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A b s t r a c t .  A graph is called quasi-planar if it can be drawn in the plane 
so that no three of its edges are pairwise crossing. It is shown that the 
maximum number of edges of a quasi-planar graph with n vertices is 
O(n). 

1 I n t r o d u c t i o n  

We say that  an undirected graph G(V, E) without loops or parallel edges is drawn 
in the plane if each vertex v E V is represented by a distinct point and each 
edge e E E is represented by a Jordan arc connecting the points corresponding 
to endpoints of e. Throughout this paper, we assume that  any two arcs of a 
drawing have at most one point in common, which is either a common endpoint 
or a common interior point where the two arcs cross each other. We do not make 
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any notational distinction between vertices of G and the corresponding points 
in the plane, or between edges of G and the corresponding Jordan arcs. 

A graph that can be drawn in the plane without crossing edges is planar. We 
call a graph quasi-planar if it can be drawn in the plane with no three pairwise 
crossing edges. The aim of this paper is to establish that the number of edges of 
any quasi-planar graph with n vertices is O(n). This improves an earlier result 
of Pach et al. [6]. 

T h e o r e m  1. / f  G(V, E) is a quasi-planar graph, then IE[ = O([V[). 

We prove this theorem in Section 2, and in Section 3 we consider some related 
problems and generalizations. 

2 P r o o f  o f  T h e o r e m  1 

To simplify our presentation, we only prove the theorem in the special case when 
G has a straight-line drawing with no three pairwise crossing edges (straight 
line segments). Remarkably, the proof for the general case requires only minor 
modification. 

The set of edges E = E ( G )  defines a cell complex in the plane, whose 0-, 1-, 
and 2-dimensional cells will be called nodes, segments, and faces, respectively. 
This cell complex is known as the arrangement of the set of edges of G and is 
denoted by A(E). For example, nodes of A(E) are the endpoints and crossings 
of graph edges, and a segment of A(E) is a portion of a graph edge between 
two consecutive nodes. (To avoid ambiguity we hereafter refer to vertices and 
edges of G, and to the corresponding points and line segments in the plane, as 
"graph vertices" and "graph edges," respectively.) Let X be the set of crossings 
of graph edges, N = V U X the set of all nodes of A(E), S the set of its 
segments, and F the set of its faces. For a face ] 6 F,  the complexity i.fi of 
f is the number of segments of S on the boundary O] of ].  As usual, if both 
sides of an edge are incident to the interior of f ,  then it contributes 2 to ill. Let 
t(E) = i{] 6 F : I]1 = 3}1 be the number of triangular faces in F. 

L e m m a  2. Let G(V, E) be a graph drawn in the plane. Then the total complexity 
of all non-quadrilateral faces of the arrangement .A(E) is at most 4t(E) + 20IV ]. 

Proof. It is sufficient to prove the lemma with the assumption that the planar 
graph (N, S) is connected and ISI > 1. 

Recall the following familiar facts: 

I/I = 2 1 s i ,  
feF 

2iS[ = ~ deg(v) -- ~ deg(v) + ~ deg(v) > 2IEI + 4IX[ , 
yEN vEV VEX 

and 
ivl + iXl + IFI = INI + IFI = iSi + 2. 



The first two lines just express two different ways of counting the edges of the 
planar graph (N, S), as the sum of face complexities and of vertex degrees, 
respectively. The third line is Euler's relation. These easily yield 

Z I J I - < 4 1 V I + 4 1 F I - 2 1 E I - 8 ,  hence Z ( I f l - 4 ) < 4 1 V  I . 
f~F leF 

Finally, since If] > 4 implies If] -< 5(]fl - 4), we have 

Ill  = S t ( E )  + 5 ~--~(l/I - 4) < 3t(E) + 20lVJ . 
.f~F, Iflr feF 

[] 

L e m m a  3. Let G(V, E) be a quasi-planar graph drawn in the plane. Then the 
overall complexity of all faces f of A(E), such that f is either a non-quadrilateral 
face or a quadrilateral face incident to at least one vertex of G, is O(IV I + lED. 

Proof. Note that t(E) = O(IEI) , as each triangular face f of A(E) must be 
incident to a vertex of G. For otherwise there would be three pairwise crossing 
edges. It is easy to check that the number of faces of A(E) incident to graph 
vertices is at most 21E I. In addition, this implies that the overall complexity of 
all quadrilateral faces of A(E) incident to a graph vertex in V is also O(IEI). 
The lemma is now an immediate consequence of Lemma 2. [] 

Let G(V, E) be a quasi-planar graph drawn in the plane with n = IVI vertices. 
Returning to the proof of Theorem 1, we may assume without loss of generality 
that G is connected, as it suffices to establish a linear bound on the number of 
graph edges in each connected component of G. Let Go = (V, E0) be a span- 
ning tree of G, so IE01 = n - 1. Let E* = E \ E0. Note that each face of the 
arrangement .A(E0) is simply connected, for otherwise the union of nodes and 
segments of A(Eo) would not be connected, contradicting the connectedness of 
Go. Moreover, by Lemma 3, the complexity of all faces of A(Eo), which are ei- 
ther non-quadrilaterals or quadrilaterals incident to a point in V, is O(n). We 
refer to the remaining faces of A(E) as crossing quadrilaterals. 

In the sequel, we use the following notion. A graph is called an overlap graph 
if its vertices can be represented by intervals on a line such that two vertices are 
adjacent if and only if the corresponding intervals overlap but neither contains 
the other [1]. Gy~rf~s [2] (see also [3]) has shown that every triangle-free overlap 
graph can be colored by a constant number, c, of colors, and Kostochka [4] 
proved that this is true with c = 5. 

For each graph edge e E E*, let ~(e) denote the set of segments of A(EoU{e}) 
that are contained in e. In other words, it is the set of segments into which e 
is cut by the graph edges from E0. By construction, each segment s E ~(e) is 
fully contained in a face of f E .A(E0) and its two endpoints lie on the unique 
connected component of 0f .  For each face f of A(Eo), let X( f )  denote the set 
of all segments in l-Jeer. ~(e) that are contained in f ,  and let H(f)  denote the 
quasi-planar graph whose set of edges is X(f) .  Since f is simply connected, any 



two segments in X(f)  cross each other if and only if their endpoints interleave 
along the boundary of f .  By cutting the boundary of f so that  it becomes an 
interval and associating with each segment in X(f) the  connected interval along 
the boundary of f between its endpoints, we obtain a collection of intervals with 
the property that  two elements of X(f)  cross if and only if the corresponding 
intervals overlap and neither is contained in the other. This defines a triangle- 
free overlap graph on the vertex set X(f).  Therefore the segments of X ( f )  can 
be colored by at most five colors, so that  no two segments with the same color 
cross each other. (Note that ,  for a graph edge e E E*, several segments in ~(e)  
may be contained in the same face f and thus belong to the same X(f). These 
segments may be colored by different colors.) 

Let f be a face of A(Eo) other than a crossing quadrilateral, and let H i ( f ) ,  
�9 . . ,  H5( f )  be the monochromatic subgraphs of H(f) obtained by the above 
coloring. Fix one of these subgraphs, say Hi(f), and re-interpret it as a graph 
whose vertices are the (relative interiors of the) edges of Of together with the 
elements of V on Of, and whose edges are the segments of H i ( f ) .  The resulting 
graph, H~(f), is clearly planar. We call a face of H~(f) a digon if it is bounded 
by exactly two edges, and we call an edge of H~(f) shielded if both of the 
faces incident to it are digons. The remaining edges of H i ( f )  are called exposed. 
Observe that ,  by Euler's formula, there are at most O(nl) exposed edges in 
H~(f), where n f  is the number of vertices of H~(f ) ,  which is at most 2If I. 

We repeat this analysis for each of the other subgraphs H 2 ( f ) , . . .  , H s ( f ) ,  
and for all faces f of A(Eo) other than crossing quadrilaterals. It follows that  
the number of graph edges e E E* containing at least one exposed segment (in 
the graph H*(f) containing it) is O(~-']~f Ill), where the sum extends over all 
such faces f .  By Lemma 3, this sum is O(n). 

It thus remains to bound the number of graph edges in E* with no exposed 
subsegment; we call these edges shielded, borrowing the terminology used above. 
If e is a shielded graph edge, then, for each s E ~(e) ,  either s lies in a crossing 
quadrilateral face of .A(Eo), or else s is shielded in its subgraph. Note that  
no graph edge e E E* can consist solely of segments passing through crossing 
quadrilaterals, as the first and last segments necessarily meet faces of A(Eo) that  
have at least one graph vertex on their boundary, namely an endpoint of e. 

L e m m a  4. There are no shielded edges. 

Proof. Suppose that  e E E* is shielded. Let a and b be the endpoints of e. We 
claim that  there exists a graph edge e + E E* such that  (1) e + is a graph edge 
of E* emanating from a next to e, and (2) for each segment s E ~(e) ,  there is a 
corresponding segment s + E ~(e+) ,  such that  s and s + connect the same pair of 
segments of .A(Eo). Let s l , . . . ,  sk denote the segments in ~(e) ,  appearing along 
e in this order. 

We prove, by induction on j ,  that  the claim holds for s l , . . . ,  sj. Consider first 
the case j = 1. Let a and b be the endpoints of e, so that  sl is incident to a and 
Sk is incident to b. Then sl connects a with some edge T1 of A(Eo) (note tha t  for 
a shielded graph edge e, sl ~ e). Since sl is shielded, there exists another graph 



edge e + E E* with a subsegment s + E ~ ( e  +) that  connects a to T1. Clearly, 
we can choose e + with these properties to be the graph edge emanat ing from a 
nearest to e, proving the claim for j = 1. 

Suppose next tha t  the assertion is true for j - 1 and e + is the graph edge 
satisfying the inductive assumption. Suppose tha t  sj connects two segments Tj--1 
and Tj of A(E0) such that  u = Tj-1 n e is the common endpoint of s j -1  and 
s j ,  and v = Tj ~ e is the other endpoint of sj.  (If j = k then we take Tj to 
be the other endpoint b of e.) If  sj lies in a crossing quadrilateral face f ,  then, 
as is easily verified, e and e + must cross the same pair of opposite edges of f ,  
completing the induction step. Otherwise, since sj is shielded, there is a graph 
edge e' E E* and a subsegment s '  E ~ ( e  ~) tha t  connects ~'j-1 and Tj on the same 
side of sj as e +. Three cases can arise: 

* e' = e+: The induction step is complete. 
�9 e' crosses Tj-I  at a point that lies between u and the crossing with e+: Since 

G is quasi-planar, e ~ cannot cross e or e +. Moreover, e' cannot have an 
endpoint within the interior of the triangle A bounded by e, e +, and Tj-1, 
by the induction hypothesis and the fact tha t  all faces of ~4(Eo) are simply 
connected. Hence, e' must end at a and lie inside /k near a. However, this 
contradicts the choice of e + as the closest neighbor of e near a. Thus this 
case is impossible. 

�9 e + crosses Tj-1 at a point that lies between u and the crossing with e~: In 
this case, e + cannot cross sj or s '  or terminate  inside f .  Thus, it must  meet 
Tj. This completes the induction step and hence the proof of the claim. 

Note that  the same analysis also applies when j = k, that  is, when ~-j is the 
endpoint b of e. Therefore, e and e + have the same pair of endpoints. Contra-  
diction. [] 

As there are no shielded edges, the total  number  of edges of E*, and thus 
also of E,  is O(n). This completes the proof of Theorem 1. 

3 Discussion 

In this section we discuss some consequences of the above results. 

T h e o r e m  5. Let G(V, E)  be a graph with n vertices that can be drawn in the 
plane with no four pairwise crossing edges. Then the number o] edges of G is 
O(n log 2 %. 

Proo]. We first est imate the number C of crossings between the edges of G. Let 
e be an edge of G, and let Ge be the subgraph of G consisting of all edges tha t  
cross e. Then Ge is a quasi-planar graph. Thus,  by Theorem 1, the number  of 
edges of Ge is O(n),  which implies that  C = O(nlE]). One can then combine 
this estimate with the analysis in [6], to conclude tha t  I EI = O(n log 2 n). [:] 



Corol lary  6. Let k > 4 be an integer, and let G be a graph with n vertices that 
can be drawn in the plane with no k pairwise crossing edges. Then the number 
of edges of G is O(n log2k-S n). 

Proof. This is an immediate consequence of the analysis in [6], which proceeds 
by induction on k, based on the improved bound of Theorem 5 for k = 4. U 

Theorem 5 and Corollary 6 improve the bounds given in [6] by a factor of 
O(log 2 n). 

There are several interesting problems that are left open in this paper. The 
first problem is to find the best constant of proportionality in the bound of 
Theorem 1. A trivial lower bound is roughly 6n, obtained by overlaying two edge 
disjoint triangulations of a point set. The constant 6 can be slightly improved. 

Another open problem is as follows. For a quasi-planar graph G, let X = x(G) 
be the smallest number with the property that the edges of G can be colored 
with X colors, so that the edges in each color class form a planar graph. Clearly, 
if G has n vertices, then the number of edges of G is at most 3x(G)n. Thus, a 
plausible conjecture is that x(G) is bounded from above by a constant. Recall 
that this conjecture is true with x(G) _< 5, if there exists a plane drawing of G in 
which no three edges are pairwise crossing and the vertices are in convex position 
(see also [2, 3] for a weaker constant bound and for related results concerning 
more general classes of graphs). Moreover, if there exists such a drawing of G 
in which the vertices lie on two parallel lines, then one can easily show that 
x(G) _< 2. Does there exist a constant upper bound for x(G) when all edges 
of G cross a common line? A weaker conjecture is that there exists a subset 
E ~ of pairwise noncrossing edges of G such that I/~'l > ZlEI for some absolute 
constant ~ > 0. The existence of such a subset E ~ would imply, by planarity, 
that lEVI = O(n), which would provide another proof of Theorem 1. 
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