
COMAIDE: Information Visualization using

Cooperative 3D Diagram Layout

David Dodson

Computer Science Department, City University,
Northampton Square, London ECIV 0HB, UK

dcd@cs.city.ac.uk

Abstract. COMAIDE is a toolkit for user-system cooperation through
joint multi-focal graph browsing. It supports cooperative force-directed
layout management, concurrent with dialogue handling, for heteroge-
neous multi-layered 3D interactive diagrams. The layout manager's intu-
itively 'natural' animations of multi-layered 3D graph drawings support:

1. Cooperative tidying of user-maaipulable 3D layout;
2. Optional 'lucid' 3D layout optimized for a favoured viewpoint;
3. Layout annealing for good initial 3D diagram topologies;

1 Introduct ion

COMAIDE (Co-Operative Multilayer Application-Independent Diagram Envi-
ronment) is a toolkit for cooperative Diagrammatic User Interfaces (DUIs) [15]
to applications written in Prolog. It presents a simple artificial reality of 3D
multi-layer node-and-link diagrams supporting multi-focal graph browsing. The
nodes of the diagram occupy a set of parallel layers, each node's centre being
constrained to lie in the plane of a layer.

COMAIDE diagrams are animated by an innovative force-directed layout
manager, dyn, the focus of this paper. As in most force-directed graph drawing
systems, dyn simulates repulsion between diagram elements to keep them spread
apart, and springiness in links to promote preferred link lengths and alignments.

In dyn's normal, cooperative mode of use, the diagram is animated in a slow
and intuitively predictable way which does not interfere with user manipulation
of the diagram. This lets the user vary the diagram's 3D topology by dragging
nodes. Each node can be dragged within a layer or to another layer by the
user. dyn tidies up the result without changing the topology. This is important
because the user may see ways of improving the layout that a layout manager
cannot find or cannot apply without risk of causing disorientation; also purely
automatic layout cannot address unpredictable or ramified user preferences, dyn
also has a simulated-annealing mode for producing fresh layouts, e.g. of new
diagram contents generated by an application.

Concurrently with layout animation, COMAIDE supports user-application
dialogues in which an application responds to mouse actions by modifying dia-
gram content. These dialogues can employ built-in facilities for multi-focal brows-
ing [5, 14, 16, 9] which let both user and application expand, shrink, hide and

191

reveal nodes. This is important in giving the user control of the allocation of
screen space (external visual memory) to information whilst letting the appli-
cation vary this allocation, e.g. to draw attention to important matters. User
browsing manipulations incorporate a fast initial layout adjustment in the spa-
tial neighbourhood of the affected node using the 'ductile space' metaphor [5].

Facilities for pop-up and pull-down menus are also built-in. A built-in pull-
down menu allows selection of applications and control of the layout manager.
Applications can also incorporate specialized layout algorithms for layout initial-
ization as an alternative to the relatively slow but general annealing approach.

COMAIDE is a Prolog environment including sub-systems for application
management, menu operations, browsing operations, layout management and
diagram I/0, along with various utility sub-systems. A SICStus Prolog process
incorporating these sub-systems acts as a client of City's interactive diagram
graphics server, icx, which implements ICD-Edit [4, 7, 8] for X/Motif. COMAIDE
is currently undergoing further development in the EU CUBIQ project. The
version outlined here uses the client-server protocol ADI 1.6.1b detailed in [7].

Section 2 outlines depth perception aspects of COMAIDE diagrams. CO-
MAIDE's layout manager, dyn, is presented and discussed in Sec. 3. Section 4
illustrates both a concept-demonstration of a cooperative Expert System DUI
built using COMAIDE and the use of annealing for initial layout. Section 5
concludes.

2 D e p t h P e r c e p t i o n in C O M A I D E D i a g r a m s

COMAIDE's graphics server, ICD-Edit, offers a limited 3-dimensionality, '23/4 D',
in which nodes appear upright and face forwards irrespective of the variable 3D
orientation of a diagram. Moreover, ICD-Edit nodes are simply fiat rectangles
and the links between them are straight lines with optional arrowheads. These
constraints allow fast diagram manipulation without 3D hardware but also limit
the cues available for depth perception, which thus need special attention.

Naturally, ICD-Edit uses hidden object removal, but this only indicates the
sign of the depth difference wherever a node overlaps a node or link,

Perspective is used too. Brookes [1] observes that perspective is very effective
as a depth cue when parallel lines and right angles abound in the 3D model. A
more detailed analysis for the case of 3D node-and-link diagrams is offered here:

1. Perspective projection is not in itselfa depth cue.
2. Recognizable spatial arrangements of diagram elements are good depth cues;

perspective usually enhances, and in particular disambiguates, this effect.
3. The more parallel lines and right angles there are in the spatial arrangement,

the better its depth cueing effect.
4. Significant uniformity of sizes in the model, e.g. amongst nodes or amongst

distances between nodes, is needed for perspective to aid depth cueing.

192

ICD-Edit's optional 'rocking' motion, inspired by SemNet 1, approximates a
sinusoidM rotational oscillation with just three co-maintained images. This often
seems disturbing at first, but seems generally acceptable. It very usefully depth-
cues ICD-Edit diagrams which richly populate 3D space.

COMAIDE diagrams use parallel rectangular layers visualized by 3D bound-
ing boxes and perspective viewing to exploit the potential for depth cueing in
ICD-Edit diagrams. Though not shown here, intensity cueing is supported too.

3 T h e L a y o u t M a n a g e r , dyn

As a layout manager, dyn runs as a background activity, repeatedly adjust-
ing diagram layout. The successive adjustments approximate the motion of the
mutually-repulsive springy diagram elements in a viscous medium. Links are
assumed to have negligible mass. Newton's second law applies to each node:

F ---- m~ r (i)

where m is the mass of the node and ~r (i.e. dV/dt) is its acceleration vector.
The force vector F is the sum of the motive force on the node and the drag due
to viscosity. Using a simple model of viscosity, neglecting node size, this gives:

m~ r = FMOTXVB -- kV (2)

where k is a viscosity coefficient. The option of treating nodes as having negligible
mass is usually taken, so that the motion equation degenerates to:

V = F~oT,v~/k (3)

In this case, in each time step, movement is proportional to applied force - - a
common feature of force-directed graph drawing following its use in [10].

Fig. 1 summarizes dyn's layout animation algorithm. Table 1 lists control
parameters which can be varied using pull-down menus while dyn is running.

3.1 Mot ive Forces in dyn

Nine different types of motive-force interaction are considered, as follows.
3D N o d e - b o u n d a r y repulsion: Each node is repelled inwards by each face

of a model-axis-aligned cuboid [6] by a force increasing linearly from zero at the
cuboid's centre to 1 at a distance of bdry_rim_width from the boundary and then
to max_repulsion for a node touching, crossing or outside the boundary.

3D Node-node repulsion: Each node pair within a layer undergoes inverse
square law repulsion subject to a force limit of max_repulsion and a distance limit
of repel_horizon.

3D Node-l ink repulsion: For each node, for each link which is not a link
of that node and which either lies in the same layer as the node or crosses that

1 SemNet [11] demonstrated fully 3D, mainly viewpoint-navigated knowledge browsing
with scale-driven recursive decomposition of spatial cluster nodes)

193

For each node n: Set V(n) {the ve loc i ty of n} to [0 ,0 ,0] ;
While ts>O {where ts is the assumed size of time step in seconds}:

<<< FORCE Computation: >>>

For each node n: Set F(n) {the motive force on n} to [0,0,0];

For each node n: Add its boundary repulsion forces to F(n), also

For each force couple between two diagram elements:

For each member E of the pair of elements:

If E is a node n: Add the relevant force to F(n)

else (E is a link from node nl to node n2):

Add the relevant forces to F(nl) and F(n2);

<<< MOTION Computation: >>>

If inertia>O then:

tss :ffi ts/5;

For each node n, repeat 5 times:

Posn(n) := Posn(n) + V(n)*tss;

V(n) := V(n) + (F(n)-V(n)*viscosity)*tss/(mass(n)*inertia);

else For each node n:

V(n) := F(n)/viscosity;

Posn(n) := Posn(n) + V(n)*ts;

viscosity :ffi min(end_viscosity, viscosity*(lOO+anneal_rate)/lO0);

Fig. 1. Outline of dyn's layout management algorithm

Parameter Description
bdry_rim_width Distance at which node-boundary repulsion is 1
n_n_3_repel_factor Coefficient of 3D node-node repulsion
n_h3_repel_factor Coefficient of 3D node-link repulsion
1A_3__repehfactor Coefficient of 3D link-link repulsion
repel_horizon Distance limit of repulsion between diagram elements
max_repulsion Limit on each 3D repulsion force
perpendicity Stiffness coefficient of between-layer links
preferredAength Ideal forward size of in-layer links
fwd_rigidity Forward stiffness coefficient of in-layer links
planar_field Stiffness coefficient of 'magnetic' link alignment
n_n_2_repehfactor Coefficient of 2D node-node repulsion
nA_2_repel_factor Coefficient of 2D node-link repulsion
max_2d_repulsion Limit on each 2D repulsion force
viscosity Ratio of drag force to velocity (negated)
anneal_rate % increase in viscosity per layout step
end_viscosity Limit to increase of viscosity
inertia Ratio of inertia to mass

Table 1. dyn's Control Parameters

layer, inverse square law repulsion occurs between them subject to a force limit
of max_repulsion and a distance limit of repel_horizon.

194

3D Link-link repulsion: Each pair of links such that one is in a layer which
the other crosses or both cross the same gap between layers experience inverse
square law repulsion acting along the line of shortest distance between the links,
subject to a force limit of max_repulsion and a distance limit of repel_horizon,
provided they would not be closer if extended to infinity.

Between- layer link alignment stiffness: Each link from a node in one
layer to a node in another exerts a pair of forces, one on each node, of magni-
tude perpendicity*tan(angle from the perpendicular), seeking to make the link
perpendicular to the layers. The effect is analogous to barycentering [17], but
generalized to 3D.

In- layer link alignment stiffness: Each link in a layer with a forward (i.e.
upward) direction is Considered to be 'magnetic' if planar_field exceeds zero.

A non-magnetic link exerts a force pair seeking, with a linear elastic stiffness
of fwd_rigidity, to make it preferred_length long in its current orientation.

A 'magnetic' link exerts a force pair seeking alignment in the layer's forward
direction, D. The force components in D are zero if the length component in D
is preferred_length, and otherwise reflect a linear elastic stiffness of fwd_rigidity.
The force components in the perpendicular direction S within the layer are zero
if the length component in S is zero, and otherwise reflect a stiffness proportional
to planar_field. This crude but fast approximation of magnetism seems to avoid
instability and to have intuitive appeal and a barycentering-like effect [17].

2D Node-node and node-link repulsion: These weak 2D repulsions are
somewhat similar to their 3D counterparts, but arise in the display plane, ignor-
ing depth differences between nodes. Their effects are, respectively, to minimise
node overlap and to resist node-link crossings in the 2D display.

3.2 Force, Mass and Heat in Nature and in dyn

COMAIDE animates the diagram approximately as if suspended in a thick fluid
which continually promotes equilibrium by extracting energy from it. Low-energy
equilibrium states in force-directed layout have no kinetic energy because they
are static, and have low potential energy in force interactions, implying good
satisfaction of the separation and alignment preferences modelled by the force
interactions, averaged over the diagram. The motion and heat that would be
induced in a real fluid is ignored, but compared to most force-directed graph
drawing systems, e.g. [13, 2, 12], dyn's dynamics are relatively natural.

dyn's universal inertial constant, inertia, controls the magnitude of the effect
of mass, i.e. delay in response of motion to force and tendency to overshoot.
When inertia is zero, diagram layout typically seems to converge faster with
similar or perhaps better results, though no formal comparison has been made.
Moreover, the animation seems more open to intuitive prediction when mass
effects do not need to be considered. Indeed, naturally speaking, the more vis-
cosity dominates mass (i.e. the smaller velocities are than they would be in the
absence of viscosity), the smaller the effect of mass on trajectory.

In practice, in the course of a time step, diagram elements tend to approach
each other more closely than their initial energy would allow in reality. This

195

happens because the crude simulation algorithm does not foresee the escalation
of repulsion between them in the course of their approach. Compared with a hy-
pothetical perfectly natural animation the effect is to provide a source of random.
mechanical energy. A positive viscosity is needed just to counterbalance this ef-
fect. Adopting the analogy between diagram structure and molecular structure,
an increase in energy equates to heating. Thus a low viscosity in dyn tends to
produce heating, whilst a high viscosity tends to produce cooling.

3.3 Normal and Annealing Modes of Layout Management

dyn's 'normal' mode of cooperative operation occurs when diagram energy is low
enough for diagram elements to succeed in repelling each other. In other words,
between one force computation and the next, no diagram element (node or link)
passes through another due to motion so fast that their high mutual repulsion
when close together is not sampled - - or if sampled, is insufficient to prevent
through-passing. This equates to the ordinary reality of solid objects. In some
sense, the 3D topology of the diagram remains constant.

At high energy levels, the diagram moves chaotically with lots of through-
passing. This is somewhat analogous to the behaviour of fluids, particularly as
the positions of nodes are much less constrained by the links between them.

The term annealing traditionally meant the slow cooling Of a metal such that
the boundaries between its crystals have time to migrate, relative to its atoms,
to a particularly low energy state associated with large crystal size and with high
ductility. Through metaphor, it can be now used for analogous slow reductions of
energy which tend to yield particularly low-energy equilibrium states. Dropping
the qualification 'simulated' from annealing seems particularly valid when, as in
graph drawing, reality is being created more than simulated.

Unlike many simulated annealing systems, such as [2], dyn is deterministic,
being controlled by increasing viscosity rather than by explicitly reducing the
probability of random energy increase. Annealing is used to solidify the diagram
into a low-energy 3D topology. The diagram can initially be melted with low
viscosity and/or by 'crushing' it, which positions each node at the centre of its
layer, creating high initial potential energy. If the diagram 'explodes' excessively,
'sandbags' can be switched on to limit node positions to a cuboid model space.

3.4 3D and 2D Layout

Diagram annealing in dyn using 3D forces leads to fairly good 3D layouts, al-
though some cooperative user input is often helpful once the diagram is solid.
These layouts are not however optimized for a particular direction of viewing. To
maintain familiar visual context and aid fast recognition of familiar content, the
diagram needs to be arranged appropriately for some principal viewing direc-
tion. dyn achieves this using 2D node-node and node-link repulsions which arise
in the 2D display projection of the diagram. By making these 2D repulsions
small compared to the 3D repulsions, they minimize node-node and node-link
overlap in the projected view, without significantly impairing the quality of the

196

3D layout. The resulting layout is good both in 3D and in the 2D-displayed view.
The 2D forces also tend to maintain the 2D topology of a solid diagram and are
not useful to consider until the diagram is solid, especially as they currently take
longer to compute than the 3D ones.

Gas, liquid and solid are familiar thermodynamic phases of everyday sub-
stances. VIM diagrams have three thermodynamic phases too: the fluid phase,
the ordinary solid phase, and a third phase obtained with added 2D repulsions
which can add perspicuity to solid diagrams. This third phase is the lucid phase.

Clearly there is much more to be gained from the correspondence between
materials science and 3D force-directed graph drawing than is uncovered here.

4 Sample Results

Note that when COMAIDE presents the diagrams shown below, ICD-Edit's rock-
ing motion makes them look far more 3-dimensionM. This makes them look less
tangled and resolves structural ambiguities.

4.1 Cooperat ive Browsing S u p p o r t e d by Cooperat ive Layout

This example shows VIM [9], a visual expert system prototype, running in CO-
MAIDE. The underlying expert system shell is IM1 [3].

Fig. 2. VIM on first selecting a question to be answered

197

Figure 2 shows a view of a 3D overview diagram comprising 89 nodes and
c.100 links. It shows a small IM1 knowledge base of 42 particulars (the oblong
nodes) and 47 rules (the square nodes and their links). The user has entered,
as the initial input, the proposition that the patient complains of amenorrhoea
(particular pl, top right front). As a result, IM1 has updated various weights
of evidence (visually encoded mainly with '+ ' and ' - ' characters) by forward
rule application (i.e. with the data flow shown by arrowheads). It has then also
updated 'investigative importances' (visually encoded by oblong-node border
density) by reverse rule application. VIM has used these updates to estimate
the pertinence (i.e. desired salience) of the affected nodes and has updated the
diagram accordingly, dyn has then executed two cycles of layout adjustment,
chiefly spreading out enlarged nodes to reduce overlap. Finally the user has
clicked on the 'men cg dur' node causing a data entry pop-up to appear.

Fig. 3. Later in the same VIM consultation

Figure 3 shows a later stage in the consultation. The layout manager has
executed a further 12 layout adjustment cycles. Concurrently, the user has:

1. Provided 3 answers to questions;
2. Rearranged three nodes to release a snag which inhibited layout improve-

ment, without altering the 3D topology of the diagram;
3. De-selected most of the 'tiny' particulars from view (Ideally VIM would

keep impertinent particulars hidden, but at the time of writing its automatic
browsing actions vary node salience but not node selection.)

198

Node de-selection can be reversed by clicking on the 'link stubs' which point
in the direction of omitted detail. Each such click reveals a linked rule node,
together with any other links from that rule to particulars shown in the diagram.

dyn currently takes almost two minutes per animation step for the full lucid
VIM diagram shown in Fig. 2, using lists for vectors in SICStus Prolog on a Sun
SPARCclassic. Software tuning and quadrupled hardware power are expected to
yield an acceptable speed of 1 to 5 seconds per cycle for such a diagram.

4:2 Cooperat ive A n n e a l i n g

Fig. 4 shows a diagram which has been crushed and then given 29 annealing steps
with an initial viscosity of 0.2, rising 2% per step. All of the other parameters
have their default values, with 2D forces off. The diagram solidified within 11
annealing steps, and moved very little after 20 steps. Each layout step took about
2 seconds, including Prolog, ICD-Edit and X server execution time.

~ublect 1 browsing 1 , a y o u t m o t i o n ~

..-" ~a~;'f r~r~ ra~~iu ?..
....._...-.-::~m m ".. o" / l i t - ~ ! / ", . .

.... �9 " - - ~ - - - - ~ , ' ~ , I . ~ '" " .
,~::" : ' ~ ~ " / " ' ~ " ' T ' " ' ~ ; ' ? . "":."~

. ? . .

..'..- "y,'-"~r ~('-~" "#d ~"~" :"
. ."/ ~, .~ . . ~ , ~ r - " " " " ~ "::"..

: . " . '" "lV.~b'(~ ' lg.~er ~ " " l .a~.er ~1 ". " . :

vJm:

Fig. 4. A Diagram after 29 Annealing Steps

After repositioning one node by simple dragging, 10 more annealing steps
produced the layout shown in Fig. 5, in which the dragged node is emphasized.
dyn was stopped to aid this, as node dragging was not suppressing repositioning
by dyn at that time, making dragging prone to failure in small diagrams.

The right hand half of the diagram was then manually repositioned to make
the diagram r o u g h l y symmetrical, again with dyn turned off. After about ten

199

I =,,,bJ,,= I b ~ I . g l lay ~176176 l a~y ~176 I

/ ' / , , , ~ ml X....
..")" n , . : ~ _ _ ~ . - w p ', ~ / u "-.,'.,..

.

.::::::::...
~ ; ;) ~ ; ~ ; ; ~ ';;~'r'~" "~;~'~"~" "~,: ':'i

I vim: adtl.6.1b; (IOD-Edlt source und~

Fig. 5. A f t e r 39 Steps

more layout cycles, the node velocities were below 1 pixel per cycle. Fig. 6 shows
the layout a minute later. A further 250 steps produced no noticeable result
except for a very slight clockwise rotation as viewed from above.

5 C o n c l u s i o n

COMAIDE demonstrates a lot of support for user-application cooperation in
joint multi-focal graph browsing, illustrating key benefits of 3D in this con-
text. The key ingredient is a cooperative layout manager, dyn, which animates
multi-layered 3D graph drawings in a fairly graceful, subjectively natural and
intuitively comprehensible way. Animation by dyn supports:

1. Cooperative management of 3D layout, in tidying layouts without changing
their topology while allowing user manipulation;

2. Optional combined 3D and 2D 'lucid' layout for a favoured viewpoint;
3. Layout annealing, finding good 3D diagram topologies.

dyn's novelty rests largely on its rich model of diagram structure and forces:

1. Both sorts of diagram element (links as well as nodes) repel each other.
2. Links within planes are treated distincity from links between planes.
3. An optional pseudo-magnetic force promoting link alignment within a plane

is modelled as an orthogonal pair of simple spring forces.
4. 2D forces which arise in the display plane are used to gently coerce good 3D

layouts into being good 2D ones from the chosen viewpoint.

200

...~ fi~'~" r ~ ~ ~ ~ ' ~ ?..

.... ; . " _ ' ~ " ' " _ ' " " ' " U w " - ~ ' : : : ~ " : : " - .

..'i " ~ ' , ~ i ~ " V , ~ ' : : J ' ~ " ,~ ~,.. ",~ ?.. : ? %,
/ ' . . .,.,,

~'.., ' ~ . . . : . , : ' , .
:." .'. �9 l~ii?~"]~ 'r '~ 1g~"~ ". '."

r . :: ",

Fig. 6. After another 5 Drags and 40 Steps

5. The force computation ignores hidden diagram elements and the motion
computation ignores any component of force on a node normal to its layer.

Further details including references to related work can be found using the
World Wide Web URL: http://web.cs.city.ac.uk/research/dig/digpapers.html

6 A c k n o w l e d g e m e n t s

Funding by EPSRC (GR/G56478, Cooperative KBS Browing), EU COPERNI-
CUS (project 10979, CUBIQ) and City University is gratefully acknowledged.

R e f e r e n c e s

1. FP Brooks. Grasping Reality Through Illusion - Interactive Graphics Serving Sci-
ence. In SIGCtII Bulletin (special issue), ACM/Addison Wesley. (CHI'88 P r o -

c e e d i n g s , Washington, May 1988).
2. R Davidson and D Harel. Drawing Graphs Nicely Using Simulated Annealing.

Tech. Report, The Weizmann Institute of Science, Rehovot, Israel, 1989; revised
1992,1993. To appear in Communications of the ACM.

3. DC Dodson and AL Rector. Importance-driven control of diagnostic reasoning.
In MA Bramer, editor, R e s e a r c h a n d D e v e l o p m e n t i n E x p e r t S y s t e m s . Cambridge
University Press, 1984. (Proceedings of Expert Systems 84, Warwick, December
1984).

201

4. DC Dodson, LH Reeves and RB Scott. ICD-EDIT: - A Server for 23/4 D In-
teractive Connection Diagram Graphics with Prolog Clients. Technical report
TCU/CS/1995/1, Dept. of Computer Science, City University. 9pp. (Poster,
Graph Drawing 94, 10-12 October 1994, Princeton, New Jersey). World-Wide
Web (colour): http://web.cs.city.ac.uk/research/dig/95/TCU_1995_l/pl.html

5. DC Dodson. TRIVIAL: Refocusing in Cooperative Diagrams with Ductile
Space. Tech. report TCU/CS/1995/2, Computer Science Dept., City University.
10pp. (Poster, Graph Drawing 94, 10-12 October 1994, Princeton, New Jersey).
WWW (colour): http://web.cs.city.ac.uk/research/dig/95/TCU_1995_2/p2.html

6. DC Dodson. N-Dimensional RSPs, Right Multflayered Diagrams and Prolog.
Technical report TCU/CS/1995/3, Dept. of Computer Science, City University.
9pp. (Poster, Graph Drawing 94, 10-12 October 1994, Princeton, New Jersey).
WWW (colour): http://web.cs.city.ac.uk/research/dig/95/TCU_1995_3/p3.html

7. DC Dodson, LH Reeves and RB Scott (1995) ICD-Edit's Client-Server protocol:
ADI Version 1.6.1. Technical report TCU/CS/1995/x, Dept. of Computer Sci-
ence, City University, 1995. World-Wide Web: http://web.cs.city.ac.uk/informat-
ics / cs /research/ dig/ 95 / adi l_6_l / sp.ps

8. WWW ICD-Edit page: http://web.cs.city.ac.uk/research/dig/icd-edit.html
9. DC Dodson, JA Secker, RB Scott and LH Reeves. VIM: 3D Co-operative Dia-

grams as KBS Surfaces. To appear in MA Bramer, editor, Research and Develop-
ment in Expert Systems XII. (Proc. Expert Systems 95, Cambridge, Dec. 1985).
WWW (colour): http://web.cs.city.ac.uk/research/dig/95/es95/es95.ps (Oct 95).

10. P Eades. A Heuristic for Graph Drawing. Congressus Numerantium, 42:149-160,
May 1984.

11. KM Fairchild, SE Poltrock and GW Furnas. SemNet: Three Dimensional Graphic
Representations of Large Knowledge Bases. In R Guidon, editor, Cognitive Science
and its Application for Human Computer Interaction. Lawrence Erlbaum, 1988.

12. A Frick, A Ludwig and H Mehldau. A Fast Adaptive Layout Algorithm for Undi-
rected Graphs. In R Tamassia and IG Tollis, editors, Graph Drawing. Lecture
Notes in Computer Science 894, Springer, 1995. (Proc. DIMACS International
Workshop, GD94, Princeton, New Jersey, USA, October 1994).

13. T Fruchterman and E Reingold. Graph Drawing by Force-Directed Placement.
Software-Practice and Experience, 21(11):1129-1164, 1991.

14. K Kaugars, J Reinfelds and A Brazma. A Simple Algorithm for Drawing Large
Graphs on Small Screens. In R Tamassia and IG Tollis, editors, Graph Drawing.
Lecture Notes in Computer Science 894, Springer, 1995. (Proc. DIMACS Interna-
tional Workshop, GD94, Princeton, New Jersey, USA, October 1994).

15. T Lin and P Eades. Integration of Declarative and Algorithmic Approaches for
Layout Construction. In R Tamazsia and IG Tollis, editors, Graph Drawing. Lec-
ture Notes in Computer Science 894, Springer, 1995. (Proc. DIMACS International
Workshop, GD94, Princeton, New Jersey, USA, October 1994).

16. EG Noik. Encoding Presentation Emphasis Algorithms for Graphs. In R Tamassia
and IG Tollis, editors, Graph Drawing. Lecture Notes in Computer Science 894,
Springer, 1995. (Proc. DIMACS International Workshop, GD94, Princeton, New
Jersey, USA, Oct. 1994).

17. K Sugiyama, S Tagawa and M Toda. Methods for Visual Understanding of Hierar-
chical System Structures. IEEE Trans. Systems, Man and Cybernetics, 11(2):109-
125, February 1981.

