
Rewriting with Constraints in T-Ruby

Robin Sharp and Ole Rasmussen

Dept. of Computer Science, Technical University of Denmark

Abs t rac t . This paper describes a tool for use in user-directed synthe-
sis of circuits specified using the relational VLSI description language
Ruby. The synthesis method is based on syntactic rewriting of Ruby
terms, combined with the introduction of constraints into the specifica-
tion. The rewriting process is described in a recta-language based on the
use of tactics and tacticals, which makes it possible to develop complex
speciallsed strategies for the refinement of specifications.

1 I n t r o d u c t i o n

The relational VLSI specification language Ruby [4] forms a good basis for a
t ransformational style of VLSI synthesis, in which an abstract specification is
systematically modified into a description of an implementable circuit by "cal-
culation" [5, 10].

This paper describes some of the principles behind a tool, known as T-
Ruby [12], for handling this style of synthesis. In T-Ruby, the t ransformation
process relies on two elements: Syntactic rewriting, based on (possibly condi-
tional) equivalences between terms of the Ruby language [8], and the introduc-
tion of constraints related to da ta abstractions or specialisations. These con-
straints enable us to produce circuits which are no longer simply equivalent to
the original specification, by reducing the generality of the circuit whose descrip-
tion is being developed. The transformation process takes place in a Standard
ML environment in an interactive manner directed by the user. The availability
within T-Ruby o f a meta-language with tactics and tacticals makes it possible to
compose complex rewriting strategies to make the transformation process more
automatic .

The paper is not a complete description of T-Ruby. Many features are not
covered fully, and some are not described at all. For further details, see [12].

2 T h e T - R u b y L a n g u a g e

Ruby is a language intended for specifying VLSI circuits in terms of relational
abstractions of their behaviour. A circuit is described by a binary relation, and
the language permits simple relations to be composed into more complex ones
by the use of a variety of combining forms which are higher-order functions.

T-Ruby is based on a formalisation of Ruby as a language of functions and
relations, with a conventional set of elementary types (integers, Booleans, bits,
characters,...), and a set of type constructors for constructing constructed types,

227

such as the types of pairs, lists and binary relations. Superficially, it resembles
a traditional strongly typed functional programming language with parametric
polymorphism, offering facilities for defining named objects of these types and
functions for manipulating them. However, it contains two slightly unusual fea-
tures which reflect its true nature. Firstly, the language has built-in constants
for certain basic relations and operators which are needed for VLSI design. And
secondly, the language extends the normal function space for functions to include
dependent product types [6, 15].

The built-in relational constants are those of the so-called Pure Ruby subset
of Ruby, as introduced by Rossen [11]. This makes use of the observation that
a very large class of the relations which are useful for describing VLSI circuits
can be expressed in terms of four basic elements: two relations and two combi-
nators. These are usually defined in terms of synchronous streams of data by the
following four axioms:

a spread r b ~ V t . a(t) r b(t) (1)

a V b ~= V t . a(t) = b(t + 1) (2)

a F ; G b ~ = 3 c . (a F c ^ cGb) (3)

<ai, a2> [F,G] <bl, b2> ~ a l F b i A a2Gb2 (4)

The "classical view of these is that the relation spread r describes (any) combi-
national circuit, and the relation ~ describes the basic sequential circuit--the
so-called delay element. F ; G (the backward relational composition of F with G)
describes the serial composition of the circuit described by F with that described
by G, and [F, G] (the relational product of F and G) correspondingly describes
the parallel composition of F and G.

2.1 Graphical Interpretations

A feature of Ruby is that relations and combinators have a natural graphical
interpretation, corresponding to an abstract floorplan for the circuits which they
describe. Since this can be a great help to the intuition, we remind the reader
that the conventional graphical interpretation of spread (or, in fact, of any other
circuit whose internal details we do not wish to show) is as a labelled rectangular
box. The components of the domain and range are drawn as wire stubs. Boxes
can be drawn in a "2-sided" or "4-sided" manner. A 2-sided box is drawn with
the components of the domain up the left hand side and the components of the
range up the right. On a 4-sided box, the components of the domain must always
be a pair, whose first element is drawn up the left hand side and second element
along the top from left to right, while the range is drawn similarly along the
bottom from left to right, and up the right hand side.

T h e conventional graphical interpretation for 2) is as a D-shaped figure, with
the domain up the flat side and the range up the rounded side, while F ; G is
drawn with the range of F "plugged into" the domain of G, and [F, G] with the

228

two circuits F and G in parallel (unconnected). These conventions are illustrated
in Figure 1. For further details, see [4].

(a) (b) (c) (d) (e)

b

C

Fig. 1. Graphical interpretations of:

(a) R -- spread rl in 2-sided version, with domain a and range b,
(b) S = spread r2 in 4-sided version, with domain <a, b> and range <c, d>,
(c) 9,
(d) F ; G,
(e) [F, G]

2.2 C i r cu i t a n d C o m b l n a t o r Def in i t i ons

In T-Ruby, all other Ruby circuits and combinators are defined in terms of the
four elements of Pure Ruby, using a simple definition syntax in the style of the
typed)~-calculus [1]. Commonly used simple definitions which we shall make use
of in the examples of this paper are shown in Figure 2. Note that in T-Ruby the
combinational relation r which is used as the argument to spread is represented
by r 's characteristic function. In the concrete syntax used in the figure, notations
of the form \ x : t . b stand for A-abstractions with bound variable z of type t,
'A, 'B stand for type variables, and notations of the form t y l * t y 2 and
t y l ' t y 2 stand respectively for pair types and relation types with component
types t y l and ty2.

Circuits are by definition non-parameterised relations. Thus i d describes the
identity relation, often denoted t , Dub relates a value to a pair of copies of this
value, Cross relates a pair of values to the swapped pair, and reorg rearranges
the way in which three values are grouped into pairs. Combinators have one
or more parameters, corresponding for example to the circuits to be combined;
applying a combinator to suitable arguments gives a new circuit. Thus (Fst R) is
the circuit described by [R, el, and so on. The graphical interpretations of these
relations are shown in Figure 3.

2.3 Size P a r a m e t e r i s a t i o n

The dialect of Ruby used by the system is essentially that given by Rossen in [9].
This differs from the standard description of Ruby given by Jones and Sheeran

220

c i r c u i t (2) i d = s p r e a d (\ a : ' A , b : ' A . (a ffi b)) ; ;
c i r c u i t (2) Dub = s p r s a d (\ a : ' A , b : (' A * ' A) .

(l e t (b l ,b2) = b in
((a=bl) & (a = b 2)))) ; ;

c i r c u i t (4) Cross = s p r s a d (\ a : (' A * ' B) , b : (' B * ' A) .
(l e t (a l , a 2) = a ,

(b l ,b2) = b in
((a l fb2) ~ (a 2 f f i b l)))) ; ;

c i r c u i t (2) r s o r g = s p r e a d (\ a : ((' A * ' B) * ' C) , b : (' A * (' B * ' C)) .
(l e t ((a l , a 2) , a 3) = a ,

(b l , (b2 ,b3)) = b in
((a l=b l) & (a2=b2) & (a 3 = b 3)))) ; ;

combinator Fs t = \ H : (' A ' ' B) . ([H , i d]) ; ;
combinator Snd = \ H : (' A ' ' B) . ([i d , H]) ; ;
combinator loop4 = \ H : ((' A * ' B) * ' C) ' (' D * (' E * ' B)) .

(Cross; l o o p 2 (r e o r g ; C r o s s ; H ; r s o r g ')) ; ;
r ec combinator mapn = \ n : i n t , F : ' A ' ' B .

(i f n=O t h e n NNIL
e l s e (a p l n (n - 1)) ' ; [F , (m a p n (n - l) F)] ;

(apln (n - l))) ; ;

Fig. 2. Simple circuit and combinator definitions in T-Ruby.

I

Fig. 3. Graphical interpretations of ~, Dub, Cross, reorg, (Fst R), (Snd R) and
(loop4 R).

in [4] in tha t "repeti t ive" combinators and wiring relations are explicitly pa ram-
eterised in the number of repetitions. Thus, for example, the wiring relat ion apl,
which relates a list of signals, t, and a single signal, s, to the list formed by ap-
pending s "on the left" of t, becomes a combinator parameter ised in the number
of signals in t. To stress this parameterisat ion, the names of such combina tors
are changed by adding the letter n; thus apl becomes ap]n. Similarly, map (which
applies the same relat ion to all elements of a list) becomes mapn; applied to an
integer a rgument rn and a relation R of type (ty l -~ ty2), this gives an object of
type:

(nlist[ra]tyl ,-~ nEst[rn]ty2)

i.e. a relation between a list of exactly rn elements of type t y l and a list o f m
elements of type ty2.

Parameter isa t ion of combinators and wiring relations in the size o f the cir-

230

cuits involved has two beneficial effects. Firstly, it means that instantiation of
circuits of particular sizes is made explicit in T-Ruby expressions, and secondly,
it eases the task of proving facts about circuits by using a theorem prover [11].
However, it also has the consequence that the result type of functions will often
depend on the value of the argument supplied to the function, so the ordinary
function spaces must be generalised to the dependent product types introduced
by Martin-L~f [6, 15]. A comparatively simple example is the case of the combi-
nator mapn above. This has the polymorphic dependent product type:

n : ; . t - - / 3) - - (.llst[n] ~ . l i s t [, ,] / 3))

where the result type depends on the value of the first argument, here denoted
n, and ~x and/3 are type variables.

In general, dependent product types make type inference undecidable and
introduce a number of complications into the type unification used for type
checking. These are described in more detail in [13, 12].

3 R e w r i t i n g R u b y T e r m s

The T-Ruby system allows the user to rewrite Ruby terms according to pre-
defined rewrite rules. Rewriting takes place in an interactive manner directed by
the user. This style of system is often called a transformation system to distin-
guish it from a conventional rewrite system. The system uses a meta-language
to describe the desired transformations in terms of a series of transformation
commands. This allows the user to design his or her own transformations and to
remain in full control of the process. At the same time, the meta-program serves
as documentat ion for the t ransformation performed.

This approach is inspired by work of Milner, Paulson and others on LCF [3,
7]. There are a number of basic rewrite functions, known as tactics, which can
be combined by the use of higher order functions, known as tacticals. In the T-
Ruby system, these functions are Standard ML functions, and are applied in an
SML environment. The basic functions are quite simple, which means that the
system itself cannot perform any sophisticated rewrites. However, as the user
becomes familiar with the domain on which the system is used, more complex
and automated strategies can be designed via the use of tactieals.

3.1 T h e T r a n s f o r m a t i o n P r o c e s s

The basic idea of the rewrite system is to rewrite Terms (or subterms within
Terms), using a sequence of directed rewrite rules. In what follows, we shall refer
to the Term which is currently to be rewritten as the target ezpression.

We can write a directed rule in the form:

l ~ r

where l and r are in general Terms, possibly with free variables. Such a directed
rule indicates that any (sub-)Term, say t, which matches l can be replaced by

231

r. Matching will in general involve i n s t a n t i a t i o n of type variables or free term
variables within l, and in such a case the same instantiations must be applied to
r before it replaces I. Formally speaking, the matching process involves finding
a subst i tut ion, ~, which can be applied to the (type and term) variables of I to
make it the same as t: i.e. such that ~,l = t.

When manipulating Ruby expressions with a view to producing a design, we
essentially start from the trivial equivalence:

spec : spec

where spec is the initial specification of a circuit at some suitably high level
of abstraction, in T-Ruby known as the s tar t ezpression. We then a t tempt to
rewrite th e right-hand side by using proved rewrite rules, so that we arrive at a
description which is closer to what we can implement. However, if we restrict our
attention to rewriting with simple equivalences the result will be strictly equiv-
alent to the original abstract description, and will therefore often be impossible
to realise. For example, it might be expressed in terms of integers; to realise the
circuit, we have to restrict ourselves to integers representable by n bits, and so
o n .

Instead of just rewriting the right-hand side of the trivial equivalence, we are
therefore interested in performing a calculation where the specification can also
be manipulated. As pointed out in [14], we can illustrate this process by:

s p e c ~--. s p e c

spee : step1

Cl I I Cz

spec ~ = step~

l 7~2

spec I = stepz

spec "'''~ = imp l

where 7~i represent sequences of rewrites, which are only applied to the right-
hand side of the equivalence, and Ci represent constraints , which are applied
to both sides of the equivalence. This style of design has been described by
Rossen in [10]. What we see as users of the rewrite system is, of course, just the
right-hand side of this process:

spec ~ step1 ---, s tepI --* step2 ---, . . . --* impl

but behind the scenes the original specification is changed from spec to spec "'''~,
reflecting the addition of the constraints. From a logical point of view, it is equiv-
alent to demonstrating that the implementation and specification are equivalent
under the constraints [16], i.e. that:

constraints t- (i m p l r spec)

232

The T-Ruby system permits the user to inspect the start ezpression, together
with the currently added constraints, at any stage of the rewriting process.

3.2 R e w r i t e R u l e s

In the T-Ruby system, all circuits, combinators and rules are represented as
Terms composed from free or bound variables, function applications, quantifi-
cations, conditionals and functional abstractions. A rule must be a Term rep-
resenting an equality or an implication between two equalities, with universal
quantification over variables. Variables which appear on the left-hand side of
the rule must also appear on the right, in order to satisfy the stability crite-
rion for rewriting [2], and this implies that rewriting alone cannot introduce new
variables into a Term. Apart from this there are no restrictions on the forms of
the rules which may be used. In practice, however, most of the commonly used
rules are equalities between relations, corresponding to equivalences between cir-
cuits, which can be used to manipulate a circuit description in Ruby to another,
equivalent form.

Some simple examples which are used later in the paper can be seen in Fig-
ure 4. These rules express facts about the combinators, such as the associativity
of serial composition (assoccomp), the commuta t iv i ty of Fst and Snd (fstsnd-
comm), and the distributivity of Fst over serial composition (fstcompdist). More
complex rules are used in Ruby synthesis to express such things as the input-
output equivalence of a circuit and a systolic version of the same circuit, or to
express ways to replace complex wiring with simpler equivalents.

assoccomp z~VR:a~/3, S
fstsndcomm ~ V R : a ,-~/5, S

fstcompdist z~ V R : a ,,,/5, S

parcompdist --& V R : a ,,~/5, S

: / 5 ~ % T : 3 " , ~ 5 . ((R ; S) ; T = R ; (S ; T))

: 3 ' ~ ~ . ((F s t R);(Snd S) -- (Snd S);(Fst R))

: f l ~ 3 " (F s t (R ; S) = (F s t R) ; (F s t S))

: 7 ~ & T : / 5 ~ e , U:6,-~ ~-
([R, S] ; [T, U] = [R ; T , S; V])

idcompt ~VR:a , -~ /3 . (R = ~ ; R)

Ioop4r ~ v R : ~ ~ /5 , S : (~ x/5) x 3" ~ ~ x (, x r
(Ioop4(S ;Snd(SndR)) --- Ioop4(Fs t (SndR) ;S))

Fig. 4. Simple rewrite rules in T-Ruby.

In the T-Ruby system, the directed rules used for rewriting come from four
sources"

1. They may be defined explicitly via rewrite rule definitions. Such rewrite
rules have the form of equations, possibly with preconditions, and therefore
define two directed rules, one from left to right, and one from right to left

233

in the equation. For example the rewrite rule assoccomp in Figure 4, which
expresses the associativity of serial composition, gives rise to the two directed
rules:

V R : a . ~ f l , S : f l ~ 7 , T : 7 . . ~ 8 . ((R ; S) ; T --* R ; (S ; T))
V R : a - - ~ f l , S : f l - -~7 , T : 7 . . ~ 5 . (R ; (S ; T) --. (R ; S) ; T)

We will refer to these as the introduction and elimination rules respectively.
2. They may be defined implicitly via circuit definitions. For example, the def-

inition of the circuit Dub shown in Figure 2 above gives rise to the introduc-
tion rule:

Dub --~ spread(A a : c~, b : (ol • o~).
(let (bl, b2) = b in ((a -- bl) A (a = b2))))

which permits the named circuit to be expanded with its definition, and an
elimination rule which goes in the reverse direction.

3. They may be defined implicitly via combinator definitions. For example, the
definition of the combinator Fst gives rise to the introduction rule:

Y H : a ~ f l - (F s t H ~ [H, r])

which permits the named combinator to be expanded with its definition
(with universal quantification over parameters of the combinator), and an
elimination rule which goes in the reverse direction.

4. They may be defined as the results of previous rewrite processes. I f a sequence
of rewrites has enabled us to rewrite a Term t to another Term t ~, then the
rule g = t ~, universally quantified over all free variables in t, can be stored
in the system. It may be helpful to think of this as a rewrite lemma which
can be stored for later use.

For a rewrite rule, lemma, circuit or combinator definition with identifier nam,
the introduction and elimination rules will have the identifiers nam-i, and nam-e

respectively.

3.3 P r o o f Obligations

Explicitly defined rewrite rules are normally proved from the axioms of Pure
Ruby before being entered into the system. However, the existence of a proof is
not checked by the system and therefore unproved rewrite rules can be introduced
at any time. This is useful if we are convinced of the existence of a useful rule
which is not yet in the system, but it offers the potential danger tha t the rewrite
process will not be sound. To enable the user to ensure the correctness of the
rewrite process, all the unproved rewrite rules used are printed out in instantiated
form at the end of the process, together with the names of the original rules from
which they have been instantiated. These rules form a proof obligation for the
rewrite process.

234

A particular problem of correctness occurs when dealing with conditional
rewriting. Ideally, each t ime a match was found with the left hand side of a
conditional rewrite rule, the instantiated precondition would automatical ly be
proved by a theorem prover. This is not at present possible, as proving tools
are not fully automat ic and are far too slow for use as co-routines for another
process. The main goal of the rewrite process would be lost in the effort of
performing the proof. Again, the solution in the T-Ruby system is to print out
the conditional rules in instantiated form and say that they are part of the proof
obligation for the rewrite process.

4 T h e R e w r i t e P r o c e s s

The rewrite process falls into three phases: The initial phase, the rewrite phase
and the final phase. In the initial phase the start expression is entered, possibly
together with some specialised rules for use in the transformation. In the rewrite
phase, actual rewriting is performed by applying suitable tactics to the target
expression, and constraints can be added to the target expression. The rewrite
session ends in the final phase where the system prints out three things: The start
expression with added constraints, the final target expression, i.e. the result of
the rewrite process, and finally the list of all the unproved rewrite rules used in
the rewrite process. Some complete examples can be seen in [14, 12].

4.1 Search Strategies and Selection

Four strategies are available for performing the basic rewrite steps, offering dif-
ferent ways to search the term for a match: Two use bot tom-up search in the
tree which represents the Term (left-depth, right, depth), and two use top-down
search (left-top, right-top). This does not extend the functionality of the system,
since the rewrite system contains a backtracking mechanism which allows the
user to go from one successful match for a given rule to the next one, in the
order defined by the strategy in use. Thus the system will eventually find all
possible matches, regardless of the strategy chosen, but of course the strategy in
use determines how many a t tempts are required to find a particular match.

Another way to "navigate" within a term to be rewritten is to use selec-
tion. This enables the user to choose a subterm from the target expression and
continue to rewrite on that subterm. It changes the state of the rewrite system
so that the subterm is made the new target expression. When rewriting on the
subtezm has finished, the state can be changed back to consider the full term,
where the rewritten subterm is inserted in the place from which it was removed.

In the T-Ruby system, selection is performed by pat tern matching. The user
provides a term with free variables, which is to act as a pattern. The system will
t ry to find a subterm which matches this pat tern (via instantiation of some or
all of the free variables). I f this subterm is not the desired one, it is possible to
backtrack and find the next match for the same pattern. To allow for experiments
it is also possible interactively to undo previous rewrite steps and constraints
completely.

235

4.2 Rewri te Tactics and Tacticals

Rewrite tactics are functions which can be applied to Terms, and which a t t empt
to perform a rewrite according to specific rules for matching sub-terms. When
applied to a Term, the tactic may succeed, in which case the target expression is
rewritten in the way prescribed by the tactic, or it may fail, in which case the
target expression is left unchanged.

The T-Ruby system offers a set of four basic functions for constructing basic
tactics which apply named rewrite rules using a particular search s t rategy in the
target expression. For example the function Rd, applied as:

Rd [" a s s o c c o m p - i " , " f s t c o m p d • " p a r c o m p d i s t - i "]

gives a rewrite tactic which will rewrite the target expression once, using a right-
most depth-first search strategy, and a t tempting to apply rules a s s o c c o m p - i ,
f s t c o m p d i s t - i and p a r c o m p d • until one of them succeeds. Similarly, Rt,
Ld and Lt give a tactic which uses right-top, left-depth and left-top search re-
spectively.

Rewrite tactics can be combined in a conjunctive, disjunctive or repetitive
manner by the use of higher-order functions, known as tacticals, to form new
and more complex rewrite tactics. The two basic tacticals are the infix operators
THEN and 0RELSE. They combine tactics sequentially and alternatively and make
use of an automat ic backtracking mechanism to find possible solutions. Auto-
matic backtracking enables us to write more general complex rewrite tactics,
thus building up a l ibrary of tactics for different tasks.

The semantics of the conjunctive tactical THEN, applied as t a c l THEN tac2 ,
can be described in a simple way as follows: It first a t tempts to apply t a t 1 and
then, if this succeeds, to apply t ac2 . More exactly, the system automat ical ly
applies backtracking on the list of solutions produced by t a t 1 until a solution
for which t a c 2 succeeds is found. This solution is presented to the user, who can
then use explicit backtracking to find further solutions, if any. I f there are no
solutions where t ac2succeeds in the list produced by t a t 1 , then the combined
tactic falls.

The disjunctive tactical 0RELSE, applied as t a t 1 0RELSE t a t 2 , produces a
list of all solutions from t a c l followed by all solutions from tac2 . The combined
tactic fails if both t a c l and t a t 2 fail.

The tactical REPEAT t a c l repeatedly applies t a t 1 until it fails. An extended
version of REPEAT is the tactical REPEAT-FIRST t a t 1 t a c2 which first applies
t a t 1 , and then, if that falls, applies t ac2 . This procedure is repeated until t a t 1
succeeds or t a t 2 fails. Both tacticals succeed if and only i f t a c l succeeds at least
once. They are both based on the tactical THEN and therefore use the same kind
of automat ic backtracking to find possible solutions. This makes REPEAT-FIRST
extremely powerful for automatical ly searching through all possible solutions to
make a certain rule match. In practical examples it has been particularly useful
when we wish to exploit the associativity of operators such as serial composition
until some other rule matches (see example below).

236

4.3 C o m p o s e d Tac t i c s

The use of tacticals enables us to write specialised composed tactics for specific
rewrite tasks. Some of these are of a "technical" nature, reflecting properties
of the Ruby language, while others represent more or less complex structural
manipulations of the circuit, and thus correspond to more traditional design
steps. We have only space for a very few, simple examples.

A "technical" tactic which lets us use a rewrite rule (p l u s i d) without bother-
ing about the parenthesis structure for the scrim composition operator is shown
below. It first moves all the parentheses as far as possible to the right and then
moves them left until the rule matches. Typically we would write an SML func-
tion with the rule name (here p l u s i d) as a parameter, thus having a specialised
tactic for easy rewriting of expressions with complex serial compositions.

(* G i v e n t h e t a r g e t e x p r e s s i o n : *)
(([x 2 , x 2] ; (p l u s ; (p l u s) ')) ; (p l u s ; x 2))

(* and the r u l e f o r ' p l u s ' t h a t : *)
ru le p lus id = ((p l u s ' ; p l u s) = (idZ)) ; ;

(* Rewrite by the t a c t i c : *)
- by ((REPEAT (Ld ["assoccomp-i"]))
= THEN
= (REPEAT_FIRST (Ld ["plusid-i"]) (Ld ["assoccomp-e"])));

(* This produces the r e s u l t :
([x2 ,x2] ; (p lus ; (idZ ;x2)))

*)

Other (more complex) tactics in a similar style can be constructed for replacing,
say, interleavings of wires with less complex wiring structures, and performing
other design steps of this nature.

In T-Ruby, tactics are also available for reduction of ari thmetic and Boolean
Terms, so that the user does not need to apply individual rules for this purpose.
For example, the tactic E v a l u a t e evaluates all evaluable integer and Boolean
sub-terms in the current target expression, where a sub-term is considered evalu-
able if it contains no uninstantiated variables, and no sub-terms of types other
than integer or Boolean, while F u l l _ e v a l u a t e also performs ordinary t - reduct ion
for function applications of any type.

Evaluation makes it, for example, possible to rewrite an expression into Pure
Ruby by expanding all the combinators and circuits by their definitions. After
each expansion, all if- and A-expressions are reduced with F u l l - e v a l u a t e to
ensure that no infinite expansions arise. For example, a tactic for expanding
mapn into Pure Ruby is:

- by (REPEAT ((Ld ["mapn-i", "apln-i" ,"NNIL-i"])
= THEN F u l l _ e v a l u a t e)) ;

237

From the target expression (mapn 2 p l u s) , this produces the Pure Ruby Term:

(((s p r e a d (\ a : ((i n t * i n t) * n l i s t [1] (i n t * i n t)) . (\ b : n l i s t [l + l] (i n t * i n t) .
(b = (n c o n s 1 f s t a snd a))))) ' ; [p l u s ,
(((s p r e a d (\ a : ((i n t * i n t) * n l i s t [O] (i n t * i n t)) . (\ b : n l i s t [O + l] (i n t * i n t) .
(b = (n c o n s 0 f s t a snd a))))) ' ; [p l u s ,
s p r e a d (\ a : n l i s t [O] ' A . (\ b : n l i s t [O] ' B . (a = n n i l & b f f i n n i l)))]) ;
spread(\a:(int*nlist[O]int).(\b:nlist[O+l]int.
(b = (n c o n s 0 f s t a snd a)))))]) ;
s p r e a d (\ a : (i n t * n l i s t [1] i n t) . (\ b : n l i s t [l + l] i n t .
(b = (n c o n s 1 f s t a snd a)))))

5 C o n s t r a i n t s

In T-Ruby, a constraint can have one of two forms: it can either be a relational
constraint or an instantiation, both of which restrict the specification to a more
specific implementat ion.

5 . 1 R e l a t i o n a l C o n s t r a i n t s

A relational constraint is technically just an extra sub-term added to both sides
of an equivalence. For example, given an equivalence between Ruby Terms tl and
t2:

tl = t2

then the following is also an equivalence:

comb(con, t~) = comb(con, t~)

where con is the sub-term giving the constraint, and comb is an appropriate
combinator for combining two sub-terms. Note that con can contain new free
variables, and that this is the only way to introduce new parameters into a circuit
description.

In many practical examples, comb is the combinator for serial composition,
and the constraint is a representation relation or other type-constraining rela-
tion. Constraints can be introduced on the domain or range side of an expression
representing a Ruby relation, so from an equivalence between two relations ex-
pressed by S = I , we can for example construct the valid equivalences:

C d ; S = C d ; I

S ;C~ = I ; C~

where Ca and C~ are suitable sub-terms giving the constraints.
To illustrate this, let us consider a si tuation in the development of a simplified

calculator, as described in some detail in [14]. The initial specification of this
circuit is developed in terms of integers. Essentially, the calculator is to offer two
functions: add, where the current integer input is to be added to the accumulated
sum (unless overflow occurs), and pass, where the integer is to be used to initialise
the sum. The initial part of the rewrite process proceeds as follows:

238

- new_rw "SUMspec";
SUNspec

- by (Ld ["SUMspec-i"]);
(loop4 (((Fst (Snd D));ALUa);(Snd Dub)))

- by ((Ld ["leminal-i"])
= THEN (Ld ["ALUk-i"])) ;
(loop4 (((Fat (Snd V)) ; ((((Snd Decode);(Fst ((Fat Dub);reorg))) ;

((CrossIADDa)--Mux));(Fst p l))) ; (S n d Dub)))

We start the rewrite process with new.xw "SUMspec", so that the term SUMspec
becomes the initial target expression. SUHspoc is then expanded with its defini-
tion by a (left-depth) rewrite. This gives the circuit shown in Figure 5(a). The
abstract ALU sub-circuit ALUa is then replaced by an equivalent, more concrete
sub-circuit ALUk, by use of lemmal, which merely states the (provable) fact that
ALUa = ALUk. Finally, ALUk is expanded with its definition, to allow us to make
rewrites on its subcomponents.

1
De~ode J [

(a) (b)

Fig. 5. Simple calculator.

(a) Original specification using SUMspec.
(b) After expansion of ALUk and addition of constraints.

Then, to restrict the interface of the calculator from being arbitrary integers
to only being integers in an n-bit representation, we add suitable constraints
to the domain (by applying the function dcon) and range (with rcon). A suit-
able constraint here is the identity relation on n-bit integers, denoted (idn n).
Such an identity relation is constructed as the composition of the corresponding
representation relation with its inverse [5]. The required representation relation

239

relates an integer which can be represented by n bits to the n bit values, and
is here denoted B i t s n n. After introduction of the constraints and expansion of
idn with its definition, we obtain the circuit shown in Figure 5(b).

- dcon "Fst (idn %n:int);";
The ne~ expression is :
((Fst (idn 7~: int)) ;

(loop4 (((Fst (Snd D));((((Snd Decode);(Fst ((Fst Dub);reorg)));
((Cross]ADDa)--Hux));(Fst p l))) ; (Snd Dub))))

- rcon ";Snd(idn%n:int)";
The new expression is:
(((Fst (idn ~n:int));
(loop4 (((Fst (Snd D));((((Snd Deeode);(Fst ((Fst Dub);reorg)));

((CrosslADDa)--Mux));(Fst pl)));(Snd Dub))));
(Snd (idn %n:int)))

- by (REPEAT (Ld ["idn-i"])) ;
(((Fs t ((Bi t sn ~ n : i n t) ; ((B i t s n ~ n : i n t)) ')) ;

(loop4 (((Fs t (Snd D)) ; ((((Snd Deeode);(Fst ((Fst Dub) ; reorg))) ;
((Crossl lDDa)--Hux)) ; (Fst p l))) ; (S n d Dub))));

(Snd ((Bitsn %n:int);((Bitsn %n:int))')))

Note that adding these constraints introduces a free variable 7,n into the descrip-
tion, representing the number of bits in the integer representation.

5.2 I n s t a n t i a t i o n

The second form of constraint in T-Ruby is ins tan t ia t ion (or special isat ion)
of term or type variables on both sides of an equivalence, so that they take on
particular values or types. Technically, instantiation in T-Ruby is the application
of a pair of substitutions, (~rterm, o'tupe), where ~te~m is a mapping from free term
variables or universally quantified variables to terms, and G'type is a mapping from
type variables (which are always free) to types.

For an instantiat ion to be valid when applied to a Term s, each substitution,
say of variable z by Term t, must obey certain obvious rules:

1. The types of z and t must be unifiable.
2. The instantiated variable, z, must occur as a free or universally quantified

variable in s, but not in t.
3. I f t contains a variable y (5 z), then y must occur in s. The type of y

within t will then be unified with its type within s. This means, amongst
other things, that a term substitution may implicitly give rise to a type
substitution~

When the instantiat ion forms par t of a rewriting process, these rules must of
course be obeyed on both sides of the current equivalence, spec i = stepi. As

240

in the case of relational constraints, inspection of the start expression will show
the currently applied instantiations.

For example, the "n-bit" description of the calculator given above could be
instantiated to give a description of a calculator which uses a 16-bit representa-
tion of integers by the following commands, which also demonstrates the result
of the instantiation on the start expression (with its relational constraints).

- i n s t a n t i a t e [("16","n")] [] ;
The term i s i n s t a n t i a t e d to:
(((F s t ((B i t s n 1 6) ; ((B i t s n 1 6)) ')) ; (l o o p 4 (((F s t (Snd D));

((((Snd Decod@);(Fst ((Fs t Dub);reorg))) ; ((Cross lADDa)--Mux)) ;
(Fst p l))) ; (S n d Dub)))) ; (Snd ((B i t s n 1 6) ; ((B i t s n 1 6)) ')))

- pr in t_s tax texpO ;
(((Fs t (idn 16)) ;SUMspec) ;(Snd (idn 16)))

6 Conclusion

The style of transformational synthesis illustrated in this paper is useful for a
large proportion of the typical areas of application of Ruby. The availability
of the T-Ruby tool has made this style of design more secure by placing the
transformations on a formal basis. The transformation process can be continued
down to any desired level of detail, leading ultimately to a circuit description at
the level of standard cells in a cell library.

T-Ruby offers three features which make it easy to perform powerful trans-
formations. Firstly, many of the equivalences of Ruby are extremely powerful,
in the sense that they express radical rearrangements of the circuit. Secondly,
long sequences of rewrites can be stored as new rewrite rules, which can then be
applied by using a simple tactic. And thirdly, it is possible to compose complex
tactics by using tacticals. We are gradually building up a library of such tactics
for general use.

Currently, there is no direct connection from the system to a theorem prover
for handling the proof obligations which arise during the design process. Nor is
there a direct link to a drafting system which can automatically draw the graph-
ical interpretations of the circuit as the design progresses. Work is in progress
to add these components to the system.

7 Acknowledgements

The work described in this paper has been partially supported by the Danish
Technical Research Council as part of the RapiD project on formal methods in
computer science.

The authors would like to thank Lars Rossen for many interesting discussions
about constructing tools for Ruby.

241

R e f e r e n c e s

1. A. Church. The Calculi of Lambda-conversion. Princeton University Press, Prince-
ton, New Jersey, 1941.

2. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Science, Volume B: Formal Models and Semantics,
chapter 6, pages 243-320. Elsevier Science Publishers B.V., 1990.

3. M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised
Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-
Verlag, 1979.

4. G. Jones and M. Sheeran. Circuit design in Ruby. In Jergen Staunstrup, editor,
Formal Methods for VLSI Design, pages 13-70. Elsevier Science Publishers B.V.,
1990.

5. G. Jones and M. Sheeran. Relations and refinement in circuit design. In C. C.
Morgan and J. C. P. Woodcock, editors, Proceedings of the 3rd. BCS FA CS Work-
shop on Refinement, Workshops in Computing, pages 133-152, London, January
1991. BCS, Springer-Verlag.

6. P. Martin-LSf. Constructive mathematics and computer programming. In
C. A. R. Hoare and J. C. Shepherdson, editors, Mathematical Logic and Program-
ming Languages, pages 167-184. Prentice-Hall, London, 1985. Also published in
Proc. 6th. International Congress for Logic, Methodology and Philosophy of Sci-
ence, 153-175 (North-Holland, 1982).

7. L. C. Paulson. Logic and Computation, volume 2 of Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, 1987.

8. Ole Rasmussen. A Ruby rewrite system. Master's thesis, Dept. of Computer
Science, Technical University of Denmark, February 1992.

9. L. Rossen. Formal Ruby. In J~rgen Staunstrup, editor, Formal Methods for VLSI
Design, pages 179-190. Elsevier Science Publishers B.V., 1990.

10. L. Rossen. Proving (facts about) Ruby. In G. Birtwhlstle, editor, IV Higher Order
Workshop, Banff, Workshops in Computing, pages 265-283. Springer-Verlag, 1990.

11. L. Rossen. Ruby algebra. In G. Jones and M. Sheeran, editors, Designing Correct
Circuits, Oxford 1990, Workshops in Computing, pages 297-312. Springer-Verlag,
1990.

12. R. Sharp. T-Ruby: A tool for handling Ruby expressions. Technical Report
ID-TR: 1992-112, Dept. of Computer Science, Technical University of Denmark,
September 1992.

13. R. Sharp. The Ruby framework. Technical Report ID-TR: 1993-xx, Dept. of
Computer Science, Technical University of Denmark, 1993. To appear.

14. R. Sharp and O. Rasmussen. Transformational rewriting with Ruby. In
L. Claesen, editor, CHDL'93. IFIP WG10.2, Elsevier Science Publishers, B.V.,
1993. To appear.

15. J. Smith. The identification of propositions and types in Martin-LSf's type theory:
A programming example. In M. Karpinski, editor, Foundations of Computation
Theory, volume 158 of Lecture Notes in Computer Science, pages 445-456, Berlin,
1983. Springer-Verlag.

16. D. Weise. Constraints, abstraction and verification. In M. Leeser and G. Brown,
editors, Workshop on Hardware Specification, Verification and Synthesis: Mathe-
matical Aspects, volume 408 of Lecture Notes in Computer Science, pages 25-39.
Springer-Verlag, 1989.

