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Abstract. There is much current interest among researchers to find 
algorithms that will draw graphs in three dimensions. It is well known 
that every 3-connected planar graph can be represented as a strictly 
convex polyhedron. However, no praztical algorithms exist to draw a 
general 3-connected planar graph as a convex polyhedron. In this paper 
we review the concept of a stressed graph and how it relates to convex 
polyhedra; we present a practical algorithm that uses stressed graphs to 
draw 3-connected planar graphs as strictly convex polyhedra; and show 
some examples. 
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1 Introduct ion 

It is well known that 3-connected planar graphs can be drawn as convex polyhe- 
dra. However, no practical algorithms exist to draw general 3-connected planar 
graphs as convex polyhedra. The two-dimensional (2D) drawing in Fig.1 is 3- 
connected and planar, and the corresponding polyhedron is drawn in Fig.2 as 
three different views. The 2D drawing in Fig.1 has large differences between the 
lengths of its edges and in its face areas making the graph difficult to understand, 
while the polyhedron in Fig.2 has more nearly equal edge lengths and face areas. 
The ratio of the shortest distance between vertex positions to the diameter of 
the set of of vertex positions is 0.01 for the 2D drawing in Fig.l, and 0.09 for the 
three-dimensional (3D) drawing in Fig.2. We say that a planar graph is cluttered 
if this ratio is low or easy-to-look-at if it is high. 

A method for drawing any graph in 3D using straight line edges such that 
no pair of edges cross is presented in [2]. This method does not restrict the 
drawing to the integer grid. In [3] a method is provided for drawing any graph 
in 3D using straight line edges such that no pair of edges cross. All vertices are 
located on the integer grid and, for a graph of n vertices, the required grid size is 
n • 2n • 2n which is shown to be optimal to within a constant. Both [2] and [3] 
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Fig. 1. Example of a cluttered 2D drawing of a planar graph. 

Fig. 2. Three views of the 3D polyhedron corresponding to Fig.1 as produced by Al- 
gorithm 1. The polyhedron is isomorphic to a three frequency geodesic sphere. 

use the aesthetic criterion that  no two edges should cross, and this is important  
when producing easy-to-look-at graphs. There are many other criteria tha t  may 
be considered, including resolution and symmetry. 

The following is a well-known theorem by Steinitz [7]: 

T h e o r e m  1 ( S t e i n i t z )  A graph G is the skeleton of a polyhedron P if and only 
if it is planar and 3-connected. 

This theorem guarantees that  any 3-connected planar graph can be drawn as 
the vertices and edges of a convex polyhedron. 
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Some recent work [4] provides a linear-time algorithm for realizing 3-connected 
triangulated planar graphs as convex polyhedra. However, [4] only deals with tri- 
angulated graphs. 

In this paper, we are concerned specifically with drawing 3-connected planar 
graphs as "strictly convex" polyhedra. A polyhedron P is strictly convex if the 
skeleton of the convex hull of the vertices of P is isomorphic with the skeleton of  
P. In section 2 we review the concept of "stressed graphs" and how they relate 
to polyhedra. We apply these concepts to drawing arbitrary 3-connected planar 
graphs as convex polyhedra. The time complexity of the algorithm is 0(n312), 
and the worst case "resolution" of the resulting drawings is at least exponential 
in n, where n is the number of vertices. In section 3 we show some examples of 
drawings as produced by the algorithm. Our experience with drawing polyhedra 
using Algorithm 1 has revealed a useful addition to our original algorithm. We 
conclude with some open problems in section 4. Note: some of the concepts in 
this paper are from [9]. 

2 The Algorithm 

In this section we review the concept of stressed graphs (see for example [9]) and 
their relation to polyhedra. We give a definition of "reciprocal" polyhedra and 
present the main drawing algorithm. Finally, we discuss the time complexity of 
the algorithm and the "resolution" of the resulting drawings of polyhedra. 

A stressed graph is a graph that is drawn in the plane such that each edge is 
drawn as a straight line segment and labelled with a real number which we will 
call a stress. The entire collection of stresses for a particular graph is called a 
stress on that graph. If each edge is considered to be a two-dimeusional vector 
with ~:- and y-components equal to the length of the edge in the x- and y- 
directions multiplied by the stress on that edge, then we define an equilibrium 
stress on a graph to be a collection of edge stresses that produces at each vertex 
a zero vector sum of adjacent edge-vectors. Suppose every face of a graph is 
drawn as a convex polygon. We refer to the edges of the outer polygon as the 
external edges and the remaining edges as internal edges. If the internal stresses 
are positive while the outer stresses are negative, then an equilibrium stress 
on the graph is called a convex equilibrium stress. For convenience, a restricted 
equilibrium stress on a graph is defined as a collection of stresses where the inner 
stresses are positive and in equilibrium and no restrictions are placed on the 
outer stresses. [Note: Not every drawing of a 3-connected planar graph has a 
convex equilibrium stress.] 

An example of a restricted equilibrium stressed graph is a Tutte [13] draw- 
ing of a 3-connected planar graph. This well known algorithm chooses a face of 
the graph and draws it as a convex polygon on the plane. The position of any 
internal vertex is then defined as the barycentre (or average) of the positions of 
its adjacent vertices. Fig.1 is an example of a Tutte drawing. It is clear that a 
collection of stresses for a such a drawing where each internal stress is +1 will 
be a restricted convex stress on the graph. [Note: Although Tutte's algorithm 
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positions the internal vertices with the exact coordinates appropriate for a re- 
stricted equilibrium stress where each internal stress is +1, a simple variation 
of the algorithm will allow any collection of internal stresses to be used, as long 
as they are positive. Given such a collection, this variation on Tutte 's algorithm 
will position each internal vertex so that  the internal stresses are in equilibrium 
at each internal vertex, regardless of the shape or size of the outer polygon.] 

We now describe the well known correspondence between convex stressed 
graphs and convex polyhedra first noted by Maxwell [11]. Consider an upturned 
bowl-shaped convex polyhedral surface 27 sitting on the plane H (z = 1) (see 
Fig.3(a)). 

(a) 

H (z=l) / 

(b) 

H (z=l) / 

Z 
Fig. B. (a) Upturned bowl shaped convex polyhedral surface 27 sitting on the plane 
H. (b) The 3-connected planar graph /1 resulting from an orthogonal projection of 27 
down onto H. This projection is equivalent to flattening the bowl from above. 

Let F be the drawing of the 3-connected planar graph resulting from an or- 
thogonal projection of 27 down onto g (see Fig.3(b)), and w be an edge label 
(or stress) for an edge of F defined using the following stress equation: 

where: 

,(r,,)(,.(p.)--,r(p.)) 

- w is the stress for the edge e of F joining vertices v~ and vj (see Fig.4); 
- e(r, s) is +1 according to the orientation of faces fr  and fs whose intersection 

defines e - that  is, e(r, s) = +1 if in an anticlockwise ordering of the vertices 
around Jr, vi precedes vj, and e(r, s) = - 1  otherwise; 
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- pi and pj are the coordinates of vi and vj in F; 
- ar and as are piecewise-afIine functions mapping, respectively, faces fr  and 

fs of F up to the corresponding facets of E; 
- p. (a reference point) is any point on H that  is not collinear with any edge 

of F; 
- [Pi, Pj, P.] is the scalar triple product of pi, pj, and p.,  and may be calculated 

by the determinant IPi,Pj,P,I, where pi, pj, and p. are written as column 
triples. 

216 

Fig. 4. Diagram illustrating the definitions used in the stress equation. 

Informally, F records the skeletal structure of E, as projected onto H,  and 
w records the shape of E in the third dimension. A 3-connected plane graph F 
with an equilibrium stress w may be written (w, F).  

Given the above definitions, the following theorem formally describes the 
bijectivity: 

T h e o r e m  2 ([9]) Suppose (w, F)  is a stressed graph in H and Z is the corre- 
sponding polyhedral surface sitting over 1". Then ~ is the boundary of a convex 
polyhedron if  and only if  F and w are convex. 

Given a polyhedron P, a dual polyhedron P* is a polyhedron with a skeleton 
that  is the graph-theoretic dual to the skeleton of P. A specific type of dual 
polyhedron is called a "reciprocal". Given a reference sphere S with equation 
z2 + y2 + z 2 = r2, every plane az + by + cz = r 2 has a reciprocal point (a, b, c) 
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defined with respect to S. Similarly, every point (a, b, c) (except the origin) has a 
reciprocal plane a z + b y + c z  = r 2 defined with respect to S. If P is a polyhedron, 
then a reciprocal polyhedron P* with respect to S is defined as that  polyhedron 
with vertices that  are reciprocal to the facet-planes of P, and with facet-planes 
that  are reciprocal to the vertices of P.  Further, if P is convex and contains 
the origin, then the reciprocal polyhedron P* will also be convex. (For more 
information see [1] and [8].) 

A l g o r i t h m  1 
Input: A planar embedding of a 3-connected planar graph G 

Output: A strictly convex polyhedron P 

1. If  G does not contain a C3 (a cycle of three edges), then replace G by its 
graph-theoretic dual G*. 

2. Choose any C3 in G and draw it as a triangle on the plane z = 1. 
3. Using Tutte 's  algorithm [13] draw the remaining vertices and edges of G 

producing a planar drawing F that  has a restricted convex equilibrium stress. 
Calculate the remaining three external stresses on G [9] producing a convex 
equilibrium stressed graph. 

4. Perform a breadth-first-search (BFS) of the face-lists of G, starting at the 
outerface. When visiting each face, use the stress equation to calculate the 
plane-equation for the corresponding facet of the polyhedron P. 

5. If necessary, replace P with a convex reciprocal P* of P.  
D 

T h e o r e m  3 Algorithm 1 draws 3-connected planar graphs as strictly convex 
polyhedra. 

Proof :  We shall prove the correctness of the algorithm step by step. 
Step 1: If a 3-connected planar graph does not contain a C3 (a triangle), then 

its graph-theoretic dual will contain at least eight triangles. Therefore, if G does 
not contain a triangle, then its graph-theoretic dual G* will contain a triangle. 

Step 2: Step 1 guarantees that  G will contain a triangle. Step 3, the Tutte 
drawing, requires that  the outerface is a convex face. A triangular face will always 
be convex. 

Step 3: If the outer face is convex, a Tutte drawing of a 3-connected planar 
graph will always be a convex plane drawing of the graph. That  is, each face of 
the graph will be convex. Further, by definition of a Tutte drawing, the internal 
stresses will all be +1. In [9] it is shown that external equilibrium stresses for 
such a drawing (ie one with an outer polygon that  is a triangle) can always be 
calculated and are unique. Thus, we have a convex equilibrium stressed graph. 

Step 4: Given a convex equilibrium stressed graph, there exists a strictly con- 
vex polyhedron defined by the stress equation with a skeleton that  is isomorphic 
with G. Using this equation, we can produce a strictly convex polyhedron. 

Step 5: Every polyhedron has at least one reciprocal polyhedron. If a poly- 
hedron is convex, then it is possible to find a reciprocal polyhedron that  is also 
convex. Furthermore, the skeleton of a polyhedron is dual to the skeleton of a 
reciprocal of that  polyhedron. [] 
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T h e o r e m  4 Algorithm 1 requires O(n a/2) time. 

Proof." Step 3 requires O(n a/2) t ime to perform a Tut te  drawing [12]. Every 
other step requires at most O(n) time. Therefore the overall t ime complexity is 
0(n3/2). [] 

Unfortunately, Algorithm 1 does not always produce drawings with good "res- 
olution", where resolution refers to the ratio of the smaUest distance between 
vertex positions to the diameter of the set of vertex positions. 

L e m m a  5 The worst case resolution of a Tutte drawing is I2(kn), k > 1. 

P r o o f :  Consider a Tut te  drawing of the following 3-connected planar graph: 
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V3 

US 

Vl 

Vb 

If va and vb are each defined to have a y-coordinate of zero (ya -- yb -" 0); 
and v0 is defined to have a y-coordinate of 1 (y0 = 1), then, by definition of a 
Tut te  drawing, vl will have a y-coordinate of 3y0 (yl -" 3y0). Now, Y2 -- 4yl - Y0, 
and similarly for Ya. In this way, the maximum y-coordinate for a similar graph 
of n vertices can be found by solving the recurrence Yi = 4yi-1 - Yi-~; where 
y0 = 1 and Yl -- 3. Using standard techniques [10], the solution to this recurrence 
equation shows that  Yn = O(kn), where k is a constant and k > 1. Therefore, 
the worst case resolution of a Tut te  drawing is ~2(kn), k > 1. [] 

T h e o r e m  6 Algorithm I produces a drawing of a polyhedron with at least expo- 
nential worst case resolution. 

P r o o f  : By Lemma 4, the resolution of a Tut te  drawing is at least exponential 
in the worst case, therefore the resolution of the drawing produced by Algorithm 
1 will be at least exponential in the worst case. [] 
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3 E x a m p l e s  

In this section we will show some examples of drawings as produced by Al- 
gorithm 1, and suggest a possible extension of the existing algorithm so as to 
produce more sphere-like polyhedra. Unlike Fig.2, the drawings of polyhedra 
in this section are 2D projections of vertices and edges and do not explicitly 
show the facets. However, we have attempted to choose projections that clearly 
illustrate the shapes of the polyhedra. In some instances, we have drawn the 
polyhedron as a stereoscopic-pair, where the left drawing is the view as seen by 
the left eye and the right drawing is the view as seen by the right eye. A 3D effect 
may be produced using these pairs by looking at a point behind the page, thus 
causing the two drawings to overlap. An inverted image may also be produced 
by crossing one's eyes in order to overlap the drawings. 

Figures 5 and 6 show drawings of the skeleta of the Platonic solids and the 
corresponding polyhedra as produced by Algorithm 1. The resulting polyhedra 
are isomorphic with the Platonic solids but are not regular. (For more informa- 
tion on the Platonic solids see [1].) 

In Fig.6, the polyhedra are the direct result of a reciprocation operation (i.e. 
the calculation of a reciprocal polyhedron), since the skeleta of the cube and the 
dodecahedron have no Ca faces. The polyhedron in drawing 6.II(a) has facets 
of nearly equal area and shape, as does the polyhedron in drawing 6.II(b). This 
near-regularity of facet area and shape is in most part due to the reciprocation 
step at the end of Algorithm 1. Applying two suitable reciprocation operations 
to each of the polyhedra in column II of Fig.5 will have the same effect. That is, 
it is possible to apply a double reciprocation to these polyhedra in such a way 
that the large facets will be shrunk and the small facets will be expanded. The 
polyhedra in 5.III are the result of such a double reciprocation. 

The drawings in 5.III are nicer than those drawings in column 5.II. The most 
notable attributes are the approximate spherical shape of the polyhedra, and 
the relatively uniform facet areas and edge lengths. 

This suggests changing the last step of Algorithm 1 to perform a suitable 
double reciprocation in those cases when the dual was not constructed. That is, 
when the input graph G contains at least one Ca. 

Figure 7.II(a) shows a drawing of a polyhedron isomorphic to a twin cube. 
This polyhedron is strictly convex, where a more intuitive drawing may only be 
weakly convex. 

Figure 7.II(b) shows the drawing of a polyhedron isomorphic to a pentagonal 
prism. This polyhedron is strictly convex, however no two adjacent facets are at 
right angles to each other. 

Figure 8.III shows the drawing of a polyhedron as produce d by Algorithm 
1 with a skeleton that is isomorphic to the octagonal mesh shown in Fig.8.I. 
Figure 8.III is a bad drawing since there are large facets and many small facets 
clustered together. Figure 8.II is the polyhedron created by Algorithm 1 prior 
to the reciprocation step. This polyhedron has many long thin facets clustered 
down one side, and so reciprocation about a single internal point results in a 
cluster of small facets in the final polyhedron. 



H:(~) I(:0 

I(b) 

Y 
I(c) 

H(a) 

II(b) 

220 

III(b) 

::(c) 

Fig. 5. (I) 2D planar drawings of the skeleta of (a) a regular tetrahedron, (b) a regular 
octahedron, and (c) a regular icosahedron; (II) the corresponding polyhedra as pro- 
duced by Algorithm 1; and (III) stereoscopic-pMr drawings of the polyhedra resulting 
from a double reciprocation. Note that these polyhedra consist entirely of triangular 
facets. 

In [5] there are drawings of some 3-connected planar graphs in 2D, and in 
some cases the result is similar to a projection of a 3D polyhedron into 2D. 
In [6] there are drawings of some 3-connected planar graphs in both 2D and 
3D, however the resulting drawings are not polyhedral in the sense that  for any 
particular face of a graph the vertices of that  face are not necessarily drawn so 
that  they lie on the same plane in 3D. 

As mentioned in the introduction, Fig.1 is the skeleton of a 3 frequency 
geodesic sphere, and Fig.2 shows three views of the corresponding polyhedron 
as produced by Algorithm 1. The line-hiding utilised in Fig.2 emphasises the fact 
that  Algorithm 1 draws 3-connected planar graphs as strictly convex polyhedra, 
where each face of the graph is drawn in 3D as a single facet. 
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Fig. 6. (I) 2D planar drawings of the skeleta of (a) a regular hexahedron (or cube) and 
(b) a regular dodecaharlron; and (II) stereoscopic-pair drawings of the corresponding 
polyhedra as produced by Algorithm 1. Note that these polyhedra consist entirely of 
non-triangular facets. 

\ / 

/ N 
I(a) 

I(b) 

i 

II(a) 

II(b) 

Fig. 7. (I) 2D planar drawings of the skeleta of (a) a twin cube and (b) a pentagonal 
prism; and (II) stereoscopic pair drawings of the corresponding polyhedra as produced 
by Algorithm 1. 
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II 

III 

Fig. 8. (I) 2D planar drawing of an octagonal mesh; (II) the corresponding dual poly- 
hedron as produced by Algorithm 1 prior to the reciprocation step; and (III) stereo- 
scopic-pair drawing of the polyhedron produced by Algorithm 1 after the reciprocation 
step. 

4 Conclus ion and Open Prob lems  

We have described an algorithm that will draw 3-connected planar graphs as 
strictly convex polyhedra. This algorithm requires O(n 3/2) time, and produces 
drawings of polyhedra with a resolution that is at least exponential in the worst 
case. We have given example drawings of polyhedra as produced by Algorithm 1, 
some of which were improved by a suitable double reciprocal operation. 

The following are some open problems: 
(i) Is there an algorithm that will draw 3-connected planar graphs in 2D as 

convex equilibrium stressed graphs with a resolution that'is polynomial in the 
number of vertices? 

(ii) What is the largest ratio of the diameter of the smallest spherical shell 
that encloses a polyhedron produced by Algorithm 1 to the diameter of the 
largest spherical shell enclosed by the same polyhedron, where the two spherical 
shells are concentric? Such sphericity of a polyhedron is a good aesthetic for 
identifying nice drawings of polyhedra. 
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(iii) Where should vertex labels be placed after drawing a 3-connected planar 
graph as a polyhedron? One possibility is to draw the dual of such a graph as a 
convex polyhedron and place labels on the facets. The facet adjacencies of such 
a drawing correspond exactly to the vertex adjacencies of the original graph. 

(iv) What  is the best way to display a three-dimensional graph? In particular, 
what is the best way to display a three-dimensional graph on a static two- 
dimensional medium such as paper? Possibilities include red/green anaglyphs 
and stereoscopic pairs. 
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