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Abstract .  Graph drawings are a basic component of user interfaces that 
display relationships between objects. Generating incrementally stable lay- 
outs is important for many applications. This paper describes D y n a D A G ,  
a new heuristic for incremental layout of directed acyclic graphs drawn as 
hierarchies, and its application in the DynaGraph system. 

1 I n t r o d u c t i o n  

Effective techniques have been developed for some important families of graph lay- 
outs, such as hierarchies, planar embeddings, orthogonal grids and forced-directed 
(spring) models [1]. These techniques have been incorporated in practical user inter- 
faces that display static diagrams of relationships between objects [19, 18, 17]. 

Static diagrams are not completely satisfactory because in many situations, the 
displayed graphs can change. Three common scenarios are: 

Manua l  edi t ing .  Most interactive graph drawing systems allow users to man- 
ually insert and delete nodes and edges. Layouts must be updated dynamically to 
reflect such changes. 

Brows ing  large graphs .  When only static layout is available, browsing large 
graphs usually means drawing the entire graph and then viewing portions in a win- 
dow with pan and zoom controls, fisheye lenses, etc. The problem is that the section 
in the current window may not be very informative. For example it may contain edge 
segments whose endpoint nodes are outside the window, or nodes whose placement 
can be rationalized globally but not locally. Incremental layout offers the alternative 
of directly adjusting the set of displayed objects to make informative displays. 

Visual iz ing d y n a m i c  graphs .  Often, data being visualized is subject to change. 
In our experience with the d o t t y  system, we found many applications for graph an- 
imations: 

- C I A O  is a program database that displays dependencies between the types, data, 
functions and files in a C or C§ § program [6]. Programs change throughout their 
life-cycle as they are debugged, maintained, and improved, so graph views should 
reflect such changes. 

- I m p r o v i s e  is a multimedia viewer for software process models [11]. These models 
are incrementally corrected and refined. Users report that stable incremental 
layout and manual editing of diagrams are essential. 

- L D B X  is a prototype graphical debugger that runs on an unmodified dbx text- 
based debugger [17]. It displays data structure graphs. Records are drawn as 
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nested boxes containing primitive data or pointer fields. Pointers may be traced 
interactively, or automatically by the system, yielding incremental graph up- 
dates. 

- V P M  displays distributed programs as graphs [4]. Processes and resources are 
drawn as nodes. Edges represent dependence and communication. Subgraphs 
(that is, zones  [1(3] or c lus ters  [16]) show distribution across hosts. V P M  would 
benefit greatly from stable incremental graph layout. Furthermore, graph up- 
dates are issued at an exceptionally high rate (the rate of system call issue) so 
efficiency is critical. 

Most graph drawing algorithms to date are not incrementally stable. They usually 
apply batch techniques to optimize objectives such as reducing total edge crossings 
or edge length. A small change in the input set, even just its ordering, may yield 
unpredictable, instable changes between successive layouts. This may occur even if 
a previous layout is taken as a starting configuration. The results can be confusing 
when viewing a sequence of layouts. An example is shown in fig. 1 made by an 
extension of the algorithm of Sugiyama et al [20]. Graphs (a) and (b) differ by only 
one edge. Although the drawing could be updated by moving a subgraph downward, 
as shown in (c), the layout system makes more drastic, unnecessary changes. 

Most of our applications involve software engineering diagrams drawn hierarchi- 
cally, so our immediate goal is to "incrementalize" our variant of Sugiyama's hier- 
archical drawing algorithm. Some similar issues, though, are encountered in making 
other kinds of layouts incrementally. 

2 P r e v i o u s  W o r k  

Significant progress has been made in drawing dynamic trees [15] (using subtree 
contours), planar graphs [2] and series-parallel graphs [7]. Although these are useful 
techniques for these restricted classes of graphs, they are not directly applicable to 
general graph drawing. 

Hornick, Miriyala and Tamassia describe a practical incremental edge router for 
orthogonal drawings, such as entity-relation diagrams [14]. Nodes are placed exter- 
nally (typically, by the user); the system routes edges incrementally by a shortest- 
path technique that accounts for edge length, crossings, and number of bends. The 
technique would have to be extended to handle automatic node placement and ad- 
justing layouts to make space for new objects. 

Lyons describes a way of incrementally improving layouts of undirected graphs 
such as those made by force directed modeling with unconstrained optimization [13]. 
The idea is to adjust regions where nodes are too close by computing Voronoi sets 
around each node and moving each node that has a conflict to a better place within 
its region. Because each node moves to a point that is closer to its old position 
than to any other node, faces are preserved. This technique is claimed to give better 
and more stable results than alternatives, such as re-solving a spring model with 
adjustments in springs intended both to force overlapping nodes apart, and to anchor 
nodes to their original positions. Lyons' algorithm is effective for this problem, but 
does not address how to maintain stability if the underlying graphs change. Also, 
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virtual physical modeling is somewhat limited by the characteristic that all edges 
tend toward unit length. 

Newbery and Bohringer show how to add stability constraints to graphs drawn 
by a batch technique in the Edge system using Sugiyama's directed graph drawing 
algorithm [20, 3]. After making an initial layout, intra-rank node ordering constraints 
are appended. If u, v are neighbors on rank r, they will appear in the same order 
in succeeding layouts as long as they stay on r. Adding such constraints is a good 
step toward making stable layouts of directed graphs, but preserving this ordering 
is not difficult if one assumes an on-line layout algorithm. The more fundamental 
problem is how to adjust layouts when groups of nodes must change ranks, and how 
to maintain geometric stability. 

3 Incremental layout 

3.1 Goals  

The basic problem is, given a sequence of graphs 

Go,G1,G2,... ,G, 
interpreted as successive versions of G, find a "good" sequence of layouts 

L0, L1, L2,. �9 �9 Ln 

where each L~ is a drawing of G~. An update G~ ~ G~+I may be written Ui - 
(V+, V - ,  E+ ,  E - )  where these are sets of nodes and edges inserted and deleted. 

There are important advantages if Li+l resembles Li: 

- Users can retain a persistent "mental map" [8]. 
- Graphical updates reflect actual changes in the data. 
- Large layouts can potentially be updated quickly. 

The first two properties concern effective data visualization. In any context, vi- 
suaiization should help reveal meaningful patterns in data while avoiding irrelevancy 
and display artifacts. Efficiency is also desirable but not particularly important at 
this stage until the right problem has been identified. 

While stability is important, it is not the only desirable characteristic for incre- 
mental layouts. We propose the following, in order of importance: 

- consistency 
- stability 
- readability 

Consistency or adherence to layout style rules is most important because the dis- 
played diagram should always reveal properties of interest. Otherwise, visualization 
is pointless. For example, if the purpose of visualization is to demonstrate that a 
given graph is a tree, DAG, planar, or embeddedable in a grid, the diagram should 
always capture this property. If consistency is relaxed or abandoned, successive in- 
cremental layouts could quickly become obscure, ambiguous, or even incorrect. The 
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second property, stability, refers to a principle of least change between successive 
diagrams, subject to consistency. Readability refers to other properties to make di- 
agrams pleasing and easy to read. 

Assuming that consistency is more important than stability, then edits that cause 
fundamental changes in graph structure may be expected to cause large changes in 
layouts in order to maintain consistency. As a simple example, if a display shows two 
trees in a conventional downward drawing, and an edge is inserted that makes one 
tree become a subtree of the other, consistency requires moving the entire subtree, 
no matter how large. Thus, stability implies weak constraints on node and edge 
placement. This is a useful view because weak constraints may also reflect user- 
specified object placement requests. 

3.2 Graph updates 

An important question is what updates U~ to allow. Some possibilities include: arbi- 
trary updates, single node or edge operations, append-only updates, homeomorphic 
expansion and subgraph abstraction (collapsing a subgraph into a node or restoring 
the subgraph [5, 18]). 

3.3 Look-a he a d  

Often the entire sequence Go... Gi is known in advance. This should be important 
information and it is available whenever an animation is made off-line. In other 
situations, some look-ahead may be available, such as when updates are batched. 

3.4 Stability 

A key question is how to characterize stability between layouts. The answer depends 
on how people perceive and remember the structure of diagrams. For now we assume 
that important factors include: 

- position (geometry) 
- order (topology) 

Geometry and order can be considered absolute properties, or relative to a neigh- 
borhood, such as the set of logically or geometrically adjacent nodes. An interesting 
proposition is that node stability is more crucial than edge stability. The rationale 
is that nodes are sites that users learn and return to in a diagram, while edges are 
generally traced on the fly to discover connections, and consequently their routing is 
less important. (Some researchers have suggested that interactive displays of dense 
layouts can be improved by making only a small subset of edges visible at a time.) 
If this is true, it seems advantageous to adjust edge routes aggressively to improve 
layouts, but move nodes more conservatively. 

Locality (spatial and temporal) is often relevant in designing user interfaces. For 
graph layout, if a node is in the geometric or logical neighborhood of another that 
was recently updated, it may be a better candidate for update than a node that is 
not in any such neighborhood. Likewise, a node that was recently moved may be a 
better candidate for another update than one that was not recently adjusted. This 
suggests using "age" or "memory" to control stability over time. 
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3.5 Disp lay  u p d a t e  

Smooth animation is often easier to understand than instantaneously switching im- 
ages in a display. This means extending 

Li -'* Lio, Lil ,  �9 �9 �9 Li~ 

to perform in-betweening. For smooth animation, s o m e  Li~ may be inconsistent 
with the layout rules. Some nodes may overlap other nodes or edges as they are 
moving. Because it is cumbersome to support this directly in a layout system that 
assumes consistent diagram structure, we propose to separate the logical layout and 
physical display. The physical update layer is also an appropriate place to implement 
cues that emphasize updates, such as blinking or changing color. 

4 D y n a D A G  H e u r i s t i c  

4.1 Ove rv i ew 

D y n a D A G  is an incremental heuristic for drawing ranked digraphs, based on previous 
refinements to Sugiyama's heuristic [21, 9]. In the following discussion, we assume 
graphs are drawn in levels numbered from top to bottom, and that long edges are 
broken into chains of virtual nodes on adjacent ranks. DynaDAG preserves stability 
geometrically (exactly) and topologically (heuristically). It does not yet incorporate 
temporal information nor a separate display update module, but it is a suitable 
testbed for such future experiments. 

As a simplifying assumption, DynaDAG supports only these operations: 

{ insert I optimize I delete } x {node I edge} 

More complex updates must be decomposed into these primitives. Our underlying 
hypothesis was that this decomposition yields good incremental layouts. This turned 
out to be partially correct, but an unnecessary restriction. The internal primitives 
of the heuristic do operate on only one node or edge at a time. On the other hand, 
applications often require performing a number of updates at once. In retrospect, 
it would make more sense to collect the updates and perform them together. This 
would not involve many changes to the heuristic. 

The procedure insert_node (with an optional edge set) is most interesting because 
it may potentially involves moving many pre-existing nodes and edges. There are 
several phases. A rank assignment is determined for the incoming node. Pre-existing 
nodes and edges are adjusted to be consistent with this assignment. As a simplifying 
assumption, we compute new rank assignments by DFS and only move nodes down- 
ward. A reasonable enhancement would be to re-solve the global rank assignment 
problem and allow moving some nodes upward, symmetric to the downward case. 
Finally, the new node is installed with local optimization of its position and that of 
adjacent edges. 

make_feasible moves an individual node to a different rank. First, the node is 
moved to the same X coordinate in the adjacent rank. Second, it is shifted right or 
left so that its label is locally consistent with the median sort order of nodes in the 
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new rank. This process is iterated until the node reaches its destination. Finally, the 
node's adjacent edges are updated by adjusting (shrinking, moving, or stretching) 
the virtual node chain. Virtual nodes are moved by a similar heuristic. Informally, 
when a node moves upward or downward, it follows a "valley" in the median function. 

DynaDAG contains two heuristics that find edge routes. The first applies a vari- 
ant of the median sort heuristic to any nodes and edges of the graph marked as 
movable with the rest of the configuration held fixed. The second heuristic routes 
individual edges by exhaustive search using limited backtracking [12]. 

upd,te_geometr~ employs a form of linear programming for node coordinate as- 
signment. This technique was previously introduced in dot. As illustrated in fig. 3, 
given an initial ranking, there is a way of adding a variables and two constraint 
edges to impose a linear penalty for moving a node from its old assignment. The 
construction involves creating an additional node as an anchor or reference point for 
the layout. The minimum lengths of the edges marked/~ reflect the stable coordinate. 
The stable coordinate is 2.0 for u and 4.0 for v and w. In this figure, an additional 
constraint has been introduced between r and ~v that forces at least one of them to 
move away from its old position. The cost of this adjustment is set by the weights 
of the auxiliary edges. (A coarse approximation of a non-linear penalty could thus 
be simulated by summing linear terms.) 

procedure insert_node(view, user_node, edge_set, h i n t _ c o o r d )  
{ 

/ /  ~apnode to its iayout representati~e 
v - l a y o u t _ n o d e ( v i e w ,  user_node); 

range = feasible_ranks(v, edge_set); 
if feasible(range) 

r a n k  = c h o o s e _ r a n k ( v , h i n t _ c o o r d . y ) ;  
else 

{ rank = low(range); make_feasible(v,rank); } 

i f  i s _ v a l i d _ p o i n t ( h i n t _ c o o r d )  pos  = h i n t _ c o o r d . x ;  
else pos = mean_x(adjacent(v,edge_set)); 

i n s t a l l _ n o d e ( v i e w , v , p o s ) ;  
i n s t a l l _ e d g e s ( e d g e _ s e t ) ;  
o p t _ n e i E h b o r h o o d ( v , i s _ v a l i d _ p o i n t ( h i n t _ c o o r d ) ) ;  
u p d a t e _ g e o m e t r y ( v i e w ) ;  

procedure insert_edge(view, orig_edge) 
{ 

u = l a y o u t _ n o d e ( v i e w ,  t a i l ( o r i g _ e d g e ) ) ;  
v - l a y o u t _ n o d e ( v i e w ,  h e a d ( o r i g _ e d E e ) )  ; 

i f  p a t h _ e x i s t s ( v , u )  {temp = u;  u = v; v = t empi}  
e - l a y o u t _ e d g e ( v i e w ,  u ,  v ) ;  

i f  r a n k o f ( u )  + m i n l e n ~ h ( e )  �9 r a n k o f ( v )  
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m a k e _ f e a s i b l e ( v ,  r ankof (u )  + m i n l e n E t h ( e ) )  ; 

r o u t e _ e d g e ( e ) ;  
upda te_geomet ry (v iew) ;  

p rocedure  m a k e _ f e a s i b l e ( v ,  v_rank) 

by DFS, f i n d  new ranks  of  nodes i n  G w . r . t ,  v on v_rank 
MS s ~ u i n  G : newrank(u) != o ld rank(u )  } 
f o r  u i n  MS 

move_node_dogn(u,nevrank(u))  
for u in MS 

for �9 in adjacent_edges(u) 

a d j u s t _ e d g e ( e )  

p rocedure  move_node_down(v,ne~rank) 

x = p o s i t i o n ( v ) . x ;  
for i = oldrank(v) + I t o  n e ~ a ~ ( v )  { 

set_medians(G,i); 

/ /  place "and'reopt makes a new leaf under v at 
/ /  the same x coordinate, moves it to a locally 
/ /  optimal position, and replaces the leaf with v. 
�9 ffi p l a c e _ e m d _ r e o p ~ ( v , i ) ;  

} 

procedure  a d j u s t _ e d g e ( e )  
{ 

compute s h r i n k ,  same, s t r e t c h  seEment s i z e s  of �9 
r - o l d r a n k ( t a i l ( e ) )  + 1; 
for i - I t o  shrink 

{ delete_vnode(e,r); r - r + 1; } 

for i - I to same 

{ move_node_dogn(vnode(e,r),r+l); r = r § 1; } 

for i - 1 to stretch 

{ copy.node_dovn(vnode(e,r),r+l); r - r § I; } 

procedure  op t_ne ighborhood(node ,  node_is_movable)  
{ 

i f  node_is_movable  
set_movable(node,TRUE);  

f o r  �9 i n  edges (node)  
set_movable(e,TRUE);  / /  t~r;ode chain 

range  - movable_reg ion(node)  ; 
f o r  i t e r  - 1 $o MAXITER { 

f o r  r - r a n g e . l o s  t o  r a n g e . h i g h  
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optimize_rank(r,r-1) ; [/ use in-edges 
for r = range.high downto range.low 

optimize_rank(r,r+1) ; // use out.edges 
} 

se t_movable(n ,FALSE);  
for �9 in edges(node) 

se t_movable(e ,FALSE);  

procedure updaZe_geome~ry(view) 
{ 

/ /  update the auxiliary constraint graph 
r = low_rank(view); 
while (r <= high_rank(view)) { 

v_left = leftmost_node(view, r); 
while (v_left) { 

constrain_prevposition(v_left); 
constrain.outedge_cost(v_left); 
v_right = right_neighbor(v_left); 
if v_right 

constrain_separation(v_left,v_right); 
v_right = v_left; 
v_left = right_neighbor(v_left); 

} 
r m 

} 
r + l ;  

/ /  invoke network sirnplez coordinate solver 
ns_solve (view) ; 
/ /  node and edge callbacks can be done here 

This heuristic has some useful properties. Its internal primitives are not diificult 
to program. Some can be applied individually, opening the way to explore higher- 
level incremental update strategies, for example, allowing a heuristic or the user 
to identify specific nodes and edges to be re-optimized. Further, using linear con- 
stralnts and weights to solve coordinates gives precise control of tradeoffs between 
consistency, stability, and readability and yields predictable results. 

Figure 4 shows frames from an animation created by incrementally; inserting all 
the nodes and edges of an example graph. Most updates are apparently stable; an 
exception can be found between frames 26 and 27, where there is a larger adjustment, 
but other parts of the layout still closely resemble previous frames. 

4.2 I n c r e m e n t a l  Layout  Sys t ems  

We implemented DynaDAG and several other algorithms to provide that provide 
an incremental layout service through a library interface (DynaGraph). The other 
algorithms include an implementation of the Hornick-Miriyala-Tamassia orthogonal 
embedder, and a spring embedder with a constraint enforcement heuristic (following 
Lyons [13]). In DynaGraph's model, an abstract graph may have one or more inde- 
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pendent views, each containing a subset of the base graph. DynaGraph deals only 
with graphs and coordinates, and is window-system independent. 

We created several compatible graph viewers on top of this interface. DynaGraph 
is an OLE-compliant Microsoft Windows graph viewer. 1 It  can act as a server, man- 
aging active diagrams embedded in other documents, and as a client allowing exter- 
nal objects to be embedded as nodes. This greatly simplifies integration of hypertext 
documents or multimedia clips in graph diagrams. 

dged is a programmable front end implemented in the Unix TCL/ tk  environment. 2 
Fig. 2 is a sample of some output frames in a sequence that  was created by inserting 
new nodes and edges. (In this execution of DynaDAG, stability of absolute coordi- 
nates was intentionally disabled on nodes that change ranks to see how this affects 
displays.) dged supports multiple views maintained in synchrony by different layout 
engines. Its intended use is to construct prototype network management utilities. 

5 Conclus ion 

DynaDAG is a heuristic for hierarchical layout of directed graphs that incorporates 
geometric and topological stability. It incorporates a heuristic to move nodes be- 
tween adjacent ranks, based on median sort. The heuristic is effective for viewing 
incremental layouts of graphs of at least several dozen nodes, though further tuning 
is needed. Experience with a working implementation in real applications offers in- 
valuable guidance. The heuristic does not use look-ahead, temporal information, or 
adaptive update strategies; there is a good opportunity for further work here. 

There are many factors that may affect how users perceive stability in graph 
drawings. More work is needed to understand what properties are most important, 
and to find efficient incremental layout algorithms for general graphs. 
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