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Abs t r ac t .  We investigate the parallel implementation of the diagonal- 
implicitly iterated Runge-Kutta method, an iteration method which 
is appropriate for the solution of stiff systems of ordinary differential 
equations. We discuss different strategies for the implementation of the 
method on distributed memory multiprocessors, which mainly differ in 
the data distribution and the order of independent computations. In 
particular, we consider a consecut ive  i m p l emen ta t i on  that executes the 
steps of each corrector iteration in sequential order and distributes the 
resulting equation systems among all available processors, and a group 
i m p l e m e n t a t i o n  that executes the steps in parallel by independent groups 
of processors. 

1 I n t r o d u c t i o n  

We consider numerical methods for the solution of initial value problems (IVPs) 
associated with systems of first order ordinary differential equations (ODEs) 

dy(t) _ f(t,y(t)), y ( t o )  = y0, t0 < t < to~ (1) 
dt  - - 

and the numerical approximation of their solution y : ~ ~ ~ n  on distributed 
memory  multiprocessors (DMMs). The right hand side of System (1) is a non- 
linear function f : /R • R "  --~ ~ .  

A class of solution methods called i l e ra t ed  R u n g e - K u l t a  methods have been 
proposed for a para l l e l  solution of IVPs [6, 3, 8]. I terated Runge-Kut ta  meth-  
ods are predictor-corrector (PC) methods based on implicit Runge-Kut ta  (RK) 
correctors, i.e., the correetor steps represent an iteration of the (implicit) basic 
RK-me thod .  These methods have a large degree of inherent parallelism and, 
therefore, they are very attractive for a parallel implementation.  The stability 
properties of i terated RK methods depend on the way the corrector is iterated. 
A functional iteration (fixed point iteration) of an implicit RK corrector results 
in the IRK method.  In [7, 8], IRK methods were proposed for a parallel imple- 
mentat ion on shared memory  machines with a small number  s of processors (s 
is the number  of stages of the corrector RK-method) .  In [4], IRK methods have 
been parallelized for DMMs. But because of their relatively limited region of 
stability those methods are only suitable for nonstiff ODEs. In this paper, we 
consider the diagonal-implicit ly i terated Runge-Kut ta  (DIIRK) method which 
is appropriate  for the integration of stiff systems [2, 8]. We investigate paral- 
lel implementat ions of the DI IRK method on DMMs with an arbitrary number 
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of processors. We present strategies for the parallel implementation of the DI- 
IRK method that  differ in the data distributions and the order of computations. 
The algorithms take into account special properties of the DIIRK method, e.g., 
the stepsize control with embedded solutions and a reduction of the number of 
function evaluations by precomputations in the preceding corrector iteration. 
In particular, we consider a consecutive implementation and a group implemen- 
tation. The consecutive implementation breaks down each corrector step into 
independent pieces and computes them in sequential order by distributing the 
resulting equation systems among all available processors. The group implemen- 
tation executes the pieces in parallel by independent groups of processors. 

We have implemented the different parallel variants of the DIIRK method 
on an Intel iPSC/860. The experiments take into account different numbers of 
processors, different dimensions of the systems and different computational effort 
for the right hand side f of the ODE system. The experiments show that  the 
performance of the implementations depends strongly on the function f: For 
sparse functions, the group implementation is much better and reaches medium 
range speedup values. For dense functions, the consecutive implementation is 
superior and reaches good speedup values. The remaining part of this article is 
organized as follows: Section 2 describes the diagonal-implicitly iterated Runge- 
Kut ta  method and some characteristic properties of the DIIRK method. Section 
3 develops different parallel implementations. Section 4 presents the numerical 
experiments on an Intel iPSC/860. 

2 D i a g o n a l - I m p l i c i t l y  I t e r a t e d  R u n g e - K u t t a  M e t h o d  

One time step of the DIIRK method to compute the next approximation vector 
Y~+I consists of a fixed number m of iteration steps, each computing s stage 
vectors v~ j) for l = 1 , . . . ,  s and j = 1 , . . . ,  m. The initial iteration vector is 
provided by the predictor method. Choosing a simple one-step predictor method 
yields the following standard algorithm $ t d  for the DIIRK method: 

I ~ ) v = ya l = 1 , . . . , s  (2) 
8 

v l / ) = y ~ + h E ( a t i - d t i ) f ( v } J - 1 ) ) + h d t l f ( v l  i)) l = l , . . s  j = i , . . r n ( 3 )  
i=1  

Ya+l = Ya + h E b t f ( v }  m)) (4) 
l-=1 

One time step s --* ~+1 according to system (2), (3), (4) is called a macrostep. 
The execution of one iteration step j -+ j + 1 of (3) is called a corrector step. The 
number m of corrector steps determines the convergence order of the method. For 
each corrector step j ,  an implicit nonlinear system of equations has to be solved 
in order to get the vectors v~J),. . .v~ j). This is done by the Newton method 
as described in [5]. Each step of the Newton method includes the computation 
of a Jacobi matrix by forward difference approximations and the solution of a 
linear equation system by the Gaussian elimination. The number of function 
evaluations in the corrector step j + 1 for the computation of vf j+l), 1 = 1 , . . . s ,  
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can be reduced by exploiting the corrector step j.  By a reformulation of (4) of 
corrector step j we get the following reduced algorithm Red:  

fvall~ = f(y~) l = 1 , . . . , s  (5) 
8 

w } J ) = h E ( a l i - d l i ) f v a l } J - 1 )  l =  1 , . . . , s ;  j =  1 , . . . , m  (6) 
i=1  

v}J)= y~ +w} j ) +  hdllf(v} j)) l =  1 , . . . , s ;  j = 1 , . . . , m  (7) 

fvallJ) = ( v l J ) - y ~ - w l J ) ) / ( h d z l ) ,  l =  1 , . . . , s ;  j =  1 , . . . , m  (8) 

8 

Y~+I = Y~ + h E b, fval} m) (9) 
1=1 

3 P a r a l l e l  I m p l e m e n t a t i o n  o f  t h e  D I I R K  M e t h o d  

In each corrector step we have to solve s independent, nonlinear subsystems each 
of size n instead of one system of size s �9 n. The existence of these independent 
subsystems do not only decrease the computational effort but can also be ex- 
ploited for a parallel implementation. We compute v} j), 1 = 1 , . . . ,  s, by solving 
the subsystems by a separate Newton iteration. Let I I j j  for l = 1 , . . . ,  s and one 
eorrector step j denote the subsystems of one corrector step j .  IIj,~ is the non- 
linear system Fj,1(z) = 0 with Fj,l computed from Equation (3). The following 
figure illustrates the order in which the systems Hj j  have to be solved: 

Y/~ 

~1,1 II . . .  II /h,~ 

H,~,I II -.. li ~m,~ 

Y~+I 

each systems gets y~ 
independent computations 
exchange of v} 1) 

exchange of v} m- 1) 
independent computations 
the computation Y~+I needs all v} m) 

The symbol [[ indicates that Hz and Hr of Ht [[ Hr are independent and may 
be solved in parallel. The horizontal dashed lines indicate a data exchange. In 
the following, we present two possible computation schemes for the solution of 
the subsystems IIj,l, l = 1, . . . ,  s, of a single corrector step: (a) The consecutive 
computation scheme C o n  solves the systems IIj,l, 1 = 1 , . . . ,  s, in consecutive 
order by all available processors�9 (b) The group computation scheme G r p  solves 
the systems Hjj ,  l = 1 , . . . ,  s, in parallel by independent, disjoint groups of pro- 
cessors. The combination of the two parallel algorithms S td  and R e d  with the 
computation schemes C o n  and G r p  results in four implementations: C o n S t d ,  
C o n R e d ,  G r p S t d ,  and G r p R e d .  In the following subsections we describe these 
parallel implementations in more detail. 
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/* predictor */ 
forall q E P do 

for l - - 1 , . . . , s d o  
initialize vl ~ according to Equation (2); 

/* corrector */ 
for j =  1 , . . . , m d o  

f o r l =  1,.. . ,s do 
solve Fj,l ---- 0 in parallel by all processors; 

/* update */ 
'forall q C P do { 

compute [n/p] contiguous components of y~+l ---- Y~ + h ~;=1 bt f(vlm)); 
broadcast [n/p] components of y~+l;} 

Fig. 1. Parallel macrostep of the DIIRK version ConStd .  

3.1  C o n s e c u t i v e  p a r a l l e l  a l g o r i t h m  - C o n  

For the Newton iteration, a row cyclic distribution of the Jacobian is appropriate.  
The iteration vector for the Newton method is held replicated on all processors. 
This distribution results in a good load balance for the Gaussian elimination and 
avoids unnecessary communication overhead. The Gaussian elimination uses a 
single-node accumulation operation with a m a x i m u m  reduction to determine the 
pivot row. The pivot row is sent to the other processors by a single-broadcast  
operation. The backward substitution uses a single-broadcast  operation to make 
the computed components of the result vector available to the other processors. 
This means that  the Gaussian elimination delivers the result vector y(k) such 
that  it is replicated to all processors. The update  step of the Newton method is 
executed by each processor for all components to make the new iteration vector 
available on all processors [5]. 

ConStd: Figure 1 shows a pseudocode program for one macrostep of the DI- 
IRK method executed on a DMM with p processors P = { q l , . . . ,  qp}. In the 

predictor step, each processor initializes the entire vector vl ~ according to (2). 
To do this, the approximation vector y~ must  be replicated on all processors. 
In the corrector step, the nested loops of the corrector step are performed in 
consecutive order. The execution of each Newton step is distributed among all 
processors. The replication of the result vector of the Newton method results 

in a replication of v} j) without additional communication.  In the update  step, 
the subsequent iteration vector Y~+I is computed in a distributed way, i.e., each 
processor computes In~P] elements of the solution vector. To guarantee the 
replicated distribution for the next macrostep,  the distributed pieces of Yn+l 
are then collected by a mul t i -broadcast  operation. To collect Y~+I by a single 
mult i -broadcas t  operation, each processor computes In~P] contiguous elements 
of Y~+I, i.e., a block distribution is used. 

ConRed: In the implementat ion using the reduced computat ional  scheme R e d ,  

the Newton method still computes the vectors vl j). But the corrector step j 

needs the values fval l  j - l )  as input instead of v~ j-l) .  The iteration steps of  the 

Newton method for the computat ion of vl j) now use the vector fvall  j - l )  for the 
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foral[ q E P do 
for 1 = 1 , . . . , s  do { 

initialize vl ~ according to Equation (2); 
initialize [n/p] components of fvall ~ cyclically according to (5);} 

for j = 1 , . . . , m  do 
for l = l , . . . , s  do 

forall q E P do { 
compute [n/p] components of wlJ)=  h ~ = l ( a u -  du)fval! j - l )  cyclically; 
solve Fj,, = 0 in parallel by all processors; 
compute In~p] components of fvall i) cyclically according to (8);} 

forall q E P do { 
compute [u/p] contiguous components of Y~+I = Y~ + h ~-'~=1 bl f(vlm)); 
broadcast [n/p] components of y~+a; } 

Fig. 2. Parallel macrostep of the DIIRK version ConRed.  

computation of the Jacobian. The cyclic distribution of the vectors fvall j) cor- 
responds to the cyclic computation of the Jacobian. Figure 2 shows the resulting 

pseudocode program. For the predictor step, the vectors fvall j), l = 1 , . . . ,  s, are 

initialized cyclically according to (5). For the corrector step, the vectors fval~ j), 
l = 1 , . . . , s ,  are computed cyclically according to (8). No additional data ex- 

change is necessary. The vectors w} j) can be implemented as a single array that  
is overwritten after its use in (8). For the update step, the next iteration vector 

Y~+t is computed cyclically because the function vectors fvall j) are available 
cyclically. To collect Y~+I after its computation by ~ single multi-broadcast  
operation, each processor has to store its locally computed components in a con- 
tiguous buffer before the data exchange, see Figure 3. After the multi-broadcast  
the elements have to be moved to their correct positions. 

y~+a Y~+I buf buf buf buf y~+a y~+l D ut 
reorder broadcast reorder 

P0 P~ p0 P~ P0 Pl p0 pl 

F ig .  3. Collecting the distributed pieces of y~+l  to avoid multiple multi-broadcast op- 
erations. The first reorder step transforms the cyclic distribution of y~+l  into a block 
distribution of a buffer array bu~. The multi-broadcast operation makes all components 
available on all processors. The second reorder step rearranges the correct order of the 
corn ponents. 
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forall l E {1 . . . . .  s} do 
forall q E Gz do { 

initialize vl ~ according to Equation (2); 
first processor in group: broadcast vl ~ to other groups; } 

for j = 1 , . . . , m  do 
forall 1 E {1 . . . .  , s} do 

forall q E Gl do 
solve Fj,l ---- 0 in parallel by all gt processors in group Gz; 

forall q E P do { 
compute In~p] contiguous components of y~+l -- Y~ + h ~ = 1  b~ f(vlm)); 
broadcast In~P] components of y~+l; } 

Fig. 4. Parallel macrostep of the DIIRK version GrpStd .  

3.2 G r o u p  P a r a l l e l  C o m p u t a t i o n - G r p  

For the group implementation, the subsystems //Ll, 1 = 1 , . . . ,  s, are solved in 
parallel by disjoint groups of processors. We assume that  the number of available 
processors is greater than the number of stages, i.e., p > s. The set of processors is 
divided into s groups G1, �9 �9 Gs. Group Gl contains about the same number gl = 
[p/s] or gl = [p/s] of processors. In each corrector iteration step j = 1 , . . . ,  m 

group Gz is responsible for the computation of one subvector v~ j), l E { 1 , . . . ,  s}. 
Again, the Gaussian elimination determines the data distribution of the entire 

macrostep. To get a good load balance, we use a group cyclic distribution, i.e., 
the rows of the Jacobian DFj,t, j = 1 , . . . ,  m, are distributed cyclically among 
the processors of group Gt of size gz. Processor q E Gl with group index iq, iq = 
0 , . . . ,  gl - 1, is responsible for the computation of rows rows(q) = {i]i - i a mod 
gt, 0 < i < gl}. Group Gt executes the Newton iteration for the computat ion 

of v~ j) independently from all other groups. The Gaussian elimination now uses 
communication operations that  operate on groups of processors. 

GrpSld The group implementation leads to the pseudoc0de program in Figure 

4. Again, in the predictor step, each processor initializes the entire vector vl ~ 
according to (2). To dO this, the approximation vector y~ must be replicated 

on all processors. After corrector step j ,  the computed vector v} j), l = 1 , . . . ,  s, 
must be distributed to the processors of all groups because they are used in the 
corrector step j + 1 for the evaluation of Fj+l,z. This is realized by a broadcast 
operation executed by the first processor of each group. The group partit ioning 
is used only for the computation of the corrector steps. To execute the update  
step in a distributed way, about the same number of components In~P] or In~P] 
of Y~+I is assigned to each processor. These have to be contiguous elements to 
collect the different parts by a single multi-broadcast  operation. 

GrpRed When using the reduced computation system we again have to make 

sure that  the particular components of fvall j) are available. Figure 5 shows the 
resulting pseudocode program. In the predictor step, group Gl initializes vector 

fvall  j) cyclically according to (5). In the corrector step, group Gz computes 
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forall 1 E {1, . . . , s}  do 
forall q E Gr do { 

initialize vl ~ according to (2); 
first processor in group: broadcast vl ~ to other groups; 
initialize [n/g~] components of fvall ~ cyclically according to (5); 

for j = 1 , . . . , m  do { 
forall 1 E {1, . . . ,  s} do 

forall q E G~ do { 
compute [n/g~] components of wl j) = h ~ = a  (al~ - d,~)fval~ J-a) cyclically; 
solve Fj,l = 0 in parallel by all gt processors in group Gl; 
compute [n/g~] components of fvall 3) cyclically according to (8);} 

forall q E P do { 
compute In~p] components of y~+~ = y~ + h ~ t = l  bl fvall m) cyclically; 
broadcast [n/p] components of y~+l with buffer technique; } 

Fig. 5. Parallel macrostep of the DIIRK version GrpRed. 

vector fval} j) cyclically according to (8). After the computation of fval} j), this 
vector must be made available to the processors of the other groups because 
they need it for the next corrector step. In particular, processor q needs the 
values fvallJ)[i] with i E rows(q) for l = 1 , . . . ,  s, Because the different groups 
may contain different number of processors, it is best to make the entire vector 
fval~ j) available to the processors of the other groups. This is realized by a two 

step communication. First, fvall j) is made available to all processors of group 

Gl and then fvall  j) is distributed to the the processors of the other groups. The 
first step can be executed by a single group-mult i-broadcast  operation, if we 
apply the buffer technique shown in Figure 3. The second step is realized by a 
broadcast operation that is executed by the first processor of each group. 

4 N u m e r i c a l  E x p e r i m e n t s  

For the numerical experiments with parallel DIIRK methods on an Intel iPSC/860 
we use a 3-stage Radau method [1] of order p = 5 as corrector and execute 4 
corrector iterations. All four implementations are applied to two classes of ODEs 
that  differ in the amount of computational work of the right hand side f of the 
ODE: (a) f has fixed evaluation costs that are independent of the system size 
(sparse function). (b) The evaluation costs of f depend linearly on the system 
size (dense function). Both cases may occur when solving systems of differential 
equations with implicit methods: The discretization of the spatial derivatives 
of time-dependent PDEs results in a function f with a constant computational 
effort [1]. A function f with system size depending evaluation costs arises when 
solving time-dependent PDEs with Fourier-Galerkin methods. 

Figures 6 and 7 show the measured runtimes in seconds and speedup values 
for one macrostep of the DIIRK method for p = 16 processors. The global 
execution times of one macrostep are denoted by tconStd tConRed, 7~GrpStd and 
tarpRed. They include the runtimes for the predictor, the corrector, the update 
step and the stepsize control. The Newton iteration stops if the error is smaller 
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than 10 -4. The precomputed function values in the implementations ConRed 
and GrpRed are used for the computation of the Jacobian, for the update step, 
and for the stepsize control. The given speedup values are obtained by comparing 
the parallel global execution times with the global execution time of a sequential 
program that is running on a single processor. The experiments show that it 
is not obvious which parallel implementation should be preferred. But several 
observations concerning the runtime and speedup values can be made. 

It ~iConStd tConRed $GrpStd $GrplRed 
18 3.26 2.04 0.55 0.53 
72 18.09 16.75 4.02 3.39 

162 57.28 54.29 14.971 12.54 
242 118.18 111.80 34.94 29.54 
338 212.80 203.20 71.75 62.81 
512 491.95 464.70 167.56 141.71 

sparse function: speedup values for 16 processors 
16 

ConStd -e-- 
14 ConRed ~- 

GrpStd -m-- 
12 GrpRed--M . . . . .  

1O ................ 

8 . . 8  . . . . . . .  ..... ~ ................ 

6 .'" J " "  
. - ' "  x ....... 

4 . ~  y . / t  ..... 

2 f "  . _ . _ ~  . . . . . . .  

0 ~ . . . .  ~ . . . .  
18 72 162 242 338 512 

system size 

Fig.  6. Runtirnes in seconds and speedup values for sparse right hand sides f. 

n tConStd ~ConRed $GrpStd $GrpRed 
50 5.34 4.16 2.35 1.34 

100 25.65~ 15.41 16.51 7.55 
150 65.17 33.33 52.02 17.11 
200 133.86 60.57 119.91 36.70 
250 246.92 102.73 231.84 68.01 
300 403.12 155.93 397.07 113.97 
350 617.32 226.92 624.57 177.01 
400 897.98 317.57 933.85 260.46 
450 1290.81 438.12 1327.06 366.60 
500 1737.39 575.21 1816.62 498.46 

dense function: speedup values for 16 processors 

1 s . . . . . .  - - - - - - s  . . . . . . .  ~ . . . . . .  
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Fig.  7. Runtimes in seconds and speedup values for dense right hand sides f. 

Standard/reduced compulalion scheme: Although the reduced scheme causes 
more communication in a parallel implementation, the global execution time 
is considerably reduced if the precomputed function values are used. Depend- 
ing on the system size and the number of processors, the precomputation of the 
function values reduces the global execution time by 10-20% for sparse functions 
and by 40-75% for dense functions. The effect is especially large for dense func- 
tions, because the global execution time is dominated by the computation time 
of the Jacobian. Using the precomputed function values for the stepsize control 
and the update step of the DIIRK method has only a very limited effect on the 
global execution time because these operations are only executed once for each 
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macrostep. The speedup values for the variants using scheme R e d  are always 
smaller than for the associated standard version because the contribution of the 
computational work to the global execution time is reduced. 
Consecutive/group parallel algorithm: The runtimes of the group implementation 
G r p  are getting better with increasing numbers of processor compared with the 
consecutive implementation Con.  The effect varies for dense/sparse function 
with the system size, i.e., for sparse functions and large system sizes, G r p  is 
much better than C o n  and for dense functions, G r p  is only better than Co n  if 
the reduced variant is considered. The group implementation G r p  has a smaller 
communication overhead than the consecutive implementation C o n  because the 
group broadcast operations only involve the processors of the same group and, 
therefore, use less communication time. 
Efficiency: The efficiency of the implementations mainly depends on the appli- 
cation but  also on the number of processors. The application of dense functions 
results in good speedup values while the speedup values for sparse functions are 
not satisfactory. A loss of efficiency be can be observed in both cases. For the 
consecutive implementation C o n  the loss of efficiency is mainly caused by com- 
munication overhead, not by a load imbalance. The load imbalance is small, if 
the system size is large compared to the number of processors. In this case, the 
ODE system can be distributed quite evenly among the processors. The com- 
munication overhead is increasing with the number of processors because the 
costs of the broadcast operations is increasing. This can especially be observed 
for sparse functions. For the group implementation G r p  the loss of efficiency 
is caused by communication overhead and load imbalance. The impact of the 
load imbalance is large for small numbers of processors if the groups contain 
different numbers of processors. This is the case for p = 4 processors and s = 3. 
Here, groups G1 and G2 contain one processor each and group G3 contains two 
processors. 
Sparse functions: The runtime and speedup values of the four implementa- 
tions vary with increasing numbers of processors. For p = 4 we have runtimes 
tConJ=le d ~ tConStd ~ tGrpRed < tGrpStd which change to tGrpRed < tGrpStd ~ 
tVonRed < tConStd for p = 16. Only for p = 4 processors, the consecutive imple- 
mentat ion is slightly better than the group implementation because of the large 
load imbalance of the latter one. For larger numbers of processors, the group im- 
plementation reaches global execution times that  are much better than for the 
consecutive implementation. The consecutive implementation C o n  only reaches 
limited speedup values that  are not increasing with the number of processors, 
see Figure 6. This is caused by a large communication overhead increasing with 
the number of processors. The communication overhead is caused by the Gaus- 
sian elimination dominating the computation of the J acobian. For larger number 
of processors, the group implementation G r p  reaches speedup values that are 
much better than for the consecutive implementation. The reason for this lies in 
the smaller communication overhead for the Gaussian elimination and in the fact 
that  the load imbalance is getting smaller for increasing number of processors. 
Dense functions: For larger system sizes, the parallel implementations using sys- 
tem R e d  have runtimes which are considerably smaller than the runtimes of 
the standard scheme Std ,  i.e., tRed << tStr. The consecutive implementation 
C o n  has always smaller global execution times than the group implementa- 
tion G r p ,  i.e., tConStd < tGrpStd. In this case, the load imbalance of the group 
implementation has a larger impact than the communication overhead of the 
consecutive implementation. The communication overhead is decreasing with 
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increasing system sizes because the computat ion of the Jacobian is dominat-  
ing. Only for small systems and larger number of processors, the additional 
communicat ion overhead of the consecutive implementat ion is larger than the 
load imbalance of the group implementation.  But the global execution t imes for 
the reduced versions change with increasing numbers of processor. For p = 4 
we have runtimes tConRed < tGrpRed < <  ~ConStd < ?~GrpStd which change to 
tGrpRed < tVonRed < <  tConStd < ~GrpStd for p : 16. The speedup values for the 
consecutive implementat ions C o n  are bet ter  than for the group implementat ions 
G r p  but the difference decreases with increasing numbers of processors. 

5 C o n c l u s i o n s  

We have presented four parallel implementat ions of the DI IRK method which 
result f rom a combination of different computat ion schemes with different al- 
gorithms. The result of the experiments confirm that  the performance of these 
implementat ions strongly depend on the application and the number  of proces- 
sors available. For dense functions and large systems, a consecutive algori thm 
results in smaller execution times than a group algorithm. For small systems, 
the group implementat ion is slightly better  than the consecutive implementat ion.  
Both implementat ion reach good speedup values. For sparse functions, the group 
implementat ion has smaller execution times than for the consecutive implemen- 
tat ion because the communication overhead is smaller. The speedup values of the 
consecutive implementat ion are only satisfactory for p = 4 processors whereas 
the group implementat ion reaches medium range speedup values also for larger 
numbers of processors. 
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