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Abstrac t .  We present algorithms for the two layer stralghtline cross- 
ing minimization problem that are able to compute exact optima. Our 
computational results lead us to the conclusion that there is no need 
for heuristics if one layer is fixed, even though the problem is NP-hard, 
and that for the general problem with two variable layers, true optima 
can be computed for sparse instances in which the smaller layer contains 
up to 15 nodes. For bigger instances, the iterated barycenter method 
turns out to be the method of choice among several popular heuristics 
whose performance we could assess by comparing the results to optimum 
solutions. 

1 I n t r o d u c t i o n  

Two layer straightline crossing minimization is receiving a lot of attention in 
automatic graph drawing. The problem consists of aligning the two shores 111 
and V~ of a bipartite graph G = (I11, II2, E)  on two parallel straight lines (layers) 
such that  the number of crossings between the edges in E is minimized when 
the edges are drawn as straight lines connecting the endnodes. There appears to 
be a general agreement that  good solutions for this problem contribute to better 
readability of diagrams representing hierarchical organizations on two or more 
layers. 

Let nl  = IVII, n2 = IV21, m = IEI, and let N(v) = {w e V I e = {v, w} 6 E} 
denote the set of neighbors of v 6 V = 111 U V2 in G. Any solution is obviously 
completely specified by a permutation lrl of V1 and a permutat ion ~2 of 112. 
For k = 1,2 let ~ = 1 if irk(i) < ~k(]) and 0 otherwise. Thus 7rk (k = 1,2) 

is uniquely characterized by the vector 6 k 6 {0, 1}(%~). Given ~1 and ~r2, the 
number of crossings is 

n 2 - 1  n2 

-- E E E E 
i=1 j=i+~ k~N(~) :eN( D 

n , - 1  n ,  

- -E E E E 
k=l l=k+l ieN(k)jeN(Z) 

* Partially ,upported by DYG-Grant Ju~Og/7-1, Forsehung~chwerpunkt "Effizien- 
te Algorithmen fiir diskrete Probleme und ihre Anwendungen" 
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It has been proven in [GJS3] that the two layer stralghtline crossing minimiza- 
tion problem is NP-hard, even if the permutation on one layer is fixed [EW94]. 
Therefore, a lot of effort went into the design of efficient heuristics, for the ver- 
sion in which one permutation is fixed as well as for the general case. Eades and 
Kelly [EK86] observe that the computation of true optima would be desirable 
in order to assess the performance of various heuristics, however, [EK86] believe 
that the NP-hardness of the problem renders such an experimental evaluation 
impractical. 

In this paper, we would like to demonstrate that, if one permutation is fixed, it 
is indeed possible to compute the exact minima in surprisingly short computation 
times. In section 2, we outline our algorithm which transforms the problem to 
a linear ordering problem that is subsequently solved via the branch and cut 
method. In section 3, we give computational results that allow us to assess the 
performance of several popular heuristics accurately. 

Assume the permutation lrl of V1 is fixed. For each pair of nodes i, j E V2, 
i ~ j,  we define cij to be the number of crossings between edges incident with i 
and edges incident with j if ~rz is such that ~r~(i) < ~r2(j). Then 

n2-1 n 2  

L =  
i =1  j = i + l  

is a trivial lower bound on the number of crossings. One observation in our 
experiments was that this trivial lower bound is surprisingly good. In section 4, 
we utilized this fact and the branch and cut algorithm of section 2 for the design 
and implementation of a program that solves the general two layer straightline 
crossing minimization problem to optimality. 

7 2 1 4 3 8 5 6 4 2 1 3 5 6 7 8 

a b c d e f g h e c h a d f g b 

(a) (b) 
Fig. 1. 

Figure 1 demonstrates that the number of crossings can indeed be consider- 
ably less if both layers can be freely permuted. The left drawing was given in 
[STT81] with fixed lower layer, [STT81] obtained the shown drawing with 48 
crossings that we could show to be optimum. The right drawing is the optimum 
when both layers can be freely permuted. It has only 19 crossings. 

As was to be expected, two sided crossing minimization can be done only for 
small instances. For large instances, we adopt the common method that consists 
of fixing the first layer, "optimizing" the second, fixing the found permutation 
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of the second, "optimizing" the first, etc., back and forth, until the crossing 
number is not reduced anymore. We follow this iterative approach both using 
the heuristics of section 3 as well as the exact algorithm. The results are some- 
what surprising, e.g., using the barycenter heuristic rather than exact one-sided 
crossing minimization yields slightly better results. 

2 Branch  and Cut  for One Sided Cross ing  M i n i m i z a t i o n  

The one sided straightline crossing minimization problem consists of fixing a 
permutation ~rl of V1 and finding a permutation ~r~ of V2 such that the number 
of straightline crossings 

n ~ - I  n2  

is minimized. Let 

keN(~) ieN(j) 

denote the number of crossings among the edges adjacent to i and j if 7r=(i) < 
w2(]). Then 

n2- -1  n2 

i = 1  ]=i+1 
n2-1 n2 n2-1 n~ 

i = 1  ] = i + l  i = 1  j = i + l  

For ~ = n2, zij = 6~j and aij = cij - cji  we solve the linear ordering problem 

n~-- 1 n2 

(LO) :C "J"'J 
i=1 ]=i+1 

O ~_ z~j + z j k  -- z~k <_ l for  l <_ i < j < lc < n 

O < z ~  1 f o r l < _ i < j < _ n  

I f  z is the optimum value of ( L O ) ~  _ x--,,~-1 x--,,~ z-t-2.~i=l 2.~j=i+l c$i is the minimum number 
of crossings. 

The constraints of (LO) guarantee that the solutions correspond indeed pre- 
cisely to all permutations ~r~ of V2. Furthermore, it can be shown that the ~3-cycle 
constraints" are necessary in any m~nimal description of the feasible solutions by 
linear inequalities, if the integrality conditions are dropped. The NP-hardness 
of the problem makes it unlikely that such a complete linear description can 
be found and exploited algorithmically. Furthe~ classes of inequalities with a 
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number of members exponential in n that must be present in a complete linear 
description of the feasible set, are known, and some of them can be exploited 
algorithmically. For the details see [GJR85]. 

When the integrality conditions in (LO) are dropped, only 2(3 ) hypercube 
inequalities and 2 (3) 3-cycle inequalities are left that define a relaxation of (LO) 
which has been proven very useful in practical applications. In [GJR84a] a branch 
and cut algorithm for (LO) is proposed that solves this relaxation with a cut- 
ting plane approach, since writing down all 3-cycle inequalities, even though 
taking only polynomial space, and solving the corresponding linear program, is 
not practical for space reasons. Rather the algorithm starts with the hypercube 
constraints that are handled implicitly by the LP-solver, and iteratively adds 
violated 3-cycle constraints and deletes nonbinding 3-cycle constraints after an 
LP has been solved, until the relaxation is solved. If the optimum solution is 
integral, the algorithm stops, otherwise it is applied recursively to two subprob- 
lems in one of which a fractional zij  is set to 1 and in the other set to 0. In 
[GJR84b] such a branch and cut approach could be used to find optimum linear 
orderings with r~ up to 60 in an application involving input-output matrices that 
are used in economic analysis. For the many details and the inclusion of further 
useful inequalities in the cutting plane part, see [GJR84a]. 

A new implementation of the algorithm is used in our computational exper- 
iments. It is written in C and uses the [CPLEX] software for solving the linear 
programming relaxations coming up in the course of the computation. 

3 One Sided Crossing Minimization 

The fact that we are able to compute optimum solutions allows us to assess the 
quality of various popular heuristics for one-sided two layer straightline crossing 
minimization experimentally. Our computational comparison includes the fol- 
lowing heuristics: the 5arycenter heuristic by [STT81], the median heuristic by 
[ E W 9 4 ] ,  the stochastic heuristic by [D94], the greedy-insert heuristic by [EK86], 
the greedy-switch heuristic by [EK86], and the split heuristic by [EK86]. 

In order to gain confidence in the correctness of our implementations, we re- 
peated the computational tests in [EK86]. We could reproduce their results accu- 
rately. There are no published computational results for the stochastic heuristic, 
but a personal communication with the author [D95] confirms the correctness of 
our implementation. 

All subsequent tables have the following columns: 
- hi: Number of nodes on layer i for i = 1, 2 
- m: Number of edges 
- Low: The trivial lower bound for the number of crossings 
- Min: The minimum number of crossings (computed by the branch and cut 

algorithm) 
- Bary: The number of crossings found by the barycenter heuristic 
- Median: The number of crossings found by the median heuristic 
- Stoch: The number of crossings found by the stochastic heuristic 
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- Gre-ins: The number of crossings found by the greedy-insert heuristic 
- Gre-swi: The number of crossings found by the greedy-switch heuristic 
- Split: The number of crossings found by the split heuristic 

For each type of graph, three numbers are given: the average number of 
crossings taken over all sampled instances of this type, the relative size of this 
number in percentage of the minimum number of crossings, and the average 
running time in seconds on a SUN Sparcstation 10. All samples are generated 
by the program random_bigraph of the Stanford GraphBase by Knuth [K93]. 
The generators are hardware independent and are available from the authors so 
that exactly the same experiments can be run by anyone who is interested. 

In Table 1, we give the results for "20§ i.e., bipartite graphs with 
20 nodes on each layer and various fixed numbers of edges chosen uniformly 
and independently from the set of all possible edges. Each average is taken over 
100 samples. The most surprising fact is perhaps that the exact computation 
by the branch and cut algorithm is faster than many of the heuristics. Only 
the barycenter and the median heuristic are between two to four times faster 
than the exact algorithm. Furthermore, the table indicates, less surprisingly, that 
dense instances are not very interesting. The data is visualized in Figure 2. 

Table 1. Resul ts  for 100 instances on 20 + 20 nodes  wi th  increasing densi ty  

r~/ rn Low Min Bary Median Stoch Gre-lns Gre-swi Split 
2 0  40 180,35 180.75 185.34 206.27 185.44 248.37 275.99 183.39 

99.78 100.00 102.54 114.12 102.60 137.41 152.69 101.46 
0.02 0.01 0.01 0.05 0.02 0.04 0.08 

20 80 957.62 959,23 968.80 1051.14 970.01 1175.11 1044.14 964.35 
99.83 I00.00 101.00 109.58 I01.12 122.51 108.85 100.53 

0.03 0.01 0.01 0.06 0.05 0.10 0.11 
20 120 2420.14 2422.32 2433.53 2564.82 2437.39 2763.72 2460.94 2428.23 

99.91 I00.00 100.46 105.88 100.62 114.09 101.59 100.24 
0.03 0.01 0.01 0.07 0.10 0.16 0.16 

20 160 4625.79 4627,72 4638.24 4825.06 4644.35 5098.27 4644.10 4632.17 
99.96 I00.00 100.23 104.26 100.36 110.17 100.35 I00 . I0  

0.04 0.01 0.02 0.08 0.17 0.23 0.23 
2() 200 7560.42 7561,88 7571.08 7817.99 7582.47 8157.86 7572.24 7566.79 

99.98 I00.00 100.12 103.39 100.27 107.88 100.14 100.07 
0.05 0.02 0.02 0.09 0.24 0.31 0.31 

20 240 11314.37 11315.55 11323,26 11625.54 11338.06 12033.34 11321.10 11318.68 
99.99 100.00 100.07 102.74 100.20 100.34 100.05 100.03 

0.07 0.02 0.03 0.09 0.34 0.42 0.41 
20 280 15859.70 15860.35 15865.69 16225.57 15883.69 16667.12 15863.66 15861.76 

99.99 100.00 100.03 102.30 100.15 105.09 100.02 100.01 
0.09 0.03 0.03 0 . I0  0.45 0.52 0.53 

20 320 21290.56 21290.76 21294.12 21727.43 21313.78 22116.56 21292.93 21291.56 
99.99 100.00 100.02 102.05 100.12 103.88 100.01 100.00 

0.11 0.03 0.04 0.11 0.59 0.65 0.66 
20 360 27751.63 27751.69 27752.99 28257,47 27768.41 28459.57 27752.01 27751.84 

100.00 100.00 100.01 I01 .82  100.08 102.55 I00 .00  100.00 
0.14 0.04 0.04 0.12 0.74 0.81 0.80 

In Table 2, we concentrate on sparse instances in which, on the average, 
every node has two adjacent edges. We believe that such instances are among the 
most  interesting in practical applications. It turns out that the barycenter, the 
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Fig.  2. Results for 100 instances on 20 + 20 nodes with increasing density 

Table  2. R e s u l t s  for 10 i n s t a n c e s  of  spe~se g r a p h s  wi th  inc reas ing  size 

n~ m Low M i n  B a ry  M e d i a n  S toch  Gre- ins  Gre-swi  Split  
10 20 37,90 38.00 38.90 45.40 38.70 46.40 50.90 38.50 

99.74 100.00 102.37 119.47 101,84 122.11 133.94 101.32 
0.00 0.00 0.00 0.01 0.00 0.01 0.02 

171.70 171.90 175.70 193.70 174.90 240.80 293.60 174.70 
99.88 100.00 102.21 112.68 101.74 140.08 170.80 101.63 

0.01 0.01 0.01 0.05 0.02 0.05 0.09 

20 40 

30 60 436.60 438.30 451.90 491.10 451.30 602.30 692.40 445.60 
99.61 100.00 103.10 112.05 102.97 137.42 157.97 101.67 

0.11 0.01 0.01 0.13 0.05 0.11 0.25 
40 80 761.50 765.70 785.60 856.60 782.70 1105.00 1367.50 783.20 

99.45 100.00 102.60 111.87 102.22 144.31 178.60 102.29 
0.30 0.01 0.02 0.28 0.08 0.22 0.57 

50 100 1247.30 1252.20 1279.90 1389.50 1273.20 1770.60 2200.50 1277.80 
99.61 100.00 102.21 110.97 101.68 141.40 175.73 102.04 

0,68 0.02 0.03 0.50 0,13 0:32 1 .00  
60 120 168'3.10 1687,60 1738.30 1890.90 1720.20 2453.10 2994.50 1736.10 

99.73 100.00 103.00 112.05 101.93 145.36 177.44 102.87 
1.09 0.03 0.04 0.83 0.18 0.61 1.67 

70 140 2465.00 2479.00 2541.30 2730.00 2522.50 3592.20 4498.80 2549.20 
99.44 100.00 102.51 110.13 101.76 144.91 181.48 102.83 

4,46 0.04 0.04 1.28 0.26 0.73 2.82 
80 160 3153.90 3172~10 3254.60 3521.00 i3232.90 4583.10 6885.70 3240.60 

99.43 100.00 102.60 111.02 101.92 144.48 185.55 102.16 
6.42 0.05 0.06 1.85 0.33 0.99 4.11 

90 180 4104.00 4132.80 4233.70 4566.80 4206 ,80  5843,70 7331.30 4293.90 
99.30 100.00 102.44 110.50 101.79 141.40 177.39 103.90 

25.13 0.05 0.06 2.66 0.41 1.32 5.84 
100 200 15127.40 5162.70 5287./;0 5728.80 5247.60 7469.90 9407.50 5333,50 

99.32 100.00 102.42 110.97 101.64 144.69 182.22 103.31 
435.51 0.06 0.08 3.35 0.49 1.45 7.56 
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Fig.  3. Results for 10 instances of sparse graphs with increasing size 

stochastic and the split heuristic perform very well in terms of quality, however, 
the split heuristic takes roughly the same time as the branch and cut computation 
up to size 80+80, whereas the barycenter heuristic obtains results of similar 
quality as split, but much faster (see Figure 3). 

In Table 3, we repeat an experiment by Dresbach [D94] for instances defined 
by Warfield [W77] as follows: For k = 3, 4, 5, 6, 7, 8 we let nl  = k, n2 = 2 k - 1, 
and the adjacency matrix of the bipartite graph is a nl  • n2 matrix whose rows 
are labelled 1, 2 , . . . ,  k, whose columns are labelled 1, 2 , . . . ,  2 k - 1, and column j 
contains j in/c-digit binary notation. Layer 1 is fixed and layer 2 is "optimized". 
Again, it turns out that barycenter is the fastest method with excellent quality 
solutions. The results of the stochastic heuristic, the barycentez and the split 
heuristic are very close to the optimum solution. Up to size 7+127, the branch 
and cut algorithm needs only moderate computation time, for the instance 8+255 
it is not competitive in terms of time, but we found it surprising that such a big 
linear ordering instance with n : 255 could be solved at all. The branch and cut 
algorithm was the only method that found the true optima for/~ > 6, whereas 
for 3 < /e < 5, the fact that the optimum value equals the value of the trivial 
lower bound seems to indicate that these instances are not hard. 

4 T w o  S i d e d  C r o s s i n g  M i n i m i z a t i o n  

The trivial lower bound on the number of crossings that turned out to be excel- 
lent in our previous experiments, can obviously be adapted to partial orderings 
rather than complete orderings (permutations) on one of the layers. This en- 
couraged us to devise a simple branch and bound algorithm for the general two 
layer stzaightline crossing minimization problem in which both ~1 and ~2 must 
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Table 3. Results for Dresbach instances 

nl n 3 m Low Min Bary Median Stoch Gre-ins Gre-swi Split 
3 7 12 8 8 8 13 8 I I  8 8 

100.00 100.00 162.50 100.00 137.50 100.00 100.00 
0.00 0.00 0.00 0.02 0.00 0.00 0.02 

4 15 32 95 95 95 127 95 122 98 95 
100.00 100.00 133.68 100.00 128.42 103.16 100.00 

0 .00  0 .00  0 .00  0 .03  0.02 0 .05  0 .07  
5 31 80 756 756 758 922 756 934 804 760 

100.00 100.27 121.96 100.00 123.55 106.35 100.53 
0.03 0.00 0.03 0.18 0.08 0.40 0.43 

6 63 192 4998 5002 5015 5818 5004 6023 5523 5043 
lO0.O0 100.26 116.31 100.04 120.41 110.42 100.90 

0.73 0.05 0.07 1.38 0.38 2.87 2.65 
7 127 448 29745 29778 29883 33641 29841 35152 34366 30086 

100.00 100.35 112.97 100.21 118.05 115.41 101.03 
20.50 0.17 0.20 9.02 1.98 20 .20  24.30 

8 255 1024 165375 165602 166098 183342 165824 192633 202957 167546 
100.00 100.30 110.71 100.13 116.32 122.56 101.17 

7200.00 0.95 1.08 67.90 7.33 147.00 189.00 

be determined. Namely, we enumerate all permutat ions  ~1 (let without loss of 
generality IVll ~ IVsl, V1 = { 1 , 2 , . . . , n } )  as follows: Initially all v 6 V1 are un- 
fixed. At depth l in a depth-first-search, l - 1 nodes of  V1 are fixed in positions 
1, 2 , . . . ,  [ -  1. Then the first unfixed node in the canonical ordering of V1 is fixed 
at position l, and the trivial lower bound L is computed for the resulting partial  
ordering. I f  L is greater than the value of the best known solution, the next 
unfixed node in the canonical ordering of V1 is fixed at  position l, else we move 
to position l + 1, if 1 < n, and otherwise (1 : n) we call the branch and cut 
algorithm to determine an opt imum ordering of Vs and update  the best known 
solution, if necessary. Backtracking, i.e. moving from position I to position l - 1 
occurs whenever the list of unfixed nodes at depth l in the enumeration tree is 
exhausted. Before the enumeration is entered, a heuristic solution is determined 
in order to initialize the best known solution. A good initial solution makes the 
enumeration tree smaller. 

In Table 4, we use this algorithm to determine op t imum solutions for 10+10 
graphs with increasing edge densities, 100 samples for each type of graph. I t  
turns out tha t  with increasing density, the computat ion times increase rapidly 
for the minimum computat ion,  whereas the heuristics are not very sensitive to 
density. All heuristics are i terated between the two layezs until a local opt imum 
is obtained, as outlined in the introduction, starting from the canonical ordering 
on V1. An additional column labelled " L R - 0 p t "  gives according results for the 
iterated minimum crossing computat ion by branch and cut, which is, remarkably, 
sometimes outperformed by the best i terated heuristics. For sparse instances, 
the minimum is much better  than any of the heuristicany found solutions. In 
Figure 4, we show an example of a 10+10 graph with 20 edges. The first drawing 
was found by the LR-Opt  heuristic and has 30 crossings, the second by the 
barycenter heuristic and contains 11 crossings and the third one is the opt imum 
solution with only 4 crossings. 
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Fig. 4. 

Within one hour of computation time, we can find optimum solutions for 
11+11 instances with up to 80% density, 12+12 with up to 50% density, 13+13 
with up to 30% density, 14+14, 15+15, 16+16 with up to 10% density. 

In Table 5, we repeat the same experiment with 10 starts from random or- 
derings of the nodes in V1. The results show that  this way a considerable per- 
formance gain for all heuristics can be achieved. LR-Opt, Barycenter and Split 
obtain results of similar good quality. 

Tables 6 and 7 deal with the more interesting sparse instances of bigger size 
for which we can not compute the optimum anymoze, Table 6 with canonical 
start, Table 7 with 10 random starts. Summarizing, the barycenter method turns 
out to be the clear winner, both in terms of quality as well as in terms of 
computation time. 
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Table  4. R e s u l t s  for 100 i n s t ance s  on  10 + 

10 

10 20 

10 30 

lO 40 

10 60 

10 60 

10 70 

10 80 

10 90 

M i n  L R - O p t  B m  7 M e d i a n  
0.29 1.64 1.52 1.53 

I00 .00 565.52 524.14 527.59 
1.10 0.01 0.01 0.01 

11.62 19.99 18.78 24.08 
I00 .00 172.03 161.62 207.23 

3.89 0.02 0.01 0.01 
86.60 66.98 65.30 81.78 

100.00 118.34 115.37 144.49 
14.06 0.02 0.02 0.02 

146.89 157.91 187.70 189.55 
100.00 107.50 107.36 129.04 

43.02 0.03 0.02 0.02 
276.78 287.32 288.16 333.25 
100.00 103.81 104.11 120.40 

91.58 0.04 0.03 0.02 
463.17 475.04 475.52 539.59 
I00 .00 102.56 102.67 , 116.50 
206.61 0.06 0.03 0.03 
698.35 709.91 710.88 782.33 
100.00 101.66 101.79 112.03 
379.12 0.07 0.04 0.03 

1008.38 1021.46 1021.44 [1110.39 
100.00 101.30 101.30 110.12 
763.53 0.08 0.04 0.03 

1405.57 1420.68 1421.86 i624 .18  
100.00 101.08 101.16 108.44 

1549.12 0.07 0.03 0.03, 

10 n o d e s  w i th  inc reas ing  dens i ty  

S toch  Gre- ins  Gre-swi  Spli t  
2.71 4.32 9.61 2.63 

934.48 1489.66 3313.79 906.90 
0.03 0.02 0.02 0.04 

26.96 38.85 34.81 23.25 
232.01 334.34 299.57 200.09 

0.06 0.04 0.03 0.07 
82.98 109.96 80.29 70.11 

146.61 194.28 141.86 123.87 
0.07 0.06 0.07 0.11 

182.77 225.26 165.65 160.20 
124.43 153.35 112.77 109.06 

0.08 0.10 0.11 0.15 
320.21 387.87 296.38 290.79 
115.69 140.14 107.08 105.06 

0.09 0.13 0.15 0.21 
509.38 598.98 482.76 478.46 
109.98 129.32 104.23 103.30 

0.10 0.17 0.22 0.28 
747.20 854.61 715.73 712.73 
107.00 122.38 102.49 102.06 

0.11 0.22 0.29 0.35 
t051.66 1165.97 1025.84 1024.78 
104.29 115.63 101.73 101.63 

0.12 0.27 0.34 0.40 
1430.86 1516.62 1423.90 1421.72 

101.80 107.90 101.30 101.15 
0.12 0.29 0.32 0.37 

5 Conclusions 

The outcome of our computational experiments lead to the following conclusions. 
(1) When one layer is fixed, the exact minimum crossing number can be effi- 

ciently computed in practice, so there is no real need for heuristics. 
(2) In the general case, small sparse instances as they occur in applications 

can be solved to optimality if the smaller sized shore has up to about 15 
vertices. For larger instances, the iterated barycenter method, started with 
a few random orderings of one layer, is clearly the method of choice among 
all tested methods. 
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Table 5. Resul ts  for 100 instances on 10 + 10 nodes  wi th  increaslng density, 10 trials each 

n~ m Min LR-Opt  Bary  Median Stoch Gre-lns Gre-swi Split 
10 10 0.29 0.30 0.31 0.71 0.73 2.10 3.95 0.42 

100.00 103.45 106.00 244.83 251.72 724.14 1362.07 144.83 
1.10 0.11 0.08 0.08 0.27 0.21 0.16 0.38 

10 20 11.62 12.50 12.44 16.57 17.44 30.55 21.00 13.83 
100.00 107.57 107.06 142.60 150.09 262.91 180.72 119.02 

3.89 0.18 0.12 0,13 0.52 0.38 0.34 0.64 
10 30 56.60 57.27 57.46 68.66 66.33 97.22 62.59 58.30 

100.00 101.18 101.62 121.31 117.19 171.77 110.58 103.00 
14.06 0.26 0.17 0.15 0.68 0.60 0.62 1.01 

10 40 146.89 147.35 147.73 166.41 159.31 205.97 150.34 148.24 
100.00 100.31 100.57 113.29 108.46 140.22 102.35 100.92 

43.02 0.36 0.21 0.18 0.79 0.90 1,02 1.45 
10 50 276.78 277.11 277.78 304.62 292.34 363.43 277.85 277.61 

100.00 100.12 100.36 110.06 105.62 131.31 100.39 100.30 
91.58 0.47 0.26 0.22 0.87 1.23 1.50 2.03 

10 60 463.17 463,76 464.07 499.41 478.48 565.63 464,54 464.17 
I00.00 100.13 100.19 107.82 103.31 122.12 100,30 100.22 
206,61 0,59 0.32 0.25 0.96 1.65 2.15 2.67 

10 70 698.35 698.75 699.23 745.00 712.78 816.80 690.37 699.04 
I00.00 I00.06 100.13 106.68 102.07 116.06 100.15 I00 . I0  
379.12 0.68 0.34 0.29 1.03 2.23 2.78 3.30 

10 80 1008.38 1008.62 1008.88 1070.82 1018.66 1120.31 1008.96 1008.94 
100.00 100.02 100.05 106.19 101.02 111.10 100.06 100.06 
763.53 0.81 0.37 0.31 1.11 2.70 3.39 3.89 

10 90 1405.57 1406,14 1406.22 1490,03 1410.31 1461.52 1406.43 1406.44 
I 100.00 100.04 100.05 106.01 100.34 103.98 100.06 100.06 
L1549.12 0.70 0.33 0.34 1.17 2.86 3.13 3.53 

Table 6. Results  for I0  instances of sparse g raphs  

m LR-Opt  Bary Median Stoch Gre-ins Gre-swi Split 
20 19.70 15.70 25.70 27.20 35.80 34.20 20.90 

0.02 0.02 0.01 0.05 0.04 0.04 0.06 
20 40 73.70 72.50 79.60 132.50 170.70 237.70 91.20 

0.10 0.03 0.04 0.36 0.17 0.17 0.41 
30 60 176.00 147.90 188.50 288,20 442.30 549.80 208.30 

0.48 0.10 0.09 1.18 0.49 0.48 1.33 
40 80 309.80 273.30 374.20 555.70 760.60 1207.00 368.80 

1.81 0.17 0.14 2.72 0.93 0.67 3.45 
50 100 457.70 392.30 561.90 824.40 1284.40 1971.20 548.10 

5.87 0.25 0.17 5.92 1.37 1.10 7.14 
60 120 645.60 567.00 811.20 11219.90 1954.80 2667.90 811.10 

13.34 0.38 0.24 8.68 2.24 1.87 10.52 
70 140 861.30 764.60 1146.20 1689.30 2549.30 4122.80 1032.40 

24.95 0.55 0 .34  14 .00  2.89 2.19 19.48 
80 160 1246.10 1080.70 1481.30 2183.30 3279.40 5495.90 1467.7() 

62.65 0.68 0.52 21.09 4.58 3.22 25.01 
90 180 1697.70 1272.40 1848.00 2859.50 4280.00 6853.70 1762.40 

86.37 1.10 0.57 31.84 6.41 4.30 38.36 
100 200 2027.30 1555.10 2084.10 3453.10 5405.00 8796.30 2209.40 

178.93 1.46 0.82 40.23 7,41 5.25 47.78 
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Table 7. Results for I0 instances of sparse graphs, I0 trials each 

n i m LR-Opt Bary Median Stoch 
10 20 13.60 12.70 18.70 17.50 

0.12 0.15 0.12 0.55 
20 40 51.00 48.30 59.10 89.00 

0.98 0.42 0.39 3.61 
30 60 133.40 117.00 146.80 228.60 

5.55 0.96 0.76 11.48 
40 80 234.10 212.40 271.40 432.80 

18.45 1.76 1.29 26.57 
50 100 384.20 325.60 407.30 715.60 

52.01 2.79 2.06 51.33 
60 120 541.10 479.90 599.90 1106.80 

128.12 4.38 2.93 92.08 
70 140 733.20 641.30 858.00 1489.30 

304.08 5.79 3.82 139.95 
80 160 1022.90 903.70 1145.10 1993.30 

619.36 7.57 i 5.28 204.64 
90 180 1282.50 1044.70 11323.70 2518.50 

1134.67 10.81 6.55 307.44 
100 200 1599.20 1313.20 1793.20 3119.40 

2313.48 13.78 8.02 402.74 

Gr~ins Gr~swi SpHt 
30.00 22.30 14,70 

0.40 0.34 0.68 
150.80 183.40 83.70 

1.82 1.58 3.93 
421.30, 422.10 160.10 

4.59 4.18 13.13 
724.50 949.80 279.90 

8.25 7.42 31.26 
1245.60 1715.90 462.70 

13.59 11.60 60.80 
1909.70 2472.10 654.00 

21.97 18.27 114.07 
2514.30 3640.00 896.90 

30.18 23.22 175.83 
3248.70 4843.50 1169.60 

38.96 31.18 264.82 
4209.10 6228.20 1466.40 

57.13 43.19 377.72 
5323.90 8145.30 1807.80 

67.13 50.24 504.25 
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