
Auto/Autograph
Valdr ie R o y *

R o b e r t de S i m o n e t

Abs t r ac t
We describe the Auto and Autograph tools for verification and analysis of concur-

rent systems in their more recent developments. Auto is dedicated to a philosophy
of "verification by reduction", based on automata morphisms and quotients. Auto-
graph provides a graphical lay-out on which to display both terms and informations
on terms, back and forth to Auto. We stress the openness aspects of both systems
and their interface formats to the outside world. We see this as a contribution to the
evergrowing collaborative trends in between similar tools, mostly under the pressure
of national or european Esprit projects.

1 I n t r o d u c t i o n

Collaborative work in the field of verification tools for process calculi is steadily in-
creasing, mostly Under the pressure of european Esprit Projects. Interconnections in
between such tools, which appear to be highly complementory, is now becoming a real-
ity which should altogether avoid anarchical outburst and strict bureaucratic overplan-
ning. While describing advances in the design of Auto and Autograph, we insist on
their particular forms of interface formats, some of them already common with other
tools[GLZ 89, Fer 87, BG 87, CPS 89, Arn 89, BFHP 89].

But the major part of this paper is aimed at describing new features of the Auto and
Autograph systems, mostly concerned with the way they deal with recollection of results
from analysis after reductions. These informations should be reported on the algebraic
process terms themselves (or even better: on their graphical display), while experiments
are conducted on their underlying transition systems.

2 A u t o

2.1 P r e s e n t a t i o n

Auto [SV 89] is a support system for verification, and more generally analysis, of process
calculi terms. It deals only with terms with finite model representations in the semantics

*ENSMP-CMA Sophia-Antipolis
tINRIA Sophia-Antipolis

66

of transition systems, and so bases itself on automata transformation algorithms, hereafter
called reduct ions . The main activities in Auto may be split in four: Structural Automata
Construction, Automata Reduction (with Abstraction), Formal Analysis: Equivalence
and other Comparisons and Retrieval of Results and Diagnostics.

Of course those activities are to a large extend entwined, and separated only for the
sake of description. Reductions may take place at intermediate levels of construction, due
to congruence properties of the equivalence directing the reduction. Partial results lifted
back from certain directions of analysis may be reinjected along other lines. By retrieval
of results we mean the uplifting of informations from the reduced structures back to the
early processes. We shall stress this aspect further in a following section.

The general syntaxic means of reduction in Auto is embodied in abstraction, using
so-called abstract actions. Abstract actions represent an higher level class of behaviours.
The idea is to consider certain (terminated) sequences of concrete behaviours (signal
emissions/receptions) as altogether equivalent and atomic, and to call such a set simply
an abstract action. A process which may succeed in completing any of these "runs" at
the more concrete level will perform the abstract action then. This framework generalises
observational bel]aviours defining weak bisimulation, where any sequence from r*.a.r*,
with r a private actions, are to be seen as equal to a simple a.

Abstract actions gather in a new alphabet, called an Abtractlon Criterion. Abstracting
a process results in a system which is conceptually far simpler, and where meaningful
activities have been isolated. Pragmatical use of abstraction in "everyday" verification
often follows these lines: abstract actions are split in between "positive" ones, leading
to configurations of the system to be inquired; then some "negative" ones do represent
faulty behaviours which should certainly not take place there. The abstraction is then a
refutation attempt. But if the dreaded behaviours do nevertheless occur, they identify
a number of (abstract) questionable states, and also questionable behaviours leading to
them.

2.2 Data Objects and Types

Auto uses but a restricted number of objects classes, specially meaningful in the approach
of verit~cation by reduction. They are: Actions and Processes, Abstract Actions and
Criteria, Automata, Partitions, Pathes.

Processes and Abstract Actions are user-provided and enjoy an external syntax for
input to the system. Current algebraic processes syntax is adapted from Meije[Bou 85],
a language that extends CCS[Mil 80] to cope with the possibility of unrelated signals
taking place simultaneously. This leads to a full commutative group of actions in a
single step duration. On the other hand efforts are made to allow any process calculus
as legible syntax to Auto [MV 90]. Current abstract actlons syntax is based on regular
expressions notations, with as generators predicates on signal names. Words from the
entailed rational languages should be seen as sequences of behaviours. Full details may be
found in [BRSV 89]. These syntaxes may be output by the Autograph interface (described
later), from simple graphical representations.

Pathes are just sequences of transitions, alternating states with performed actions,
while starting and ending with a state.

Partitions are (most often disjoint) sets of sets of states, representing for instance

67

equivalence classes amongst all states of a given automaton. A partition is thus almost
always linked to a related automaton. In case the partition does not recover all states,
missing ones are supposed to share in the same additional class. A one-class partition
thus represents a predicate (or property) selecting a subset of an automaton state.

The relation from data structures to conceptual Auto activities is as follows: Processes
are expanded into automata by s t ruc tu ra l a u t o m a t a cons t ruc t ion , as defined in the
SOS rules formalism; Abstrac~ actions help define the reduc t ions to be applied on these
automata. Fortunately many short-hand notations for specific useful abstractions are also
implemented in Auto, so one rarely needs defining them from scratch. Still, dedicated
abstractions add power to the expressiveness of reductions; One subsequently extract ei-
ther partitions or p~thes through Analysis and Equiva lence checking, as informative
structures. Partitions collect classes of equivalent states, or lists of states enjoying a
given behavioural property. Pathes are generated in particular as indications of faulty
behaviours by application of '~abstraction as refutation"; Partitions and Pathes are rein-
terpreted and carried back to ther original process algebraic description by Re t r ieva l
of Resul t s . In this sense both should have in the future a syntactic description to be
handed back to graphical display. Another structure which is important to picture is the
reduced automaton itself, so that one checks whether the abstract system conforms the
expectation, or not.

2.3 A u t o as a s y s t e m

Auto is a small command language consisting of a main toplevel loop, storing results of
parsings and computations in global identifiers. Parsing commands, are used for entering
processes and abstract actions into Auto, possibly from Autograph; set commands are
used for computing (composition) of functions on objects already stored in the environ-
ment, binding the result to new identifier names. All this was described more thoroughly
in [BRSV 89].

2.4 I n p u t / o u t p u t

We stress here to a certain level of detail the formats Auto may use to exchange files with
wrious companion systems. Some were devised in the framework of the french C 3 project,
while others bridge and adapt to various european verification tools in the framework of
Esprit projects.

Auto supports textuM "easily" readable syntaxic formats for reading and writing terms
and automata in Meije (or CCS) syntax. While pleasant to deal with, this format suffers
two drawbacks: at reading, the parsing is time-consuming -specially on large automata-;
at writing, pretty-printing procedures make it space-consumlng instead. This format is
the one currently used from Autograph to Auto.

Concerning automata, there exists a specific "non-human-readable" format containing
exactly the lisp object, which is used for saving and restoring automata, or from the
reactive reM-time language Esterel to Auto IRes 90]. But future directions lay in the
definition of a common format (called f c in french) with the tools Mec[Arn 89] and
Aldebaran[Fer 87]. The format needs hardly parsing and proves fairly complete to carry

68

additional optional informations (and in the case of Auto to embed pathes and partitions
in their related automaton structure).

Now the situation is far less clear in the case of networks of processes, specially since
there is a broad variety of operators used there. First considerations on basic needs shall
be expressed while describing Autograph.

2 . 5 R e d u c t i o n s

All reductions are performed by merging states (of the same automaton), constructing
quotients from behavioural equivalence relations. These relations are possibly computed
on transformed automata, after abstraction of behaviours has taken place.

2.5.1 Abs t r ac t i ons

Behaviours abstraction functions in Auto are:

1. a b s t r a c t , which uses an abstract criterion as parameter.

2. t a u - s a t u r e , which completes transitions according to prefix or postfix tau transi-
tions (building r* and r*.a.r*).

Abs t r ac t results in an automaton on a new abstract alphabet, constructed while searching
iteratively the concrete one for sequences matching the abstract actions, t a n - s a t u r e is
only a useful short-hand for computing weak bisimulation.

2 .5 .2 Quotients

Semantical equivalences are defined on these refined automata and their behaviours. They
use fixpoints of relations, like bisimulations and other branching time semantics, or treat
full sequences of behaviours as experiments, like trace languages and other linear time
semantics [Gla 88]. All such semantics shall be congruences for all operators of the form
of [GV 89]. Such functions in Auto are:

1. mini for strong bisimulation congruence.

2. r e f ined-min i , starting from an initial partition.

3. obs for weak observational bisimulation congruence.

4. t au-s impl , which collapses r-cycles behaviours.

5. t r a c e for trace language congruence.

6. dterm for trace determinisation (without minimisation), congruence.

All these reductions take optional signal lists parameters, indicating which subset stays
visible. Other signals are renamed down to r. We could add a r e f i n e d - t r a c e functions,
using as parameter a one-class partition indicating terminal states. Obs is not primitive
and could be obtained as mini (t au - sa tu re (tau-s impl (. . . .

69

2 . 6 C o m p a r i s o n s a n d E q u i v a l e n c e s

We already described some equivalences used for minimizing automata. The same func-
tions may theoretically be used to compare two transition systems, depending whether
both initial states lie equivalent.

But here we want to collect informations in case of non equivalence. Supposing both
processes were first reduced to normal form, then the final partition retains only singleton
or couples as equivalent classes: couples represent equivalent states (one from each au-
tomaton), and singletons represent states without match (from either automaton). This
structure should be further queried, possibly interactively, or the subset of equivalent
states could be displayed graphically, or longest strings of unmatched behaviours running
only through singletons could be searched. More actual experiments are still due here.

The functions providing equivalence informations are few in Auto. One should re-
member that they may be combined with previous reduction functions to compose richer
equivalence checking.

1. eq provides a "yes/no" answer on bisimulation equivalence.

2. s t r o n g - p a r t i t i o n provides the list of equivalence classes.

Equivalence is only an instance of comparaison, observation and testing on an au-
tomata under analysis. Promising other directions are graphical specit~cations [BL 89].

2 . 7 R e t r i e v a l o f R e s u l t s a n d D i a g n o s t i c s

Results put to light by reductions and further analysis should now be lifted back to the
initial process terms. Pathes and state partitions will thus be provided "inverse images",
so to speak. As a way to attain this, we build a side structure from the shape of the
results and the actual combinations of reductions performed. We shall call guldeline such
a structure.

A guideline is a generalized automaton-like observer, safe that it includes additional
info in its states, possibly drawn from the process itself. In contrast, an observer is usually
required to be defined independantly from its observed system. Typical such info consists
in states that are allowed as configurations of the observed process while the guideline
reaches this state. Guidelines may also contain another sort of state information, namely
places it allows as terminated endpoints of abstract behaviours.

reduction function
Term or Automaton , Reduced Automaton

1~ analysis

Source info Pathes or P~rlition

~ svnthesis
retrieval

Uplifted Guideline , Guideline

As pictured above, the guideline shall be built going backward stucturally along the
chain of reductions performed. Some reductions will change its state space, others shall

70

add or transform transitions. In the end there shall always be the possibility of applying
it on the corresponding observed system of the same stage. Applying a guideline on a
process (or an automata) will consist in '~simulating" the observed process in a way that
will satisfy the guideline, or equivalently in a way constrained by the guideline. This
will identify which states, or behaviours, of the term under analysis, shall indeed project
themselves by reduction down to the chosen pathes or partition classes.

With this reconstruction philosophy the only information which needs be kept through
reductions is the relation from a state to the class of states that were mapped to it taking
the quotient. These states in Auto are formally encoded in a vector description of states in
the sequential automata components occurring in the early algebraic process description.

The operation induced by reduction functions on guidelines are actually quite simple:
quot ien ts replace in each state the set of allowed configurations of the analysed

system. It is replaced by its inverse image for the morphism associated with the quotient.
Abs t rac t ion replaces actual actions by their concrete actions regular sets counter-

parts. This induces new states in the guideline, and a need to indicate which sets may be
terminal as representative behaviours of the analysed process.

3 Autograph

3.1 P r e s e n t a t i o n

Autograph [RS 89] is a plain, non syntaxic graphical editor for pictures that are later
interpreted into process calculi terms. By this we mean that the drawings produced are
not structural -safe in particular spots-, and that coherency and structure are checked
only on demand, for translation into textual algebraic form. This allows the graphical
description to depart from strict ties to the textual one, including elliptic representation
conventions. This allow also semantics of drawings generated from few simple graphical
object types to be endowed with scarcely variant semantics, depending on the target
formalism and language. Autograph was started with the Meije algebra in mind, but
could give graphical versions to (process algebraic simple kernels of) Esterel[BG 87] and
Lotos[BB 89].

3 .2 Graphical Data Objects and Meanings
3.2.1 Graphics

Autograph works from menus and mouse selection of functions to be applied on graphical
objects. As in Auto, the object classes were kept to a bare minimum, highly common,
and endowed with graphical links properties which are fairly ad-hoc. They are: Boxes,
Ports, Vertices, Edges and Labels (not a graphical object)

Roughly, these few graphical elements represent all that was informally used in graph-
ical description of parallel systems (communicating automata) even before efforts were
made to embed them into an algebraic syntax formally, which was to lead to process
calculi theory.

Boxes are rectangles and represent subprocesses. Boxes next to one another are sup-
posedly set in parallel. Ports are circles, which may only be located on the boxes frames.

71

I

~ , --0 --,~ ~ - 0 ' " ' ' I ~ , , ~

Figure h a loosing and duplicating line of the Stenning protocol

They figure the connexion points for communication. Possible communications axe repre-
sented by edges drawned in between ports. So boxes, ports and edges build up networks
of processes, and recollect the structural operators features from process calculi. Figure
1 shows a network and automaton example.

Vertices are round-shaped and figure automata states. Transitions axe figured as edges
(just like connections in between ports). So edges are broken lines, whose ends imper-
atively fall both into states or ports. Vertices and edges thus create regular individual
processes, and recollect the dynamic behavioural operators features from process calculi.

3.2.2 Namings

All these elements may be named (or tagged) using labels. Labels appear on the screen
but are not conceived as graphical objects, that is they do not share the same uniform
internal treatment as other objects (in particular they may not be themselves named!).
Naming is not always imperative. Names serve different purposes depending on the type
of object they axe applied on:
• on boxes, they provide a global or local naming facility so that a description may
be shared in between several windows, and subterms instanciated in several locations.
Recursive terms (using themselves as subterms) may also be generated this way;
• on ports, they indicate the local name of the signal to be communicated upon. In
particular, all ports of named boxes referring to subsystems drawned elsewhere should be
named, and no other need be. This implies that Autograph takes care of all renamings to
avoid names clash and generate proper communications at translation into textual form.
Naming other ports still may help control this translation;
• on vertices, they help control the translation by providing user-defined identifiers for
the state names, which then become the vaxiables occurring in the (guarded right lineal')
recursive definition of automata term; they may also occur several time in the same
automaton (if only once with outgoing edges) and save drawing long ba.ckheaded arrows

72

through a multirepresentation of the same state.
• on edges, they provide on one hand labels for transitions, that are imperative (an edge
may actually be labelled several times, thus representing more than one transition); on
the other hand they allow naming of connections inter ports, to save drawings of line
connections and secure user-provided names at translation altogether. All ports locally
sharing connections with the same names are transitivally supposed to be connected. See
[Roy 89] for details. All connections pervading to the outside need to be named at this
level, to figure the way signals show externally and provide the sort of the description.

To recall, names are either: impera t ive , in the case of transition labels, innermost
boxes ports and empty subterms boxes; shor t -hand convent ions allowing recourse to
textual pointers links rather than common physical line joining, in the case of automata
states and communication connections; naming controls on the identifiers used at trans-
lation into process calculus syntax in the case of states, intermediate levels ports and
connections.

3.2.3 Addi t iona l semant ics

There is a default semantics (expressed as Meije or CCS terms) to the drawings, at least
the correct ones. Notions of correct drawings, together with all abuse of representation
allowed by Autograph, are out the scope of this paper and described in [Roy 89]. Briefly:
Boxes next to one another represent parallel substerms, containment of boxes represent
the subterm relation, edges without outside ports generate signal restrictions and edges
in between ports with different names generate relabeltings. Automata are even more
simply interpretedl

But this semantics may be altered, using a system of semantical annotations by func-
tions from a special menu, each time dedicated to a specific new calculus to represent.
This holds mostly of networks.

Justification for these annotations is drawned from the Ecrins [MdS 87] system, where
a syntaxic formalism is defined for creating new calculi through new operators. A new
operator is introduced by syntaxic considerations (name, binding power, type) and SOS
rules for semantics. The type is always of the form (Signals "~ @ Process ~) ~ Process.
So we may superpose a semantics (and even several if they may be disambiguated by
binding powers) with semantical markings: on a box (the target process), its ports (the
Signals parameters), its son boxes (the process arguments), their ports (these arguments
behaviours).

This part of Autograph is in development and shall be devclopped hopefully in the
final paper.

3 . 3 A . u t o g r a p h ~ s I n t e r f a c e

3.3.1 Menus and Funct ions

Autograph contains a number of menus (in its current version). Half are classical screen
and window management menus, including cut-and-paste of subdrawings and Postscript
dump of improved representations of both networks and antomata (with edges splined
up for instance). The other half is more specific to the edition of objects. There are
four such menus: Nets for boxes and ports, Automata for vertices, Edges for transitions

73

and connections, and Labels for namings. They all contain functions like select, m o v e ,

create, kill and so on...
There is a complet ion function in the Windows menu of Autograph, which checks for

coherency of drawings and construct the following records at nodes, whose fields may be
variant according to the T y p e field:

1. Type , the name of the corresponding operator (e.g. PAR, SEQ, AUTOMATON,
VAI%, LOCALDECL)

2. N a m e (mostly in case of variables and local process declarations).

3. F a t h e r n o d e for navigation.

4. S i g P a r a m e t e r s for the relevant arguments to the operator.

5. Sigl%ename because signals renamings, which introduce process instantiation, have
a specific representation in Autograph (by edges drawing).

6. In ternals for signals local scope binding, as in CCS restriction.

7. Sor t giving optionally the set of all visiblc signals at this subterm level

8. S u b P r o c e s s e s G r a p h identifying the subprocesses and optionally a relation in be-
tween them

.

10.

Loca lDec la redProces se s for local process definitions that are used in the subpro-
cesses graph (mostly in case of LOCALDECL operators).

A u t o m a t a for sequential automata components. These automata will correspond
after actual translation to entries in a "automata fc" table.

11. P r a g m a s for uninterpreted info (like graphical positions remainders).

3 . 3 . 2 I n p u t / o u t p u t

There is an additional variable menu in Autograph, or more exactly there are distinct
versions of Autograph, depending on a menu providing the semantic annotating and
translation functions to a given calculus format, or a companion verification systems (e.g.
Auto). In the future translation flmctions should all produce instances of a "common
format", prealgebraic. This is largely started for automata with the format described in
annex, fax less for networks. But globMly the format sho~d,l closely follow the records
structure produced by the previous complet ion function.

There is also a specific explore function, whose mode is in particular started while
inputting a description file which lacks geometrical features, for instance as provided by
Auto. Exploration of automata is an established functionality of Autograph. Exploration
of networks is being completed, and should be described in the full paper, as well as
exploration of pathes and par~it, ions on already displayed process descriptions. These
functions are immediate, provided an ~fc" input format for these objects is agreed on.

74

R e f e r e n c e s

[Am 89] A. Arnold "Mec: a System for Constructing and Analysing Transition Sys-
tems", in Acts of the Workshop on Automatic Verification Methods for Finite
State Systems, LNCS (1989)

[BFHP 89] B. Backlund, P. Forslund, O. Hagsand, B. Pehrson, "Generation of Graphic
Language-oriented Design Environments", 10th IFIP Protocol Specification,
Testing and Verification", Twente, North-Hooland (1989)

[BG 87] G. Berry, G. Gonthier, UThe Esterel Synchronous Programming Language:
Design, Semantics, Implementation", to appear in Comp. Sci. Prog. (1989)

[Bou 85] G. Boudol "Notes on algebraic calculi of processes", Logics and Models of
Concurrent Systems, NATO ASI Series F13,K. Apt, Ed. (1985)

[BRSV 89] G. Boudol, V. Roy, R. de Simone, D. Vergamini, "Process Calculi, from The-
ory to Practice: Verification Tools", in Acts of the Workshop on Automatic
Verification Methods for Finite State Systems, LNCS (1989)

[BL 89] G. Boudol, K. Larsen, "Graphical Versus Logical Specifications", INRIA Re-
search Report 1104 (1989).

[BB 89] E. Brinskma, T. Bolognesi, "Introduction to the ISO Specification Language
Lotos ", The Formal Description Technique Lotos, North-Holland (1989)

ICES 83] E.M. Clarke, E. Emerson, A. Sistla, "Automatic Verification of Finite-State
Concurrent Systems using Temporal Logic Specifications: a practical ap-
proach", Proc. 10th ACM POPL (1983).

[CPS 89] R. Cleaveland, J. Parrow, B. Streffen, "it semantics Based Verification Tool for
Finite State Systems", in Proceedings of the Ninth International Symposium
on Protocol Specification, Testing, and Verification, North-Holland (1989).

[Fer 87] J.C. Fernandez, "Aldebaran: un syst~me de v(rification par r(duetion de pro-
cessus communicants, French Thesis, IMAG Grenoble (1987).

[Gla 88] R. van Glabbeek "The Linear Time - Branching Time Spectrum", CWI Report
RvG 8801

[GW 891

[GV 89]

[GLZ 89]

R. van Glabbeek, W. Weijland, "Branching Time and Abstraction in Bislmula.
tion Semantics", Proceedings 1 lth IFIP World Comp. Congress, San Francisco
(1989).

J.F. Groote, F. Va~ndrager, "Structured Operational Semantics and Bisimu-
lation as a Congruence", Proceedings 16th ICALP, Stresa, LNCS (1989).

J. Godskesen, K. Larsen, M. Zeeberg, "TA V (Tools for Automatic Verification)
Users Manual", University of Aalborg R 89-19 (1989).

[MV 90]

[Mil 80]

[Mil 83]

[MdS 87]

[Res 90]

[Roy 89]

[RS 89]

[sv sg]

75

E. Madelnine, D. Vergamini, "Finiteness Conditions and Structural Construc-
tion of Automata for all Process Algebras", this volume (1990)

R. Milner "A Calculus of Communicating Systems", LNGS 92, Springer-
Verlag (1980)

R. MUner "Calculi for Synchrony and Asynchrony", TCS 25, (1983)

E. Madelaine, R. de Simone, "Ecrins, un Laboratoire de Preuve pour les Cal-
culs de Processus", (in french), Inria Research Report 672 (1987).

A. Ressouche, "Ocauto", Esterel Technical Documents, CMA-Ecoles des Mines
(Sophia-Antipolis) (1990).

V. Roy, "Autograph: un Outil d'Analyse Graphique de Processus Paralldles
Communicants", French Thesis, Universitd de Nice (1990)

V. Roy, R. de Simone, "An Autograph Primer", LN.R.LA. Technical Report
11e, (1989)

1%. de Simone, D. Vergamini "Aboard Auto", LN.R.LA. Technical Report 111
(1989)

