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Abs t rac t .  Contact graphs are a special kind of intersection graphs of 
geometrical objects in which we do not allow the objects to cross but 
only to touch each other. Contact graphs of simple curves (and fine seg- 
ments as a special case) in the plane are considered. Several classes of 
contact graphs are introduced and their properties and inclusions be- 
tween them are studied. Also the relation between planar and contact 
graphs is mentioned. Finally, it is proved that the recognition of con- 
tact graphs of curves (line segments) is NP-complete (NP-hard) even 
for planar graphs. 

1 I n t r o d u c t i o n  

The intersection graphs of geometrical objects have been extensively studied 
for their many practical applications. Formally the intersection graph of a set 
family 3,t is defined as a graph G with the vertex set V(G) = 2W and the 
edge set E(G) = {{A,B} C A41A ~ B, A N B  ~ 0}. Probably the first 
type studied were interval graphs (intersection graphs of intervals on a line), 
owing to their applications in biology, see [14],[1]. We may also mention other 
kinds of intersection graphs such as the intersection graphs of chords of a circle 
(circle graphs [2]), of boxes in the space [15], of curves or line segments in the 
plane [3],[16],[1 i],[12]. 

A special type o f  geometrical intersection graphs-- the contact graphs, for 
which we do not allow the geometrical objects to cross but  only to touch each 
other, are considered here. Unlike the general intersection graphs, in this field 
only a few results are known. There is a nice old result of Koebe [10] about 
representations of planar graphs as contact graphs of circles in the plane. In [5] 
a similar result about contact graphs of triangles is proved. The contact graphs 
of line segments are considered in [4],[6] and [17]. It is proved that  every bipartite 
planar graph is a contact graph of vertical and horizontal line segments [4], and 
for contact graphs of line segments of any direction, with contact of 2 segments 
in one contact point, a characterization is given in [17]. 

We follow the ideas of intersection graphs of curves and of contact graphs 
of segments, and generalize the definition to contact graphs of simple curves 
in the plane. We also allow a contact of more than 2 curves in a point and 
for such contact points we distinguish one-sided and two-sided contacts. We 
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define classes of contact graphs and study the inclusions among them and their 
properties such as the maximal  clique and the chromatic number.  Then we show 
some relations of contact graphs and planar graphs, and using them we prove 
the main resu l t - - tha t  the recognition of contact graphs of curves (line segments) 
is NP-comple te  (NP-hard)  even for planar graphs, while the similar question 
for planar triangulations is solvable in polynomial  time. 

For complete proofs of the presented results refer to [9]. 

2 C u r v e  C o n t a c t  R e p r e s e n t a t i o n s  

2.1 D e f i n i t i o n s  

Simple curves of finite length (Jordan curves) in the plane are considered. Each 
curve has two endpoiuts and all of its other points are called interior points; they 
form the interior of the curve. We say that  a curve ~ ends (passes through) in 
a point X if X is an endpoint (interior point) of ~. 

D e f i n i t i o n .  A finite set 7~ of curves in the plane is called a curve contact rep- 
resentation of a graph G if interiors of any two curves of 7~ are disjoint and G is 
the intersection graph of T~. The graph G is called the contact graph of T~ and 
denoted by G(7~). A curve contact representation 7~ is said to be a line segment 
contact representation if each curve of T~ is a line segment. 
A graph H is called a contact graph of curves (contact graph of line segments) if 
there exists a curve contact representation (line segment contact representation) 
S such that  H ~ G(S).  

Fig. 1. An example of a curve contact representation of a graph 

A curve contact representation is called simply a representation, a con- 
tact  graph of curves simply contact graph. Any subset S C T~ is called 
a subrepresentation of 7~. A point C of the plane is said to be a contact point 
of a representation T~ if it is contained in at least two curves of 7~. The  degree 
of a contact point C in 7~ is the number  of curves of T~ containing C, a contact 
point of degree k is called a k-contact point. Note that  for any k-contac t  point 
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C of a representation 7~ either all k curves of 7~ containing C end in C or one 
curve is passing through C and the other k -  1 curves end in C. We say an 
endpoint of a curve is free if it is not a contact point. 

In Figure 1 an example of a curve contact representation and its contact 
graph is given. For a bet ter  view of the representation we introduce the follow- 
ing convention for drawing the contact representations: Each contact point is 
emphasized by a circle around it and the curves of this contact point are drawn 
into the circle but  not necessarily touching each other. 

Fig. 2. The difference between one-sided and two-sided contact points 

For contact representations there is an impor tant  difference in contact points 
with a curve passing through (see Figure 2)- -whether  the other curves of this 
contact point are only on one side of the passing curve or on both sides of it. 
We may formally define a one-sided contact point as a contact point C in which 
either all of its curves end or there exists a curve ~ passing through C such 
tha t  for all other curves c~1,..., ~ -  1 ending in C the cyclic order of the curves 
outgoing f rom C is 6, 6, ~ 1 , . . . ,  ~rk-1. We say a contact point is two-sided if it 
is not one-sided. It  is obvious that  any 2-contact  point is one-sided, but  from 
the contact degree 3 there exist graphs that  have a contact representation and 
cannot be represented without two-sided contact points. 

A representation T~ is said to be a k-contact representation if each contact 
point of T~ has degree at most  k. A representation T~ is said to be simple if each 
pair of curves from 7~ has at most one common contact point. A representation 
T~ is said to be one-sided if each of its contact points is one-sided. The same 
definitions of a k-contact  or one-sided representations are applied for line seg- 
ment  representations. It  is clear that  every line segment representation is simple. 
All these properties of contact representations are transferred to contact graphs, 
and we refer to contact graphs as k-contact, simple or one-sided in the obvious 
sense. Unless explicitly stated otherwise, we will consider only one-sided contact 
representations. Therefore by representation we will mean one-sided represen- 
tation, and we will say a two-sided representation otherwise. Similarly, we will 
consider one-sided contact graphs by default. 

2.2 S i m p l e  R e s u l t s  

For a description of a curve contact representation we define the following tool: 
The incidence graph of a representation T~ (denoted by I(T~)) is a directed 
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graph, whose vertices correspond to curves and contact points of T~ and each ver- 
tex of a curve is connected with all contact points that  lie on it. The  edge is ori- 
ented from curve to contact point iff the point is an endpoint of the curve. We un- 
derstand here a directed graph as an orientation of undirected graph, i.e. strictly 
without multiple edges. An example of the incidence graph of a representation 
is presented in Figure 3. 

Fig. 3. An example of the incidence graph of a representation 

From the definitions it follows that  the contact graph of a representation is 
fully determined by its incidence graph, while the opposite is, of course, not true. 
We say that  two representations are similar if their incidence graphs are isomor- 
phic. It is not difficult to show the following lemma that  enables us to handle a 
curve contact representation easier and to describe it using finite (polynomial) 
space. 

L e m m a  2.1. For each two-sided representation R there exists a two-sided rep- 
resentation S similar to ~ ,  so that each curve from S is a piecewise linear curve, 
consisting of linear number of segments. Additionally, i f  T~ is one-sided, then S 
can be also chosen one-sided. 

For one-sided contact representations another description, which is using the 
incidence graph of a representation, is proposed next. 

P r o p o s i t i o n  2.2 For a graph G there exists a contact representation 7"r such 
that G ~ I(T~) iff G is a planar directed graph and its vertices can be divided 
into two independent set V ( G )  = A U B  so that the outdegrees in A are at most 2, 
the outdegrees in B are at most 1 and the total degrees in B are at least 2. 

We omit proofs of this technical results, they may be found in [9]. To show the 
difference between one-sided and two-sided contact representations, we present 
the representation in Figure 4. It is a two-sided contact representation with non- 
planar incidence graph, and its contact graph has no one-sided contact repre- 
sentation (for example by Proposition 2.4). 

The following characterization of the 2-contact graphs of line segments is 
given in [17]: Graph G is a 2-contact graph of line segments iff G is planar and 
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Fig. 4. A two-sided contact representation with non-planar incidence graph 

for each subgraph H C G, IE(H)I < 2. IV(H)I- 3. A similar characterization 
of 2-contact graphs of curves can be easily derived from Proposition 2.2. 

P ropos i t i on  2.3 Graph G is a 2-contact graph iff G is planar and for each 
subgraph H C_ G, IE(H)I  ~ 2.  IV(H)[.  

It also follows from Proposition 2.2 that one-sided 3-contact graphs of curves 
are planar too. However, there is probably no such nice characterization as the 
previous ones, due to the results presented in Section 5. 

P ropos i t ion  2.4 I f  G is a contact graph of a one-sided 3-contact representa- 
tion 7~, then G is planar. Moreover, there exists a planar drawing of G such 
that for each 3-contact point X of curves u, v, w E T~ the triangle u, v, w forms 
a face. 

3 C l a s s e s  o f  C o n t a c t  G r a p h s  

Various classes of contact graphs of curves or line segments, with bounds on 
contact degrees and simplicity, are defined. Remember that only one-sided con- 
tact representations are considered here. The inclusions among the classes are 
described in Theorem 1, see the diagram in Figure 5. 

Defini t ion.  For an integer k > 2, we denote by CONCUR (k -CONCUR)  the 
class of all contact (k-contact) graphs of curves, by SCONCUR (k -SCONCUR)  
the class of all simple contact (simple k-contact) graphs of curves, and by 
CONSEG (k -CONSEG)  the class of all contact (k-contact) graphs of line seg- 
ments. 

T h e o r e m l .  All  the inclusions among contact graph classes described in Fi- 
gure 5 are strict and no other inclusion holds. 

Sketch of proof. All inclusions shown in Figure 5 are obvious from definitions. 
The equalities 2-SCONCUR = 2-CONCUR and 3-SCONCUR = 3-CONCUR 
follow from the fact (not proved here) that any 3-contact representation may be 
rearranged to be simple. 
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SCONC UR 

t 
CONSEG 

6-CONCUR 

5-CONCUR 

4-CONCUR 

6-SCONCUR 

5-SCONCUR 

__ T 
4-SCONCUR 

l 

6 - C O N S E G  

5 - C O N S E G  

4 - C O N S E G  

3-SCONCUR = 3-CONCUR 

3 -CONSEG 

2-SCONCUR = 2-CONCUR T 
! 

2 - C O N S E G  

Fig.  5. The inclusions between classes of contact graphs 

Fig. 6. A 4-contact graph that has no simple contact representation 
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k + l  

Fig. 7. A (k + 1)-contact graph of segments that has no k-contact representation 

The differences between distinct classes are proved by constructing spe- 
cial graphs. For example, in Figure 6 there is a graph that has a 4-contact 
representation but no simple contact representation. In Figure 7 a scheme of 
a (k + 1)-contact graph of segments that has no k-contact representation, is 
shown for k > 3. The detailed proofs of all cases may be found in [9]. 

4 Maximal Clique and Other Problems in Contact 
Graphs 

We study the contact representations of complete graphs. Several examples o f  
them are shown in Figure 8. I t  may be proved that these representations are, in 
some sense, the only possibilities to represent cliques. We present here only the 
weaker version of the result, bounding the clique size of contact graphs. 

Kk+l K4 K [ ~ j  

Fig. 8. Contact representations of complete graphs 

Theore ln2 .  The complete graphs contained in the contact graph classes are 

1. for every k > 2, Km E k - C O N S E G  iff m < k + 1, 
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2. for every k > 3, K m  E k -SCONCUR iff m < k + 1, 
3 k 3. for every k >_ 3, Krn E k - C O N C U R  iff m <_ [3 J, 

4. specially Krn E 2-CONCUR = 2 -SCONCUR iff m < 4. 

C o r o U a r y 4 . 1 .  For k > 3, the maximal clique size of a k-contact graph, simple 
k-contact graph, is bounded by [3k] ,  k + 1. 

Sketch of proof. We include here only the proof of the easy case of simple contact 
representations. The whole proof is in [9]. 

Let us suppose that  there exists a simple k-contact  representation 7~ of the 
graph K~+2, k > 3. If there is no contact point of degree at least 3 in 7~, we get 
a 2-contact representation of Ks ,  a contradiction to Proposition 2.4. Otherwise 
we take a contact point X of degree at least 3 and curves ~1, ~2, ~3 containing X. 
Because the contact degree of X is at most k, there exist two curves al ,  c~2 not 
containing X. Then #1, ~2, ~a, ch, c~2 form a 3-contact subrepresentation of K5  
(in contact points distinct from X there may be only one of the curves #1, #2, ~3), 
again a contradiction to Proposition 2.4. 

Many graph problems that are hard in the general case, can be solved quickly 
for special intersection graphs. For example, it is easy to find the chromatic num- 
ber, maximal clique or independent set of an interval graph, using the simplicial 
decomposition of it. We show, based on the previous result, that  the maximal  
clique of a contact graph can be found in polynomial time if the contact repre- 
sentation is given. 

P r o p o s i t i o n  4.2 There exists a polynomial algorithm that for given contact 
representation of a graph G finds the maximal clique of G, while the INDE- 
P E N D E N T  S E T  and the 3 - C O L O U R A B I L I T Y  problems remain NP-complete 
for contact graphs (2-contact graphs) even when the contact representation is 
given. 

Further we show that  the contact graphs are "almost perfect", i.e. their chro- 
matic number is bounded by a linear function of the maximal clique size. How- 
ever, an infinite sequence of contact graphs, for which the chromatic number 
grows faster than the maximal clique, may be constructed. 

P r o p o s i t i o n  4.3 For any contact graph G, x ( G )  < 2 .  w(G) .  There exists 
a contact graph gm with w(Hra) = m and X ( H m )  >_ m + [_m_~_~], for any inte- 
germ.  

5 R e c o g n i t i o n  o f  C o n t a c t  G r a p h s  

The problem to decide, whether a given graph can be represented as an in- 
tersection graph of specified objects, is important  in studying the intersection 
graphs. The decision version of the problem is called the recognition of intersec- 
tion graphs (of a special kind). For the interval graphs a simple characterization 
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is given in [14], and a more efficient algorithm for their recognition is in [1]. Cir- 
cle graphs (intersection graphs of chords of a circle) may be mentioned [2] as 
other kind of intersection graphs that can be quickly recognized, but the algo- 
r i thm is not easy. On the other hand, the recognition of intersection graphs of 
curves in the plane is proved to be NP-hard [11], moreover graphs with at least 
exponential complex representations [13] are known in that  case. 

The complexity of recognizing the contact graphs of curves or line segments 
is considered here, especially for planar graphs. 

5.1 Contact Representations of Planar Triangulations 

Firstly we present an important lemma that is used to disprove existence of 
certain contact representations of planar graphs. 

L e m m a 5 . 1 .  Let T~ be a two-sided 3-contact representation of a graph G con- 
taining f free endpoints of curves. Then the representation T~ must contain at 
least (IE(G)I - 2. IV(G)I + f )  3-contact points forming non-neighbouring tri- 
angles in G (two triangles are said to be neighbouring i f  they have a common 
edge). 

We already know by Proposition 2.3 that  the recognition of 2-contact graphs 
is polynomial-- the edge number condition may be checked using the polynomial 
algorithm for network flows, and the planarity is also known to be polynomial. 
There are also other results on representing planar graphs as contact graphs that 
follow. 

From [4] it is known that every bipartite planar graph is a 2-contact graph 
of segments. A planar triangulation is a planar graph that  has all faces, includ- 
ing the outer face, triangles. In [6], representations of planar triangulations by 
contacts of segments are considered: A 4-connected planar triangulation is a 
3-contact graph of segments iff it is 3-colourable (and this condition can be 
checked in linear time). 

We study the curve contact representations of planar triangulations. From 
Lemma 5.1 the following statement is derived: 

T h e o r e m 3 .  There exists a polynomial algorithm that for a given planar trian- 
gulation decides whether it is a 3-contact graph, and finds the representation if 
exists. 

In further constructions we need a special graph that has a simple 3-contact 
representation, but no contact representation in which some curve has a free 
endpoint (an endpoint of a curve is called free if it is not a contact point). 
This graph is presented in Figure 9, we denote it by s The property of having 
no free endpoint in any contact representation follows from Lemma 5.1-- g has 
only 16 non-neighbouring triangles. It is used to "eat" an endpoint of a curve in a 
contact representation--if any vertex v of it is adjacent to some other vertex w 
(of another graph), the only way to represent the edge {v,w} is to use one 
endpoint of the curve w in the contact point of v, w. 
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Fig. 9. The end-eating graph ~ and a scheme of its contact representation 

5.2 N P - c o m p l e t e n e s s  o f  R e c o g n i z i n g  3 - c o n t a c t  G r a p h s  

Unlike the planar triangulations, the problem of deciding whether a given gen- 
eral planar graph is a 3-contact graph, is NP-complete.  The recognition of 
(two-sided) contact graphs clearly belongs to NP from Lemma 2.1. For the N P -  
completeness reduction of our problem we use the PLANAR 3-SAT problem, 
that  is defined as a special case of the SAT problem (a formula ~b with a set vari- 
ables V and a set of clauses C) for which the bipartite graph F,  V ( F )  = C U V, 
E ( F )  = { x c :  x E c or -~x E c), is planar with degrees of all vertices bounded 
by 3. 

Given a formula ~b (of the PLANAR 3-SAT problem), we construct a graph 
R(~)  that  has a contact representation iff the formula qi is satisfiable. In the 
construction each variable and each clause of 4~ are replaced by special graphs, 
then clauses are connected with their variables by connectors. The positive and 
negated occurrences of a variable are distinguished by connecting to clauses 
using different terminals of the variable graph. For clauses with less than 3 
variables special false terminators are used. The variable and clause graphs are 
constructed using the end-eating graph, and from Lemma 5.1 it is derived that  
the only possible representations of the variable graph reflects the values 0 and 1 
of the variable, and the clause graph is representable iff at least one of its literals 
is true. 
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For the complete construction including proofs refer to [9]. An example of 
the graph R ( r  for a simple formula ~5 is presented in Figure 10, the end-eating 
graphs added to some vertices are schematically drawn by double circles. 

C2 

Fig. 10. An example of the graph R(1) for l = 01 A C2 A 03, C1 = (-~xl v --z2 v -,x3), 

L e m m a  5.2. For a formula q~ of a given instance of the PLANAR 3-SAT prob- 
lem the graph R(qS) is planar, and is a one-sided 3-contact graph if ~ is satis- 
fiable but has no two-sided contact representation if q5 is not satisfiable. 

T h e o r e m 4 .  The recognition of contact graphs (simple contact graphs, k -  
contact graphs for k > 3) is NP-complete. 
The recognition of two-sided contact graphs (two-sided k-contact graphs for 
k > 3) is NP-complete. 
The recognition of contact graphs is NP-complete even within the class of planar 
graphs. 

Using more involved methods, a similar reduction can be constructed for con- 
tact  graphs of line segments. However, we do not know whether the recognition 
of contact graphs of segments belongs to NP. Thus it is proved: 

T h e o r e m 5 .  The recognition of contact graphs (k-contact graphs for k > 3) of 
segments is NP-hard~ 
The recognition of two-sided contact graphs (two-sided k-contact graphs for k > 
3) of segments is NP-hard. 
The recognition of contact graphs of segments is NP-hard even within the class 
of planar graphs. 
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