
Auto/Autograph 
Valdr ie  R o y  * 

R o b e r t  de  S i m o n e  t 

Abs t r ac t  
We describe the Auto and Autograph tools for verification and analysis of concur- 

rent systems in their more recent developments. Auto is dedicated to a philosophy 
of "verification by reduction", based on automata morphisms and quotients. Auto- 
graph provides a graphical lay-out on which to display both terms and informations 
on terms, back and forth to Auto. We stress the openness aspects of both systems 
and their interface formats to the outside world. We see this as a contribution to the 
evergrowing collaborative trends in between similar tools, mostly under the pressure 
of national or european Esprit projects. 

1 I n t r o d u c t i o n  

Collaborative work in the field of verification tools for process calculi is steadily in- 
creasing, mostly Under the pressure of european Esprit Projects. Interconnections in 
between such tools, which appear to be highly complementory, is now becoming a real- 
ity which should altogether avoid anarchical outburst and strict bureaucratic overplan- 
ning. While describing advances in the design of Auto and Autograph, we insist on 
their particular forms of interface formats, some of them already common with other 
tools[GLZ 89, Fer 87, BG 87, CPS 89, Arn 89, BFHP 89]. 

But the major part of this paper is aimed at describing new features of the Auto and 
Autograph systems, mostly concerned with the way they deal with recollection of results 
from analysis after reductions. These informations should be reported on the algebraic 
process terms themselves (or even better: on their graphical display), while experiments 
are conducted on their underlying transition systems. 

2 A u t o  

2.1 P r e s e n t a t i o n  

Auto [SV 89] is a support system for verification, and more generally analysis, of process 
calculi terms. It deals only with terms with finite model representations in the semantics 
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of transition systems, and so bases itself on automata transformation algorithms, hereafter 
called reduct ions .  The main activities in Auto may be split in four: Structural Automata 
Construction, Automata Reduction (with Abstraction), Formal Analysis: Equivalence 
and other Comparisons and Retrieval of Results and Diagnostics. 

Of course those activities are to a large extend entwined, and separated only for the 
sake of description. Reductions may take place at intermediate levels of construction, due 
to congruence properties of the equivalence directing the reduction. Partial results lifted 
back from certain directions of analysis may be reinjected along other lines. By retrieval 
of results we mean the uplifting of informations from the reduced structures back to the 
early processes. We shall stress this aspect further in a following section. 

The general syntaxic means of reduction in Auto is embodied in abstraction, using 
so-called abstract actions. Abstract actions represent an higher level class of behaviours. 
The idea is to consider certain (terminated) sequences of concrete behaviours (signal 
emissions/receptions) as altogether equivalent and atomic, and to call such a set simply 
an abstract action. A process which may succeed in completing any of these "runs" at 
the more concrete level will perform the abstract action then. This framework generalises 
observational bel]aviours defining weak bisimulation, where any sequence from r*.a.r*, 
with r a private actions, are to be seen as equal to a simple a. 

Abstract actions gather in a new alphabet, called an Abtractlon Criterion. Abstracting 
a process results in a system which is conceptually far simpler, and where meaningful 
activities have been isolated. Pragmatical use of abstraction in "everyday" verification 
often follows these lines: abstract actions are split in between "positive" ones, leading 
to configurations of the system to be inquired; then some "negative" ones do represent 
faulty behaviours which should certainly not take place there. The abstraction is then a 
refutation attempt. But if the dreaded behaviours do nevertheless occur, they identify 
a number of (abstract) questionable states, and also questionable behaviours leading to 
them. 

2.2  Data Objects and Types 

Auto uses but a restricted number of objects classes, specially meaningful in the approach 
of verit~cation by reduction. They are: Actions and Processes, Abstract Actions and 
Criteria, Automata, Partitions, Pathes. 

Processes and Abstract Actions are user-provided and enjoy an external syntax for 
input to the system. Current algebraic processes syntax is adapted from Meije[Bou 85], 
a language that extends CCS[Mil 80] to cope with the possibility of unrelated signals 
taking place simultaneously. This leads to a full commutative group of actions in a 
single step duration. On the other hand efforts are made to allow any process calculus 
as legible syntax to Auto [MV 90]. Current abstract actlons syntax is based on regular 
expressions notations, with as generators predicates on signal names. Words from the 
entailed rational languages should be seen as sequences of behaviours. Full details may be 
found in [BRSV 89]. These syntaxes may be output by the Autograph interface (described 
later), from simple graphical representations. 

Pathes are just sequences of transitions, alternating states with performed actions, 
while starting and ending with a state. 

Partitions are (most often disjoint) sets of sets of states, representing for instance 
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equivalence classes amongst all states of a given automaton. A partition is thus almost 
always linked to a related automaton. In case the partition does not recover all states, 
missing ones are supposed to share in the same additional class. A one-class partition 
thus represents a predicate (or property) selecting a subset of an automaton state. 

The relation from data structures to conceptual Auto activities is as follows: Processes 
are expanded into automata by s t ruc tu ra l  a u t o m a t a  cons t ruc t ion ,  as defined in the 
SOS rules formalism; Abstrac~ actions help define the reduc t ions  to be applied on these 
automata. Fortunately many short-hand notations for specific useful abstractions are also 
implemented in Auto, so one rarely needs defining them from scratch. Still, dedicated 
abstractions add power to the expressiveness of reductions; One subsequently extract ei- 
ther partitions or p~thes through Analysis  and Equiva lence  checking, as informative 
structures. Partitions collect classes of equivalent states, or lists of states enjoying a 
given behavioural property. Pathes are generated in particular as indications of faulty 
behaviours by application of '~abstraction as refutation"; Partitions and Pathes are rein- 
terpreted and carried back to ther original process algebraic description by Re t r ieva l  
of  Resul t s .  In this sense both should have in the future a syntactic description to be 
handed back to graphical display. Another structure which is important to picture is the 
reduced automaton itself, so that one checks whether the abstract system conforms the 
expectation, or not. 

2.3 A u t o  as a s y s t e m  

Auto is a small command language consisting of a main toplevel loop, storing results of 
parsings and computations in global identifiers. Parsing commands, are used for entering 
processes and abstract actions into Auto, possibly from Autograph; set commands are 
used for computing (composition) of functions on objects already stored in the environ- 
ment, binding the result to new identifier names. All this was described more thoroughly 
in [BRSV 89]. 

2.4  I n p u t / o u t p u t  

We stress here to a certain level of detail the formats Auto may use to exchange files with 
wrious companion systems. Some were devised in the framework of the french C 3 project, 
while others bridge and adapt to various european verification tools in the framework of 
Esprit projects. 

Auto supports textuM "easily" readable syntaxic formats for reading and writing terms 
and automata in Meije (or CCS) syntax. While pleasant to deal with, this format suffers 
two drawbacks: at reading, the parsing is time-consuming -specially on large automata-; 
at writing, pretty-printing procedures make it space-consumlng instead. This format is 
the one currently used from Autograph to Auto. 

Concerning automata, there exists a specific "non-human-readable" format containing 
exactly the lisp object, which is used for saving and restoring automata, or from the 
reactive reM-time language Esterel to Auto IRes 90]. But future directions lay in the 
definition of a common format (called f c  in french) with the tools Mec[Arn 89] and 
Aldebaran[Fer 87]. The format needs hardly parsing and proves fairly complete to carry 
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additional optional informations (and in the case of Auto to embed pathes and partitions 
in their related automaton structure). 

Now the situation is far less clear in the case of networks of processes, specially since 
there is a broad variety of operators used there. First considerations on basic needs shall 
be expressed while describing Autograph. 

2 . 5  R e d u c t i o n s  

All reductions are performed by merging states (of the same automaton), constructing 
quotients from behavioural equivalence relations. These relations are possibly computed 
on transformed automata, after abstraction of behaviours has taken place. 

2.5.1 Abs t r ac t i ons  

Behaviours abstraction functions in Auto are: 

1. a b s t r a c t ,  which uses an abstract criterion as parameter. 

2. t a u - s a t u r e ,  which completes transitions according to prefix or postfix tau transi- 
tions (building r* and r*.a.r*). 

Abs t r ac t  results in an automaton on a new abstract alphabet, constructed while searching 
iteratively the concrete one for sequences matching the abstract actions, t a n - s a t u r e  is 
only a useful short-hand for computing weak bisimulation. 

2 .5 .2  Quotients 

Semantical equivalences are defined on these refined automata and their behaviours. They 
use fixpoints of relations, like bisimulations and other branching time semantics, or treat 
full sequences of behaviours as experiments, like trace languages and other linear time 
semantics [Gla 88]. All such semantics shall be congruences for all operators of the form 
of [GV 89]. Such functions in Auto are: 

1. mini for strong bisimulation congruence. 

2. r e f ined-min i ,  starting from an initial partition. 

3. obs for weak observational bisimulation congruence. 

4. t au-s impl ,  which collapses r-cycles behaviours. 

5. t r a c e  for trace language congruence. 

6. dterm for trace determinisation (without minimisation), congruence. 

All these reductions take optional signal lists parameters, indicating which subset stays 
visible. Other signals are renamed down to r. We could add a r e f i n e d - t r a c e  functions, 
using as parameter a one-class partition indicating terminal states. Obs is not primitive 
and could be obtained as mini ( t  au - sa tu re  ( tau-s impl  ( . . . .  
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2 . 6  C o m p a r i s o n s  a n d  E q u i v a l e n c e s  

We already described some equivalences used for minimizing automata. The same func- 
tions may theoretically be used to compare two transition systems, depending whether 
both initial states lie equivalent. 

But here we want to collect informations in case of non equivalence. Supposing both 
processes were first reduced to normal form, then the final partition retains only singleton 
or couples as equivalent classes: couples represent equivalent states (one from each au- 
tomaton), and singletons represent states without match (from either automaton). This 
structure should be further queried, possibly interactively, or the subset of equivalent 
states could be displayed graphically, or longest strings of unmatched behaviours running 
only through singletons could be searched. More actual experiments are still due here. 

The functions providing equivalence informations are few in Auto. One should re- 
member that they may be combined with previous reduction functions to compose richer 
equivalence checking. 

1. eq provides a "yes/no" answer on bisimulation equivalence. 

2. s t r o n g - p a r t i t i o n  provides the list of equivalence classes. 

Equivalence is only an instance of comparaison, observation and testing on an au- 
tomata under analysis. Promising other directions are graphical specit~cations [BL 89]. 

2 . 7  R e t r i e v a l  o f  R e s u l t s  a n d  D i a g n o s t i c s  

Results put to light by reductions and further analysis should now be lifted back to the 
initial process terms. Pathes and state partitions will thus be provided "inverse images", 
so to speak. As a way to attain this, we build a side structure from the shape of the 
results and the actual combinations of reductions performed. We shall call guldeline such 
a structure. 

A guideline is a generalized automaton-like observer, safe that it includes additional 
info in its states, possibly drawn from the process itself. In contrast, an observer is usually 
required to be defined independantly from its observed system. Typical such info consists 
in states that are allowed as configurations of the observed process while the guideline 
reaches this state. Guidelines may also contain another sort of state information, namely 
places it allows as terminated endpoints of abstract behaviours. 

reduction function 
Term or Automaton ...... , Reduced Automaton 

1~ analysis 

Source info Pathes or P~rlition 

~ svnthesis 
retrieval 

Uplifted Guideline , Guideline 

As pictured above, the guideline shall be built going backward stucturally along the 
chain of reductions performed. Some reductions will change its state space, others shall 
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add or transform transitions. In the end there shall always be the possibility of applying 
it on the corresponding observed system of the same stage. Applying a guideline on a 
process (or an automata) will consist in '~simulating" the observed process in a way that 
will satisfy the guideline, or equivalently in a way constrained by the guideline. This 
will identify which states, or behaviours, of the term under analysis, shall indeed project 
themselves by reduction down to the chosen pathes or partition classes. 

With this reconstruction philosophy the only information which needs be kept through 
reductions is the relation from a state to the class of states that were mapped to it taking 
the quotient. These states in Auto are formally encoded in a vector description of states in 
the sequential automata components occurring in the early algebraic process description. 

The operation induced by reduction functions on guidelines are actually quite simple: 
quot ien ts  replace in each state the set of allowed configurations of the analysed 

system. It is replaced by its inverse image for the morphism associated with the quotient. 
Abs t rac t ion  replaces actual actions by their concrete actions regular sets counter- 

parts. This induces new states in the guideline, and a need to indicate which sets may be 
terminal as representative behaviours of the analysed process. 

3 Autograph 

3.1  P r e s e n t a t i o n  

Autograph [RS 89] is a plain, non syntaxic graphical editor for pictures that are later 
interpreted into process calculi terms. By this we mean that the drawings produced are 
not structural -safe in particular spots-, and that coherency and structure are checked 
only on demand, for translation into textual algebraic form. This allows the graphical 
description to depart from strict ties to the textual one, including elliptic representation 
conventions. This allow also semantics of drawings generated from few simple graphical 
object types to be endowed with scarcely variant semantics, depending on the target 
formalism and language. Autograph was started with the Meije algebra in mind, but 
could give graphical versions to (process algebraic simple kernels of) Esterel[BG 87] and 
Lotos[BB 89]. 

3 .2  Graphical Data Objects and Meanings 
3.2.1 Graphics  

Autograph works from menus and mouse selection of functions to be applied on graphical 
objects. As in Auto, the object classes were kept to a bare minimum, highly common, 
and endowed with graphical links properties which are fairly ad-hoc. They are: Boxes, 
Ports, Vertices, Edges and Labels (not a graphical object) 

Roughly, these few graphical elements represent all that was informally used in graph- 
ical description of parallel systems (communicating automata) even before efforts were 
made to embed them into an algebraic syntax formally, which was to lead to process 
calculi theory. 

Boxes are rectangles and represent subprocesses. Boxes next to one another are sup- 
posedly set in parallel. Ports are circles, which may only be located on the boxes frames. 
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Figure h a loosing and duplicating line of the Stenning protocol 

They figure the connexion points for communication. Possible communications axe repre- 
sented by edges drawned in between ports. So boxes, ports and edges build up networks 
of processes, and recollect the structural operators features from process calculi. Figure 
1 shows a network and automaton example. 

Vertices are round-shaped and figure automata states. Transitions axe figured as edges 
(just like connections in between ports). So edges are broken lines, whose ends imper- 
atively fall both into states or ports. Vertices and edges thus create regular individual 
processes, and recollect the dynamic behavioural operators features from process calculi. 

3.2.2 Namings 

All these elements may be named (or tagged) using labels. Labels appear on the screen 
but are not conceived as graphical objects, that is they do not share the same uniform 
internal treatment as other objects (in particular they may not be themselves named!). 
Naming is not always imperative. Names serve different purposes depending on the type 
of object they axe applied on: 
• on boxes, they provide a global or local naming facility so that a description may 
be shared in between several windows, and subterms instanciated in several locations. 
Recursive terms (using themselves as subterms) may also be generated this way; 
• on ports, they indicate the local name of the signal to be communicated upon. In 
particular, all ports of named boxes referring to subsystems drawned elsewhere should be 
named, and no other need be. This implies that Autograph takes care of all renamings to 
avoid names clash and generate proper communications at translation into textual form. 
Naming other ports still may help control this translation; 
• on vertices, they help control the translation by providing user-defined identifiers for 
the state names, which then become the vaxiables occurring in the (guarded right lineal') 
recursive definition of automata term; they may also occur several time in the same 
automaton (if only once with outgoing edges) and save drawing long ba.ckheaded arrows 



72 

through a multirepresentation of the same state. 
• on edges, they provide on one hand labels for transitions, that are imperative (an edge 
may actually be labelled several times, thus representing more than one transition); on 
the other hand they allow naming of connections inter ports, to save drawings of line 
connections and secure user-provided names at translation altogether. All ports locally 
sharing connections with the same names are transitivally supposed to be connected. See 
[Roy 89] for details. All connections pervading to the outside need to be named at this 
level, to figure the way signals show externally and provide the sort of the description. 

To recall, names are either: impera t ive ,  in the case of transition labels, innermost 
boxes ports and empty subterms boxes; shor t -hand  convent ions  allowing recourse to 
textual pointers links rather than common physical line joining, in the case of automata 
states and communication connections; naming  controls  on the identifiers used at trans- 
lation into process calculus syntax in the case of states, intermediate levels ports and 
connections. 

3.2.3 Addi t iona l  semant ics  

There is a default semantics (expressed as Meije or CCS terms) to the drawings, at least 
the correct ones. Notions of correct drawings, together with all abuse of representation 
allowed by Autograph, are out the scope of this paper and described in [Roy 89]. Briefly: 
Boxes next to one another represent parallel substerms, containment of boxes represent 
the subterm relation, edges without outside ports generate signal restrictions and edges 
in between ports with different names generate relabeltings. Automata are even more 
simply interpretedl 

But this semantics may be altered, using a system of semantical annotations by func- 
tions from a special menu, each time dedicated to a specific new calculus to represent. 
This holds mostly of networks. 

Justification for these annotations is drawned from the Ecrins [MdS 87] system, where 
a syntaxic formalism is defined for creating new calculi through new operators. A new 
operator is introduced by syntaxic considerations (name, binding power, type) and SOS 
rules for semantics. The type is always of the form (Signals "~ @ Process ~) ~ Process. 
So we may superpose a semantics (and even several if they may be disambiguated by 
binding powers) with semantical markings: on a box (the target process), its ports (the 
Signals parameters), its son boxes (the process arguments), their ports (these arguments 
behaviours). 

This part of Autograph is in development and shall be devclopped hopefully in the 
final paper. 

3 . 3  A . u t o g r a p h ~ s  I n t e r f a c e  

3.3.1 Menus  and Funct ions  

Autograph contains a number of menus (in its current version). Half are classical screen 
and window management menus, including cut-and-paste of subdrawings and Postscript 
dump of improved representations of both networks and antomata (with edges splined 
up for instance). The other half is more specific to the edition of objects. There are 
four such menus: Nets for boxes and ports, Automata for vertices, Edges for transitions 
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and connections, and Labels for namings. They all contain functions like select, m o v e ,  

create, kill and so on... 
There is a complet ion function in the Windows menu of Autograph, which checks for 

coherency of drawings and construct the following records at nodes, whose fields may be 
variant according to the T y p e  field: 

1. Type ,  the name of the corresponding operator (e.g. PAR, SEQ, AUTOMATON, 
VAI%, LOCALDECL) 

2. N a m e  (mostly in case of variables and local process declarations). 

3. F a t h e r n o d e  for navigation. 

4. S i g P a r a m e t e r s  for the relevant arguments to the operator. 

5. Sigl%ename because signals renamings, which introduce process instantiation, have 
a specific representation in Autograph (by edges drawing). 

6. In ternals  for signals local scope binding, as in CCS restriction. 

7. Sor t  giving optionally the set of all visiblc signals at this subterm level 

8. S u b P r o c e s s e s G r a p h  identifying the subprocesses and optionally a relation in be- 
tween them 

. 

10. 

Loca lDec la redProces se s  for local process definitions that are used in the subpro- 
cesses graph (mostly in case of LOCALDECL operators). 

A u t o m a t a  for sequential automata components. These automata will correspond 
after actual translation to entries in a "automata fc" table. 

11. P r a g m a s  for uninterpreted info (like graphical positions remainders). 

3 . 3 . 2  I n p u t / o u t p u t  

There is an additional variable menu in Autograph, or more exactly there are distinct 
versions of Autograph, depending on a menu providing the semantic annotating and 
translation functions to a given calculus format, or a companion verification systems (e.g. 
Auto). In the future translation flmctions should all produce instances of a "common 
format", prealgebraic. This is largely started for automata with the format described in 
annex, fax less for networks. But globMly the format sho~d,l closely follow the records 
structure produced by the previous complet ion function. 

There is also a specific explore  function, whose mode is in particular started while 
inputting a description file which lacks geometrical features, for instance as provided by 
Auto. Exploration of automata is an established functionality of Autograph. Exploration 
of networks is being completed, and should be described in the full paper, as well as 
exploration of pathes and par~it, ions on already displayed process descriptions. These 
functions are immediate, provided an ~fc" input format for these objects is agreed on. 
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