (8)

8

Y~+I = Y~ + h E b, fval} m) (9)
1=1

3 P a r a l l e l I m p l e m e n t a t i o n o f t h e D I I R K M e t h o d

In each corrector step we have to solve s independent, nonlinear subsystems each
of size n instead of one system of size s �9 n. The existence of these independent
subsystems do not only decrease the computational effort but can also be ex-
ploited for a parallel implementation. We compute v} j), 1 = 1 , . . . , s, by solving
the subsystems by a separate Newton iteration. Let I I j j for l = 1 , . . . , s and one
eorrector step j denote the subsystems of one corrector step j . IIj,~ is the non-
linear system Fj,1(z) = 0 with Fj,l computed from Equation (3). The following
figure illustrates the order in which the systems Hj j have to be solved:

Y/~

~1,1 II . . . II /h,~

H,~,I II -.. li ~m,~

Y~+I

each systems gets y~
independent computations
exchange of v} 1)

exchange of v} m- 1)
independent computations
the computation Y~+I needs all v} m)

The symbol [[indicates that Hz and Hr of Ht [[Hr are independent and may
be solved in parallel. The horizontal dashed lines indicate a data exchange. In
the following, we present two possible computation schemes for the solution of
the subsystems IIj,l, l = 1, . . . , s, of a single corrector step: (a) The consecutive
computation scheme C o n solves the systems IIj,l, 1 = 1 , . . . , s, in consecutive
order by all available processors�9 (b) The group computation scheme G r p solves
the systems Hjj , l = 1 , . . . , s, in parallel by independent, disjoint groups of pro-
cessors. The combination of the two parallel algorithms S td and R e d with the
computation schemes C o n and G r p results in four implementations: C o n S t d ,
C o n R e d , G r p S t d , and G r p R e d . In the following subsections we describe these
parallel implementations in more detail.

55

/* predictor */
forall q E P do

for l - - 1 , . . . , s d o
initialize vl ~ according to Equation (2);

/* corrector */
for j = 1 , . . . , m d o

f o r l = 1,.. . ,s do
solve Fj,l ---- 0 in parallel by all processors;

/* update */
'forall q C P do {

compute [n/p] contiguous components of y~+l ---- Y~ + h ~;=1 bt f(vlm));
broadcast [n/p] components of y~+l;}

Fig. 1. Parallel macrostep of the DIIRK version ConStd .

3.1 C o n s e c u t i v e p a r a l l e l a l g o r i t h m - C o n

For the Newton iteration, a row cyclic distribution of the Jacobian is appropriate.
The iteration vector for the Newton method is held replicated on all processors.
This distribution results in a good load balance for the Gaussian elimination and
avoids unnecessary communication overhead. The Gaussian elimination uses a
single-node accumulation operation with a m a x i m u m reduction to determine the
pivot row. The pivot row is sent to the other processors by a single-broadcast
operation. The backward substitution uses a single-broadcast operation to make
the computed components of the result vector available to the other processors.
This means that the Gaussian elimination delivers the result vector y(k) such
that it is replicated to all processors. The update step of the Newton method is
executed by each processor for all components to make the new iteration vector
available on all processors [5].

ConStd: Figure 1 shows a pseudocode program for one macrostep of the DI-
IRK method executed on a DMM with p processors P = { q l , . . . , qp}. In the

predictor step, each processor initializes the entire vector vl ~ according to (2).
To do this, the approximation vector y~ must be replicated on all processors.
In the corrector step, the nested loops of the corrector step are performed in
consecutive order. The execution of each Newton step is distributed among all
processors. The replication of the result vector of the Newton method results

in a replication of v} j) without additional communication. In the update step,
the subsequent iteration vector Y~+I is computed in a distributed way, i.e., each
processor computes In~P] elements of the solution vector. To guarantee the
replicated distribution for the next macrostep, the distributed pieces of Yn+l
are then collected by a mul t i -broadcast operation. To collect Y~+I by a single
mult i -broadcas t operation, each processor computes In~P] contiguous elements
of Y~+I, i.e., a block distribution is used.

ConRed: In the implementat ion using the reduced computat ional scheme R e d ,

the Newton method still computes the vectors vl j). But the corrector step j

needs the values fval l j - l) as input instead of v~ j-l) . The iteration steps of the

Newton method for the computat ion of vl j) now use the vector fvall j - l) for the

56

foral[q E P do
for 1 = 1 , . . . , s do {

initialize vl ~ according to Equation (2);
initialize [n/p] components of fvall ~ cyclically according to (5);}

for j = 1 , . . . , m do
for l = l , . . . , s do

forall q E P do {
compute [n/p] components of wlJ)= h ~ = l (a u - du)fval! j - l) cyclically;
solve Fj,, = 0 in parallel by all processors;
compute In~p] components of fvall i) cyclically according to (8);}

forall q E P do {
compute [u/p] contiguous components of Y~+I = Y~ + h ~-'~=1 bl f(vlm));
broadcast [n/p] components of y~+a; }

Fig. 2. Parallel macrostep of the DIIRK version ConRed.

computation of the Jacobian. The cyclic distribution of the vectors fvall j) cor-
responds to the cyclic computation of the Jacobian. Figure 2 shows the resulting

pseudocode program. For the predictor step, the vectors fvall j), l = 1 , . . . , s, are

initialized cyclically according to (5). For the corrector step, the vectors fval~ j),
l = 1 , . . . , s , are computed cyclically according to (8). No additional data ex-

change is necessary. The vectors w} j) can be implemented as a single array that
is overwritten after its use in (8). For the update step, the next iteration vector

Y~+t is computed cyclically because the function vectors fvall j) are available
cyclically. To collect Y~+I after its computation by ~ single multi-broadcast
operation, each processor has to store its locally computed components in a con-
tiguous buffer before the data exchange, see Figure 3. After the multi-broadcast
the elements have to be moved to their correct positions.

y~+a Y~+I buf buf buf buf y~+a y~+l D ut
reorder broadcast reorder

P0 P~ p0 P~ P0 Pl p0 pl

F ig . 3. Collecting the distributed pieces of y~+l to avoid multiple multi-broadcast op-
erations. The first reorder step transforms the cyclic distribution of y~+l into a block
distribution of a buffer array bu~. The multi-broadcast operation makes all components
available on all processors. The second reorder step rearranges the correct order of the
corn ponents.

57

forall l E {1 s} do
forall q E Gz do {

initialize vl ~ according to Equation (2);
first processor in group: broadcast vl ~ to other groups; }

for j = 1 , . . . , m do
forall 1 E {1 , s} do

forall q E Gl do
solve Fj,l ---- 0 in parallel by all gt processors in group Gz;

forall q E P do {
compute In~p] contiguous components of y~+l -- Y~ + h ~ = 1 b~ f(vlm));
broadcast In~P] components of y~+l; }

Fig. 4. Parallel macrostep of the DIIRK version GrpStd .

3.2 G r o u p P a r a l l e l C o m p u t a t i o n - G r p

For the group implementation, the subsystems //Ll, 1 = 1 , . . . , s, are solved in
parallel by disjoint groups of processors. We assume that the number of available
processors is greater than the number of stages, i.e., p > s. The set of processors is
divided into s groups G1, �9 �9 Gs. Group Gl contains about the same number gl =
[p/s] or gl = [p/s] of processors. In each corrector iteration step j = 1 , . . . , m

group Gz is responsible for the computation of one subvector v~ j), l E { 1 , . . . , s}.
Again, the Gaussian elimination determines the data distribution of the entire

macrostep. To get a good load balance, we use a group cyclic distribution, i.e.,
the rows of the Jacobian DFj,t, j = 1 , . . . , m, are distributed cyclically among
the processors of group Gt of size gz. Processor q E Gl with group index iq, iq =
0 , . . . , gl - 1, is responsible for the computation of rows rows(q) = {i]i - i a mod
gt, 0 < i < gl}. Group Gt executes the Newton iteration for the computat ion

of v~ j) independently from all other groups. The Gaussian elimination now uses
communication operations that operate on groups of processors.

GrpSld The group implementation leads to the pseudoc0de program in Figure

4. Again, in the predictor step, each processor initializes the entire vector vl ~
according to (2). To dO this, the approximation vector y~ must be replicated

on all processors. After corrector step j , the computed vector v} j), l = 1 , . . . , s,
must be distributed to the processors of all groups because they are used in the
corrector step j + 1 for the evaluation of Fj+l,z. This is realized by a broadcast
operation executed by the first processor of each group. The group partit ioning
is used only for the computation of the corrector steps. To execute the update
step in a distributed way, about the same number of components In~P] or In~P]
of Y~+I is assigned to each processor. These have to be contiguous elements to
collect the different parts by a single multi-broadcast operation.

GrpRed When using the reduced computation system we again have to make

sure that the particular components of fvall j) are available. Figure 5 shows the
resulting pseudocode program. In the predictor step, group Gl initializes vector

fvall j) cyclically according to (5). In the corrector step, group Gz computes

58

forall 1 E {1, . . . , s} do
forall q E Gr do {

initialize vl ~ according to (2);
first processor in group: broadcast vl ~ to other groups;
initialize [n/g~] components of fvall ~ cyclically according to (5);

for j = 1 , . . . , m do {
forall 1 E {1, . . . , s} do

forall q E G~ do {
compute [n/g~] components of wl j) = h ~ = a (al~ - d,~)fval~ J-a) cyclically;
solve Fj,l = 0 in parallel by all gt processors in group Gl;
compute [n/g~] components of fvall 3) cyclically according to (8);}

forall q E P do {
compute In~p] components of y~+~ = y~ + h ~ t = l bl fvall m) cyclically;
broadcast [n/p] components of y~+l with buffer technique; }

Fig. 5. Parallel macrostep of the DIIRK version GrpRed.

vector fval} j) cyclically according to (8). After the computation of fval} j), this
vector must be made available to the processors of the other groups because
they need it for the next corrector step. In particular, processor q needs the
values fvallJ)[i] with i E rows(q) for l = 1 , . . . , s, Because the different groups
may contain different number of processors, it is best to make the entire vector
fval~ j) available to the processors of the other groups. This is realized by a two

step communication. First, fvall j) is made available to all processors of group

Gl and then fvall j) is distributed to the the processors of the other groups. The
first step can be executed by a single group-mult i-broadcast operation, if we
apply the buffer technique shown in Figure 3. The second step is realized by a
broadcast operation that is executed by the first processor of each group.

4 N u m e r i c a l E x p e r i m e n t s

For the numerical experiments with parallel DIIRK methods on an Intel iPSC/860
we use a 3-stage Radau method [1] of order p = 5 as corrector and execute 4
corrector iterations. All four implementations are applied to two classes of ODEs
that differ in the amount of computational work of the right hand side f of the
ODE: (a) f has fixed evaluation costs that are independent of the system size
(sparse function). (b) The evaluation costs of f depend linearly on the system
size (dense function). Both cases may occur when solving systems of differential
equations with implicit methods: The discretization of the spatial derivatives
of time-dependent PDEs results in a function f with a constant computational
effort [1]. A function f with system size depending evaluation costs arises when
solving time-dependent PDEs with Fourier-Galerkin methods.

Figures 6 and 7 show the measured runtimes in seconds and speedup values
for one macrostep of the DIIRK method for p = 16 processors. The global
execution times of one macrostep are denoted by tconStd tConRed, 7~GrpStd and
tarpRed. They include the runtimes for the predictor, the corrector, the update
step and the stepsize control. The Newton iteration stops if the error is smaller

59

than 10 -4. The precomputed function values in the implementations ConRed
and GrpRed are used for the computation of the Jacobian, for the update step,
and for the stepsize control. The given speedup values are obtained by comparing
the parallel global execution times with the global execution time of a sequential
program that is running on a single processor. The experiments show that it
is not obvious which parallel implementation should be preferred. But several
observations concerning the runtime and speedup values can be made.

It ~iConStd tConRed $GrpStd $GrplRed
18 3.26 2.04 0.55 0.53
72 18.09 16.75 4.02 3.39

162 57.28 54.29 14.971 12.54
242 118.18 111.80 34.94 29.54
338 212.80 203.20 71.75 62.81
512 491.95 464.70 167.56 141.71

sparse function: speedup values for 16 processors
16

ConStd -e--
14 ConRed ~-

GrpStd -m--
12 GrpRed--M

1O

8 . . 8 ~

6 .'" J " "
. - ' " x

4 . ~ y . / t

2 f " . _ . _ ~

0 ~ ~
18 72 162 242 338 512

system size

Fig. 6. Runtirnes in seconds and speedup values for sparse right hand sides f.

n tConStd ~ConRed $GrpStd $GrpRed
50 5.34 4.16 2.35 1.34

100 25.65~ 15.41 16.51 7.55
150 65.17 33.33 52.02 17.11
200 133.86 60.57 119.91 36.70
250 246.92 102.73 231.84 68.01
300 403.12 155.93 397.07 113.97
350 617.32 226.92 624.57 177.01
400 897.98 317.57 933.85 260.46
450 1290.81 438.12 1327.06 366.60
500 1737.39 575.21 1816.62 498.46

dense function: speedup values for 16 processors

1 s - - - - - - s ~

C o n R e d - ~ - "

.~" GrpStd - ~ - -
~*~" GrpRed ..M

./
)/

I I I I I I 1 I

50 I00 150 200 250 300 350 400 450 500
system size

Fig. 7. Runtimes in seconds and speedup values for dense right hand sides f.

Standard/reduced compulalion scheme: Although the reduced scheme causes
more communication in a parallel implementation, the global execution time
is considerably reduced if the precomputed function values are used. Depend-
ing on the system size and the number of processors, the precomputation of the
function values reduces the global execution time by 10-20% for sparse functions
and by 40-75% for dense functions. The effect is especially large for dense func-
tions, because the global execution time is dominated by the computation time
of the Jacobian. Using the precomputed function values for the stepsize control
and the update step of the DIIRK method has only a very limited effect on the
global execution time because these operations are only executed once for each

60

macrostep. The speedup values for the variants using scheme R e d are always
smaller than for the associated standard version because the contribution of the
computational work to the global execution time is reduced.
Consecutive/group parallel algorithm: The runtimes of the group implementation
G r p are getting better with increasing numbers of processor compared with the
consecutive implementation Con. The effect varies for dense/sparse function
with the system size, i.e., for sparse functions and large system sizes, G r p is
much better than C o n and for dense functions, G r p is only better than Co n if
the reduced variant is considered. The group implementation G r p has a smaller
communication overhead than the consecutive implementation C o n because the
group broadcast operations only involve the processors of the same group and,
therefore, use less communication time.
Efficiency: The efficiency of the implementations mainly depends on the appli-
cation but also on the number of processors. The application of dense functions
results in good speedup values while the speedup values for sparse functions are
not satisfactory. A loss of efficiency be can be observed in both cases. For the
consecutive implementation C o n the loss of efficiency is mainly caused by com-
munication overhead, not by a load imbalance. The load imbalance is small, if
the system size is large compared to the number of processors. In this case, the
ODE system can be distributed quite evenly among the processors. The com-
munication overhead is increasing with the number of processors because the
costs of the broadcast operations is increasing. This can especially be observed
for sparse functions. For the group implementation G r p the loss of efficiency
is caused by communication overhead and load imbalance. The impact of the
load imbalance is large for small numbers of processors if the groups contain
different numbers of processors. This is the case for p = 4 processors and s = 3.
Here, groups G1 and G2 contain one processor each and group G3 contains two
processors.
Sparse functions: The runtime and speedup values of the four implementa-
tions vary with increasing numbers of processors. For p = 4 we have runtimes
tConJ=le d ~ tConStd ~ tGrpRed < tGrpStd which change to tGrpRed < tGrpStd ~
tVonRed < tConStd for p = 16. Only for p = 4 processors, the consecutive imple-
mentat ion is slightly better than the group implementation because of the large
load imbalance of the latter one. For larger numbers of processors, the group im-
plementation reaches global execution times that are much better than for the
consecutive implementation. The consecutive implementation C o n only reaches
limited speedup values that are not increasing with the number of processors,
see Figure 6. This is caused by a large communication overhead increasing with
the number of processors. The communication overhead is caused by the Gaus-
sian elimination dominating the computation of the J acobian. For larger number
of processors, the group implementation G r p reaches speedup values that are
much better than for the consecutive implementation. The reason for this lies in
the smaller communication overhead for the Gaussian elimination and in the fact
that the load imbalance is getting smaller for increasing number of processors.
Dense functions: For larger system sizes, the parallel implementations using sys-
tem R e d have runtimes which are considerably smaller than the runtimes of
the standard scheme Std , i.e., tRed << tStr. The consecutive implementation
C o n has always smaller global execution times than the group implementa-
tion G r p , i.e., tConStd < tGrpStd. In this case, the load imbalance of the group
implementation has a larger impact than the communication overhead of the
consecutive implementation. The communication overhead is decreasing with

61

increasing system sizes because the computat ion of the Jacobian is dominat-
ing. Only for small systems and larger number of processors, the additional
communicat ion overhead of the consecutive implementat ion is larger than the
load imbalance of the group implementation. But the global execution t imes for
the reduced versions change with increasing numbers of processor. For p = 4
we have runtimes tConRed < tGrpRed < < ~ConStd < ?~GrpStd which change to
tGrpRed < tVonRed < < tConStd < ~GrpStd for p : 16. The speedup values for the
consecutive implementat ions C o n are bet ter than for the group implementat ions
G r p but the difference decreases with increasing numbers of processors.

5 C o n c l u s i o n s

We have presented four parallel implementat ions of the DI IRK method which
result f rom a combination of different computat ion schemes with different al-
gorithms. The result of the experiments confirm that the performance of these
implementat ions strongly depend on the application and the number of proces-
sors available. For dense functions and large systems, a consecutive algori thm
results in smaller execution times than a group algorithm. For small systems,
the group implementat ion is slightly better than the consecutive implementat ion.
Both implementat ion reach good speedup values. For sparse functions, the group
implementat ion has smaller execution times than for the consecutive implemen-
tat ion because the communication overhead is smaller. The speedup values of the
consecutive implementat ion are only satisfactory for p = 4 processors whereas
the group implementat ion reaches medium range speedup values also for larger
numbers of processors.

R e f e r e n c e s

1. E. Halrer, S.P. NCrsett, and G. Wanner. Solving Ordinary Differential Equations I:
NonstiffProblems. Springer-Verlag, Berlin, 1993.

2. E. Halrer and G. Wanner. Solving Ordinary Differential Equations II. Springer,
1991.

3. A. Iserles and S.P. NCrsett. On the Theory of Parallel Runge-Kutta Methods. IMA
Journal of Numerical Analysis, 10:463-488, 1990.

4. T. Rauber and G. R/inger. Parallel Iterated Runge-Kutta Methods and Applica-
tions. International Journal of Supercomputer Applications, 10(1):62-90, 1996.

5. T. Rauber and G. Riinger. Performance Analysis for a Parallel Newton Method. to
appear in: International Journal of High Speed Computing, 1996.

6. S. P. NCrsett and H. H. Simonsen. Aspects of Parallel Runge-Kutta methods. In
Numerical Methods]or Ordinary Differential Equations, volume 1386 of Lecture
Notes in Mathematics, pages 103-117, 1989.

7. P.J. van der Houwen and B.P. Sommeijer. Iterated Runge-Kutta Methods on Paral-
lel Computers. SIAM Journal on Scientific and Statistical Computing, 12(5):1000-
1028, 1991.

8. P.J. van der Houwen, B.P. Sommeijer, and W. Couzy. Embedded Diagonally Im-
plicit Runge-Kutta Algorithms on Parallel Computers. Mathematics of Computa-
tion, 58(197):135-159, January 1992.

