
Incremental Layout in DynaDAG

Stephen C. North
north@research.att.com

Software and Systems Research Center
AT&T Bell Laboratories

Murray Hill, N.J. 07974 U.S.A.

Abstract . Graph drawings are a basic component of user interfaces that
display relationships between objects. Generating incrementally stable lay-
outs is important for many applications. This paper describes D y n a D A G ,
a new heuristic for incremental layout of directed acyclic graphs drawn as
hierarchies, and its application in the DynaGraph system.

1 I n t r o d u c t i o n

Effective techniques have been developed for some important families of graph lay-
outs, such as hierarchies, planar embeddings, orthogonal grids and forced-directed
(spring) models [1]. These techniques have been incorporated in practical user inter-
faces that display static diagrams of relationships between objects [19, 18, 17].

Static diagrams are not completely satisfactory because in many situations, the
displayed graphs can change. Three common scenarios are:

Manua l edi t ing . Most interactive graph drawing systems allow users to man-
ually insert and delete nodes and edges. Layouts must be updated dynamically to
reflect such changes.

Brows ing large graphs . When only static layout is available, browsing large
graphs usually means drawing the entire graph and then viewing portions in a win-
dow with pan and zoom controls, fisheye lenses, etc. The problem is that the section
in the current window may not be very informative. For example it may contain edge
segments whose endpoint nodes are outside the window, or nodes whose placement
can be rationalized globally but not locally. Incremental layout offers the alternative
of directly adjusting the set of displayed objects to make informative displays.

Visual iz ing d y n a m i c graphs . Often, data being visualized is subject to change.
In our experience with the d o t t y system, we found many applications for graph an-
imations:

- C I A O is a program database that displays dependencies between the types, data,
functions and files in a C or C§ § program [6]. Programs change throughout their
life-cycle as they are debugged, maintained, and improved, so graph views should
reflect such changes.

- I m p r o v i s e is a multimedia viewer for software process models [11]. These models
are incrementally corrected and refined. Users report that stable incremental
layout and manual editing of diagrams are essential.

- L D B X is a prototype graphical debugger that runs on an unmodified dbx text-
based debugger [17]. It displays data structure graphs. Records are drawn as

410

nested boxes containing primitive data or pointer fields. Pointers may be traced
interactively, or automatically by the system, yielding incremental graph up-
dates.

- V P M displays distributed programs as graphs [4]. Processes and resources are
drawn as nodes. Edges represent dependence and communication. Subgraphs
(that is, zones [1(3] or c lus ters [16]) show distribution across hosts. V P M would
benefit greatly from stable incremental graph layout. Furthermore, graph up-
dates are issued at an exceptionally high rate (the rate of system call issue) so
efficiency is critical.

Most graph drawing algorithms to date are not incrementally stable. They usually
apply batch techniques to optimize objectives such as reducing total edge crossings
or edge length. A small change in the input set, even just its ordering, may yield
unpredictable, instable changes between successive layouts. This may occur even if
a previous layout is taken as a starting configuration. The results can be confusing
when viewing a sequence of layouts. An example is shown in fig. 1 made by an
extension of the algorithm of Sugiyama et al [20]. Graphs (a) and (b) differ by only
one edge. Although the drawing could be updated by moving a subgraph downward,
as shown in (c), the layout system makes more drastic, unnecessary changes.

Most of our applications involve software engineering diagrams drawn hierarchi-
cally, so our immediate goal is to "incrementalize" our variant of Sugiyama's hier-
archical drawing algorithm. Some similar issues, though, are encountered in making
other kinds of layouts incrementally.

2 P r e v i o u s W o r k

Significant progress has been made in drawing dynamic trees [15] (using subtree
contours), planar graphs [2] and series-parallel graphs [7]. Although these are useful
techniques for these restricted classes of graphs, they are not directly applicable to
general graph drawing.

Hornick, Miriyala and Tamassia describe a practical incremental edge router for
orthogonal drawings, such as entity-relation diagrams [14]. Nodes are placed exter-
nally (typically, by the user); the system routes edges incrementally by a shortest-
path technique that accounts for edge length, crossings, and number of bends. The
technique would have to be extended to handle automatic node placement and ad-
justing layouts to make space for new objects.

Lyons describes a way of incrementally improving layouts of undirected graphs
such as those made by force directed modeling with unconstrained optimization [13].
The idea is to adjust regions where nodes are too close by computing Voronoi sets
around each node and moving each node that has a conflict to a better place within
its region. Because each node moves to a point that is closer to its old position
than to any other node, faces are preserved. This technique is claimed to give better
and more stable results than alternatives, such as re-solving a spring model with
adjustments in springs intended both to force overlapping nodes apart, and to anchor
nodes to their original positions. Lyons' algorithm is effective for this problem, but
does not address how to maintain stability if the underlying graphs change. Also,

411

virtual physical modeling is somewhat limited by the characteristic that all edges
tend toward unit length.

Newbery and Bohringer show how to add stability constraints to graphs drawn
by a batch technique in the Edge system using Sugiyama's directed graph drawing
algorithm [20, 3]. After making an initial layout, intra-rank node ordering constraints
are appended. If u, v are neighbors on rank r, they will appear in the same order
in succeeding layouts as long as they stay on r. Adding such constraints is a good
step toward making stable layouts of directed graphs, but preserving this ordering
is not difficult if one assumes an on-line layout algorithm. The more fundamental
problem is how to adjust layouts when groups of nodes must change ranks, and how
to maintain geometric stability.

3 Incremental layout

3.1 Goals

The basic problem is, given a sequence of graphs

Go,G1,G2,... ,G,
interpreted as successive versions of G, find a "good" sequence of layouts

L0, L1, L2,. �9 �9 Ln

where each L~ is a drawing of G~. An update G~ ~ G~+I may be written Ui -
(V+, V - , E+ , E -) where these are sets of nodes and edges inserted and deleted.

There are important advantages if Li+l resembles Li:

- Users can retain a persistent "mental map" [8].
- Graphical updates reflect actual changes in the data.
- Large layouts can potentially be updated quickly.

The first two properties concern effective data visualization. In any context, vi-
suaiization should help reveal meaningful patterns in data while avoiding irrelevancy
and display artifacts. Efficiency is also desirable but not particularly important at
this stage until the right problem has been identified.

While stability is important, it is not the only desirable characteristic for incre-
mental layouts. We propose the following, in order of importance:

- consistency
- stability
- readability

Consistency or adherence to layout style rules is most important because the dis-
played diagram should always reveal properties of interest. Otherwise, visualization
is pointless. For example, if the purpose of visualization is to demonstrate that a
given graph is a tree, DAG, planar, or embeddedable in a grid, the diagram should
always capture this property. If consistency is relaxed or abandoned, successive in-
cremental layouts could quickly become obscure, ambiguous, or even incorrect. The

412

second property, stability, refers to a principle of least change between successive
diagrams, subject to consistency. Readability refers to other properties to make di-
agrams pleasing and easy to read.

Assuming that consistency is more important than stability, then edits that cause
fundamental changes in graph structure may be expected to cause large changes in
layouts in order to maintain consistency. As a simple example, if a display shows two
trees in a conventional downward drawing, and an edge is inserted that makes one
tree become a subtree of the other, consistency requires moving the entire subtree,
no matter how large. Thus, stability implies weak constraints on node and edge
placement. This is a useful view because weak constraints may also reflect user-
specified object placement requests.

3.2 Graph updates

An important question is what updates U~ to allow. Some possibilities include: arbi-
trary updates, single node or edge operations, append-only updates, homeomorphic
expansion and subgraph abstraction (collapsing a subgraph into a node or restoring
the subgraph [5, 18]).

3.3 Look-a he a d

Often the entire sequence Go... Gi is known in advance. This should be important
information and it is available whenever an animation is made off-line. In other
situations, some look-ahead may be available, such as when updates are batched.

3.4 Stability

A key question is how to characterize stability between layouts. The answer depends
on how people perceive and remember the structure of diagrams. For now we assume
that important factors include:

- position (geometry)
- order (topology)

Geometry and order can be considered absolute properties, or relative to a neigh-
borhood, such as the set of logically or geometrically adjacent nodes. An interesting
proposition is that node stability is more crucial than edge stability. The rationale
is that nodes are sites that users learn and return to in a diagram, while edges are
generally traced on the fly to discover connections, and consequently their routing is
less important. (Some researchers have suggested that interactive displays of dense
layouts can be improved by making only a small subset of edges visible at a time.)
If this is true, it seems advantageous to adjust edge routes aggressively to improve
layouts, but move nodes more conservatively.

Locality (spatial and temporal) is often relevant in designing user interfaces. For
graph layout, if a node is in the geometric or logical neighborhood of another that
was recently updated, it may be a better candidate for update than a node that is
not in any such neighborhood. Likewise, a node that was recently moved may be a
better candidate for another update than one that was not recently adjusted. This
suggests using "age" or "memory" to control stability over time.

413

3.5 Disp lay u p d a t e

Smooth animation is often easier to understand than instantaneously switching im-
ages in a display. This means extending

Li -'* Lio, Lil , �9 �9 �9 Li~

to perform in-betweening. For smooth animation, s o m e Li~ may be inconsistent
with the layout rules. Some nodes may overlap other nodes or edges as they are
moving. Because it is cumbersome to support this directly in a layout system that
assumes consistent diagram structure, we propose to separate the logical layout and
physical display. The physical update layer is also an appropriate place to implement
cues that emphasize updates, such as blinking or changing color.

4 D y n a D A G H e u r i s t i c

4.1 Ove rv i ew

D y n a D A G is an incremental heuristic for drawing ranked digraphs, based on previous
refinements to Sugiyama's heuristic [21, 9]. In the following discussion, we assume
graphs are drawn in levels numbered from top to bottom, and that long edges are
broken into chains of virtual nodes on adjacent ranks. DynaDAG preserves stability
geometrically (exactly) and topologically (heuristically). It does not yet incorporate
temporal information nor a separate display update module, but it is a suitable
testbed for such future experiments.

As a simplifying assumption, DynaDAG supports only these operations:

{ insert I optimize I delete } x {node I edge}

More complex updates must be decomposed into these primitives. Our underlying
hypothesis was that this decomposition yields good incremental layouts. This turned
out to be partially correct, but an unnecessary restriction. The internal primitives
of the heuristic do operate on only one node or edge at a time. On the other hand,
applications often require performing a number of updates at once. In retrospect,
it would make more sense to collect the updates and perform them together. This
would not involve many changes to the heuristic.

The procedure insert_node (with an optional edge set) is most interesting because
it may potentially involves moving many pre-existing nodes and edges. There are
several phases. A rank assignment is determined for the incoming node. Pre-existing
nodes and edges are adjusted to be consistent with this assignment. As a simplifying
assumption, we compute new rank assignments by DFS and only move nodes down-
ward. A reasonable enhancement would be to re-solve the global rank assignment
problem and allow moving some nodes upward, symmetric to the downward case.
Finally, the new node is installed with local optimization of its position and that of
adjacent edges.

make_feasible moves an individual node to a different rank. First, the node is
moved to the same X coordinate in the adjacent rank. Second, it is shifted right or
left so that its label is locally consistent with the median sort order of nodes in the

414

new rank. This process is iterated until the node reaches its destination. Finally, the
node's adjacent edges are updated by adjusting (shrinking, moving, or stretching)
the virtual node chain. Virtual nodes are moved by a similar heuristic. Informally,
when a node moves upward or downward, it follows a "valley" in the median function.

DynaDAG contains two heuristics that find edge routes. The first applies a vari-
ant of the median sort heuristic to any nodes and edges of the graph marked as
movable with the rest of the configuration held fixed. The second heuristic routes
individual edges by exhaustive search using limited backtracking [12].

upd,te_geometr~ employs a form of linear programming for node coordinate as-
signment. This technique was previously introduced in dot. As illustrated in fig. 3,
given an initial ranking, there is a way of adding a variables and two constraint
edges to impose a linear penalty for moving a node from its old assignment. The
construction involves creating an additional node as an anchor or reference point for
the layout. The minimum lengths of the edges marked/~ reflect the stable coordinate.
The stable coordinate is 2.0 for u and 4.0 for v and w. In this figure, an additional
constraint has been introduced between r and ~v that forces at least one of them to
move away from its old position. The cost of this adjustment is set by the weights
of the auxiliary edges. (A coarse approximation of a non-linear penalty could thus
be simulated by summing linear terms.)

procedure insert_node(view, user_node, edge_set, h i n t _ c o o r d)
{

/ / ~apnode to its iayout representati~e
v - l a y o u t _ n o d e (v i e w , user_node);

range = feasible_ranks(v, edge_set);
if feasible(range)

r a n k = c h o o s e _ r a n k (v , h i n t _ c o o r d . y) ;
else

{ rank = low(range); make_feasible(v,rank); }

i f i s _ v a l i d _ p o i n t (h i n t _ c o o r d) pos = h i n t _ c o o r d . x ;
else pos = mean_x(adjacent(v,edge_set));

i n s t a l l _ n o d e (v i e w , v , p o s) ;
i n s t a l l _ e d g e s (e d g e _ s e t) ;
o p t _ n e i E h b o r h o o d (v , i s _ v a l i d _ p o i n t (h i n t _ c o o r d)) ;
u p d a t e _ g e o m e t r y (v i e w) ;

procedure insert_edge(view, orig_edge)
{

u = l a y o u t _ n o d e (v i e w , t a i l (o r i g _ e d g e)) ;
v - l a y o u t _ n o d e (v i e w , h e a d (o r i g _ e d E e)) ;

i f p a t h _ e x i s t s (v , u) {temp = u; u = v; v = t empi}
e - l a y o u t _ e d g e (v i e w , u , v) ;

i f r a n k o f (u) + m i n l e n ~ h (e) �9 r a n k o f (v)

415

m a k e _ f e a s i b l e (v , r ankof (u) + m i n l e n E t h (e)) ;

r o u t e _ e d g e (e) ;
upda te_geomet ry (v iew) ;

p rocedure m a k e _ f e a s i b l e (v , v_rank)

by DFS, f i n d new ranks of nodes i n G w . r . t , v on v_rank
MS s ~ u i n G : newrank(u) != o ld rank(u) }
f o r u i n MS

move_node_dogn(u,nevrank(u))
for u in MS

for �9 in adjacent_edges(u)

a d j u s t _ e d g e (e)

p rocedure move_node_down(v,ne~rank)

x = p o s i t i o n (v) . x ;
for i = oldrank(v) + I t o n e ~ a ~ (v) {

set_medians(G,i);

/ / place "and'reopt makes a new leaf under v at
/ / the same x coordinate, moves it to a locally
/ / optimal position, and replaces the leaf with v.
�9 ffi p l a c e _ e m d _ r e o p ~ (v , i) ;

}

procedure a d j u s t _ e d g e (e)
{

compute s h r i n k , same, s t r e t c h seEment s i z e s of �9
r - o l d r a n k (t a i l (e)) + 1;
for i - I t o shrink

{ delete_vnode(e,r); r - r + 1; }

for i - I to same

{ move_node_dogn(vnode(e,r),r+l); r = r § 1; }

for i - 1 to stretch

{ copy.node_dovn(vnode(e,r),r+l); r - r § I; }

procedure op t_ne ighborhood(node , node_is_movable)
{

i f node_is_movable
set_movable(node,TRUE);

f o r �9 i n edges (node)
set_movable(e,TRUE); / / t~r;ode chain

range - movable_reg ion(node) ;
f o r i t e r - 1 $o MAXITER {

f o r r - r a n g e . l o s t o r a n g e . h i g h

416

optimize_rank(r,r-1) ; [/ use in-edges
for r = range.high downto range.low

optimize_rank(r,r+1) ; // use out.edges
}

se t_movable(n ,FALSE);
for �9 in edges(node)

se t_movable(e ,FALSE);

procedure updaZe_geome~ry(view)
{

/ / update the auxiliary constraint graph
r = low_rank(view);
while (r <= high_rank(view)) {

v_left = leftmost_node(view, r);
while (v_left) {

constrain_prevposition(v_left);
constrain.outedge_cost(v_left);
v_right = right_neighbor(v_left);
if v_right

constrain_separation(v_left,v_right);
v_right = v_left;
v_left = right_neighbor(v_left);

}
r m

}
r + l ;

/ / invoke network sirnplez coordinate solver
ns_solve (view) ;
/ / node and edge callbacks can be done here

This heuristic has some useful properties. Its internal primitives are not diificult
to program. Some can be applied individually, opening the way to explore higher-
level incremental update strategies, for example, allowing a heuristic or the user
to identify specific nodes and edges to be re-optimized. Further, using linear con-
stralnts and weights to solve coordinates gives precise control of tradeoffs between
consistency, stability, and readability and yields predictable results.

Figure 4 shows frames from an animation created by incrementally; inserting all
the nodes and edges of an example graph. Most updates are apparently stable; an
exception can be found between frames 26 and 27, where there is a larger adjustment,
but other parts of the layout still closely resemble previous frames.

4.2 I n c r e m e n t a l Layout Sys t ems

We implemented DynaDAG and several other algorithms to provide that provide
an incremental layout service through a library interface (DynaGraph). The other
algorithms include an implementation of the Hornick-Miriyala-Tamassia orthogonal
embedder, and a spring embedder with a constraint enforcement heuristic (following
Lyons [13]). In DynaGraph's model, an abstract graph may have one or more inde-

417

pendent views, each containing a subset of the base graph. DynaGraph deals only
with graphs and coordinates, and is window-system independent.

We created several compatible graph viewers on top of this interface. DynaGraph
is an OLE-compliant Microsoft Windows graph viewer. 1 It can act as a server, man-
aging active diagrams embedded in other documents, and as a client allowing exter-
nal objects to be embedded as nodes. This greatly simplifies integration of hypertext
documents or multimedia clips in graph diagrams.

dged is a programmable front end implemented in the Unix TCL/ tk environment. 2
Fig. 2 is a sample of some output frames in a sequence that was created by inserting
new nodes and edges. (In this execution of DynaDAG, stability of absolute coordi-
nates was intentionally disabled on nodes that change ranks to see how this affects
displays.) dged supports multiple views maintained in synchrony by different layout
engines. Its intended use is to construct prototype network management utilities.

5 Conclus ion

DynaDAG is a heuristic for hierarchical layout of directed graphs that incorporates
geometric and topological stability. It incorporates a heuristic to move nodes be-
tween adjacent ranks, based on median sort. The heuristic is effective for viewing
incremental layouts of graphs of at least several dozen nodes, though further tuning
is needed. Experience with a working implementation in real applications offers in-
valuable guidance. The heuristic does not use look-ahead, temporal information, or
adaptive update strategies; there is a good opportunity for further work here.

There are many factors that may affect how users perceive stability in graph
drawings. More work is needed to understand what properties are most important,
and to find efficient incremental layout algorithms for general graphs.

References

1. G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Algorithms for drawing
graphs: An annotated bibliography. Computation Geometry: Theory and Applications,
4(5):235-282, 1994. Available at ftp.cs.brown.edu in/pub/compgeo/gdbiblio.tex.Z.

2. G. Di Battista and R. Tamassia. Incremental planarity testing. In Proe. 30th IEEE
Syrup. on Foundations o] Computer Science, pages 436-441, 1989.

3. K. Bohringer and F. Newbery Paulisch. Using constraints to acheive stability in auto-
matic graph layout algorithms. In Proceedings of ACM CHI 90~ pages 43-51., 1990.

4. Yih-Farn Chen, Glenn S. Fowler, David G. Korn, Eleftherios Koutsofios, Stephen C.
North, David S. Rosenblum, and Kiem-Phong Vo. Intertool connections. In
B. Krishnamurthy, editor, Practical Reusable UNIX Software, chapter 11. Wiley, 1995.
To appear January 1995.

5. Yih-Farn Chen, Leftheris Koutsofios, and David Rosenblum. Intertool connnections.
In Balachander Krishnamurthy, editor, Practical Reusable UNIX Software, chapter 11.
John Wiley & Sons, 1995.

1 Written by Giampiero Sierra, Princeton University.
Written by John Ellson, AT&T Bell Laboratories.

418

6. Yih-Farn Chen, Michael Nishimoto, and C. V. Kamamoorthy. The C Information Ab-
straction System. IEEE Transactions on Software Engineering, 16(3):325-334, March
1990.

7. Robert F. Cohen, Giuseppe Di Battista, Roberto Tamassia, and Ionnis G. Toms. Dy-
namic graph drawings: Trees, series-parallel digraphs, and planar st-digraphs. In Proc.
Symposium on Computational Geometry, pages 261-270, 1992. to appear in SIAM J.
Computing.

8. P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental map of a dia-
gram. In Proceedings of Compugraphics 91, pages 24-33, 1991.

9. E.R.Gansner, E. Koutsofios, S.C. North, and K.-P. Vo. A technique for drawing di-
rected graphs. IEEE Trans. on Soft. Eng., 19(3):214-230, 1993.

10. C. Kosak, J. Marks, and S. Shieber. Automatic the layout of network diagrams with
specific visual organization. IEEE Transactions on Systems, Man and Cybernetics,
SMC-24(3):440-454, 1994.

11. B. Krishnamurthy and N. Barghouti. Provence: A Process Visualization and Enact-
ment Environment. In Proc. of the Fourth European Conference on Software Engi-
neering, pages 151-I60, Garmisch-Partenkirchen, Germany, September 1993. Springer-
Verlag. Published as Lecture Notes in Computer Science no. 717.

12. Panagiotis Linos, Vaclav Rajlich, and Bogdan Korel. Layout heuristics for graphical
representations of programs. In Proc. IEEE Conf. on Systems, Man and Cybernetics,
pages 1127-1131, 1991.

13. K. Lyons. Cluster busting in anchored graph drawing. In Proceedings of the I99g CAS
Conference, pages 7-16, 1992.

14. Kaath Miriyala, Scot W. Hornick, and Roberto Tamassia. An incremental approach
to aesthetic graph layout. In Proc. Sizth International Workshop on Computer-Aided
Software Engineering, pages 297-308. IEEE Computer Society, July 1993.

15. S. Moen. Drawing dynamic trees. IEEE Software, 7:21-8, 1990.
16. Stephen C. North. Drawing ranked digraphs with recursive clusters. In Proc. ALCOM

Workshop on Graph Drawing 'g3, September 1993. submitted.
17. Stephen C. North and Eleftherios Koutsofios. Applications of Graph Visualization. In

Graphics Interface 'gd, pages 235-245, 1994.
18. F. Newbery Paulish and W.F. Tichy. Edge: An extendible graph editor. Software

- Practice and Experience, 20(S1):1/63-$1/88, 1990. also as Technical Keport 8/88,
Fakultat fur Informatik, Univ. of Karlsruhe, 1988.

19. L.A. Rowe, M. Davis, E. Messinger, C. Meyer, C. Spirakis, and A. Tuan. A browser
for directed graphs. Software - Practice and Exper/ence, 17(1):61-76, 1987.

20. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchi-
cal systems. IEEE Transactions on Systems, Man and Cybernetics, SMC-11(2):109-
125, 1981.

21. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchi-
cal systems. IEEE Transactions on Systems, Man and Cybernetics, SMC-11(2):109-
125, 1981.

