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Abst rac t .  Symbolic state space traversal techniques are one of the most 
notable achievements in the fields of formal verification and of automated 
synthesis. Transition functions and transition relations are two alterna- 
tive approaches. In terms of efficiency, transition functions have proven 
to be superior, although the transition relation is much more expressive. 
This paper brings the transition relation back to a new life, profiting 
from recent advancements in the fields of boolean function representa- 
tion, simplification, and image computation represented by BDDs and 
by the generalized cofactor operator. A theoretical result allows us to 
considerably simplify both the process of building the transition rela- 
tion and of traversing the state space. Experimental results show that 
performances similar to those of the transition function are obtained. 

1 I n t r o d u c t i o n  

Dealing with Finite State Machines (FSMs) [15] in the fields of formal verifica- 
tion of correctness, of automated synthesis, and of testing essentially requires 
a traversal of their state space, where properties, such as equivalence, language 
containment, or temporal formulae are checked. 

There are three major problems to be solved to reach the goal: an efficient 
representation for boolean functions, an efficient way to represent and manip- 
ulate sets, namely sets of states, and good algorithms for exploring the space 
state. Binary Decision Diagrams (BDDs) [6], [5] are currently the most popular 
answer to the first issue. Characteristic functions are used to represent sets and, 
being boolean, they can benefit from the efficiency of BDDs. Symbolic traver- 
sal techniques [7], [8], [3], [91 complete the framework, supporting reachability 
analysis of real-size FSMs. 

Analyzing reachable states essentially requires to represent the state transi- 
tion function of the FSM and then to traverse it, either backwards or forwards. 
In forward traversal, starting from a set of initial states, the next ones are com- 
puted, i.e., the image of the state transition function on that  set is evaluated. 
In backward traversal, starting from a set of states, specified according to the 
application, the ones from which that  set is reached in one step are computed, 
i.e., a pre-image'of the state transition function is evaluated. 

* This work has been partially supported by the ESPRIT Working Group 6018 
"CHARME-2". 
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There are two approaches to the representation of the state transition func- 
tion, each with its own algorithm for image computation: 

- the "transition relation"; 
- the "transition function". 

With the "transition relation" [7], [3] the sequential behaviour of the FSM 
is described by listing the couples "current state - next state", independently of 
the inputs. Such a list is represented by its characteristic function, which in turn 
is a BDD. Computing the image of the state transition function on a given set 
of states is quite easy, as it is enough to consider only those couples "current 
state - next state" of the transition relation where the current state belongs to 
the domain being considered and to return the corresponding next states. These 
operations are easily performed on BDDs, as they consist in and-ing two BDDs, 
existentially quantifying ("smoothin]') the current states, and then relabeling 
the resulting next states as the new current ones [3]. The FSM can easily be 
traversed forwards or backwards, as computing images or pre-images makes no 
difference. The main limit resides in the difficulty to build the transition relation 
for big circuits, i.e., to first and many boolean functions and then to existentially 
quantify the inputs. As existential quantification does not distribute over and- 
ing, the resulting BDD rapidly grows too large. 

In order to overcome this limit, the approach based on the "transition func- 
tion" [8], [12], [13] was developed, i.e., on a vector of boolean functions, each 
representing the behavior of the FSM along one of the dimensions in the space. 
The recursive image computation algorithm for transition functions exploits the 
powerful operator "cofacto?' [8], [11], that  allows one to simplify a function 
when it is constrained on a subset of its domain. Intuitively, this means that  the 
resulting function coincides with the original one on the subset of the domain 
defined by the constraint, whereas for the rest of the domain its value can be 
chosen arbitrarily. Among the many possible choices, an appropriate one allows 
to guarantee that  the image of the original function on the constrained domain 
and of the simplified function on the whole domain are the same ("generalized 
cofactor and image restricto?'). In the image computation algorithm, the state 
transition function is first simplified on the subset of its domain currently be- 
ing considered, then a recursive procedure is applied, based on the expansion 
theorem, that  computes the result by either splitting the inputs or the outputs 
[11]. This second approach, although the image computation algorithm is not as 
simple as the one for the transition relation, allowed a major breakthrough in 
terms of efficiency and applicability. The transition function is less general than 
the transition relation, as the former must be deterministic, the latter, though 
implemented by BDDs, easily supports non-determinism, used for example with 
Process Algebras [3], [14], [10]. Moreover, whereas pre-image computation is im- 
mediate for the transition relation, it is more awkward for transition functions. 

This brief discussion justifies the fact that neither approach has been dis- 
missed in favor of the other and that  research on both is still ongoing. In order 
to be able to build the transition relation, partitioning techniques are intro- 
duced, but either they are manual and based on the designer's knowledge [2] or 
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they may be computationally expensive [4]. This paper follows another avenue 
of attack to bring the transition relation back to a new life. Existential quantifi- 
cation and and-ing do not distribute, but, as one of the effects of the generalized 
cofactor and image restrictor is to propagate the constrain while simplifying the 
functions, it is possible to first apply it and then to distribute existential quan- 
tification and and-ing. A minor condition is imposed on the way the cofactor 
is built, preserving all its usual properties. This makes building the transition 
relation feasible. Experimental results show that  the CPU time is reduced by 
an order of magnitude with respect to the basic method and it is comparable 
with the best results obtained with the transition function approach. The same 
considerations hold for the size of the BDDs. 

Section 2 shows how the generalized cofactor and image restrictor can suc- 
cessfully be used to build the transition relation. Section 3 presents in more 
detail how the theoretical results are applied to reachability analysis. The ex- 
perimental data  on the ISCAS'89 [1] circuits of Section 4 support the claim that  
the transition relation is again competitive with the transition function. 

2 T h e o r e t i c a l  F r a m e w o r k  

A completely specified FSM M is 6-tuple M = (I, O, S, 6, A, So), where I (O) 
is the input (output) space, S is the state space, 5 (A) is the state transition 
(output) function, and So is the set of initial states. Without any loss of general- 
ity, we hereinafter consider boolean spaces only, as other spaces can be mapped 
into them by suitable binary encodings. 

When working on boolean spaces, denoting with B the set {0, 1}, I, O, So, 
and S are powers of B and 6 and A are functions from powers of B to powers 
of B. In particular, let us suppose I = B m, m being the number of inputs, 
O = B k, k being the number of outputs, S = B n, n being the number of state 
variables, then, in the general case of Mealy machines, A : B m x B n ~ B k and 
6 : B m x B n -~ B n. 

Let A be a subset of B n :  its "charac ter i s t i c  f u n c t i o n "  XA : B n  --* B is 
defined as follows: 

10ifa E A 
XA (a) = otherwise 

Set operations are efficiently implemented by boolean operators on BDDs. 
The state transition function 6 can be represented either as a transition 

function [8] or as a transition relation [7], [3]. Let us follow the second choice. 
The characteristic function 6c : B m • B n • B n --* B corresponding to 8 

returns 1 iff the next state y E S is the image of the current state s E S and of 
the input x E I according to function 5. As we are often interested only in the 
existence of an input value, rather than in the value itself, the " t rans i t i on  rela- 

t ion" abstracts from the inputs. We write, with abuse of notation, T M ,  instead 
of XTM, for the characteristic function of the transition relation, defined as: 



158 

i't 

TM(S, y) = 3z E ( y i  -- 6i(z, s)) 
i = 1  

Once the transition relation is given, computing the image (pre-image) of 
on a set of states described by its characteristic function C(s) (C(y)) is rela- 
tively easy, as it is enough to and it with the transition relation, to existentially 
quantify, and to relabel the states: 

IMa(~, C(s)) = 3sT~(s, y). C(s)~/, 

PREIMG(8, C(y)) = 3yTM(S, y) " C(y)s/y 

The transition relation TM is conceptually easy to build, but often, for 
medium size and large circuits, it requires too much time and too many BDD 
nodes. Individual terms in the product of the form (Yi -= ~i (z, s)) have relatively 
small BDDs, but existential quantification and logical and do not distribute, un- 
less the sets of support variables are disjoint. As a consequence, it is necessary 
to build the whole product 1-Ii~=x(Yi = ~i(z, s)) before applying the existential 
quantifier and this is often impossible, as the resulting BDD is too large. 

Finding disjoint sets of support is one possible avenue of attack, though 
literature reports only manual methods [2] or expensive ones [4]. Our approach 
exploits the generalized cofactor and image restrictor to distribute existential 
quantification and logical and, so that the BDDs stay reasonable in size. 

Let us first formally define the generalized cofactor and image restrictor ~. 
For boolean functions f (x )  and g(x), given an ordering for the xs, f I g, or f 
constrained by g, is defined by [8], [11]: 

f f ( x )  i fg(x)  = 1  
( f  ,~ g)(x) : ~. f ( x o ) i f  g(x) = 

where x0 is the minterm such that g(zo) = 1 and the distance [Ix - x011 is 
minimal. 

The operator satisfies the following identity: 

g" f = g ' ( f  l g) 

The following lemma and theorem form the basis for distributing existential 
quantification and logical and by means of a suitable definition of the generalized 
cofactor and image restrictor. The lemma is a particular case of the general result 
proven in [16]. 

L e m m a  1. Let us consider a function f of the form f(x)  = I-[in=l k(x)  and a 
constraint c(x), then f(x)  I c(x) = IL:x(f~ I c)(x). 
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Proof. As f ( x )  Hi=I fi(x) f l (~)  n = n = " l'Ii=2 fi(x) = a(x) .  b(x), we can prove 
the thesis by restricting investigation to the 2 term case. The thesis is rewritten 
as: 

( f  ~ c)(x) = (a ~ c)(x) . (b ~ c)(x) 

To prove the thesis, we split the cases according to the value of c(x): 

- c(x) = 1: 

( f  t c)(x) ---- f ( x )  = (a I c)(x).  (b l c)(x) = a(x) .  b(x) 

- c(x) = O: let us remind that  the choice of x0 depends only on the constraint 
c(x) and on variable ordering. Selecting the same x0 

( f  J. c)(x) -- f (xo)  "- (a ~ c)(x).  (b ~ c)(x) = a(xo) .b(xo)  

0 

T h e o r e m 2 .  Hypothesis: let us define the ~ operator between two functions a(x, y) 
and b(x, y) as follows: 

(b I a)(x, = { 
i f  a(x, y) = 1 then b(x, y) 
ira(x,  y) = 0 then i f  3xoa(xo, y) = 1 then 

b(zo, y) 
else 

b(xo, yo) I a(x0, yo) = : 

There is no change in the way the cofactor is computed, provided that variable 
ordering puts the ys before the xs. 

Thesis: 

3x a(x, y) . b(x, y) = 3x a(x, y) . 3x (b ~ a)(x, y) 

Proof. By applying the rewrite rule f = g- f + ~. f ,  3= a(x, y). 3x (b I a)(x, y) 
becomes: 

and, by applying g �9 ( f  ~ g) -- g.  f ,  we obtain: 

3x a(x, y) .  3x (a(x, y) . b(x, y) -4- ~t(x, y) . (b ~ a)(x, y)) = 

3x a(x, y) . 3x a(x, y) . b(x, y) A- 3x a(x, y) . 3x (~(x, y) . (b I a)(x, y)) 

As 3x a(x, y) . b(x, y) ~ 3x a(x, y), the previous formula becomes: 

3x a(x, y) . b(x, y) A- 3x a(x, y) . 3x(~t(x, y) . (b ~ a)(x, y)) 
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and, applying the definition of cofactor to 3=(fi(=, y).  (b I a)(=, y)), taking into 
account that the term is logically and-ed with 3x a(x, y), the previous formula 
becomes: 

3x a(x, y) .  b(=, y) -t- 3x a(x, y) . 3=(?t(x, y ) .  b(=o, y) " a(xo, y)) 

This equals 3= a(=, y).  b(=, y), as whenever the left-hand side is true, the right- 
hand side is also true and 3= a(=, y). b(=, y) = 0 =r b(=o, y)'a(=o, z) = O. [] 

The theorem holds also in the general case of the form f(x,  y) = yIin=l fi(x, y), 
as f(=, u) = 1-Ii"_-i fi(=, u) = f l (=,  v) .  1q~%2 f~(=, v) = a(=, v) .  b(=, U). 

3 An Application: Reachability Analysis 

Computing the reachable state space finds applications in equivalence proofs for 
FSMs, in ATPG, and in the manipulation of Process Algebra formulm. In sym- 
bolic breadth-first traversal multiple states, represented by their characteristic 
function, are considered simultaneously, evaluating function ~ on them, the re- 
sult being the characteristic function of the set of states reachable from them in 
one step. The pseudo-code is shown in Fig. 1. 

var  Reached, From, New, Image: set o f  S; 
b e g i n  

Reached :=  From := So ; 
repea t  

Image := IMG(~, From) ; 
New := Image N ~ ; 
Reached := Reached U Image ; 
From := New ; 

u n t i l  New = ~1 ; 
return Reached ; 

e n d  

Fig. 1. Symbolic Breadth-First Traversal 

Computing the image requires the knowledge of the transition relation TM, 
whose construction is often impossible, unless the theorem proven in the previ- 
ous Section is used. The experimental results of the next Section confirm this 
statement. The theorem can be applied by building a priori the transition re- 
lation (algorithm A) or building it in a constrained and simpler form at each 
traversal step (algorithm B). 
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Algorithm A The theorem of the previous Section helps building once and for 
all the transition relation TM: 

n 

TM(S, y) = 3x (l'I(Yi = 5,(x, s))) = 3x ( H  fi(x, s, y)) 
i=1  i=1  

Considering each term fi and omitting the argument variables for simpler 
notation, let us write: 

$~1) = fi l < i < n  

f~J-1) ~ f(J._-11) 2 < j < n and j < i < n 

i.e., let us iteratively simplify each term by cofactoring it with previously sim- 
plified ones. The superscript indicated the simplification step. With abuse of 
notation, let us write f~k) 
expressed as: 

with 

__ f(k). The transition relation is then recursively 

TM = T(~ ) 

= ~ ( k + l )  T(M k) 3X f ( k )  . ~tM 

T y  ) = 3x f(n) 

Applying the cofactor propagates the constraints inside the functions and allows 
to reduce their complexity by simplification and early quantification. 

Computing IMG(~, From) is easy once TM is given. Set From is described 
by its characteristic function C(s). Extending it so that it ranges over variables 
z, s, y, such a function can be considered as the n + 1-th term of the product, 
i.e., C(z,  s, y) = fn+l(z,  s, y). The traditional approach for image computation 
is expressed by the following formula: 

n + l  

IMG(~, From) = 3s3x ( H  f i (z ,  s, y)) (i) 
i = I  

Applying the theorem yields: 

n + l  

IMG(6, From) = H ( 3 s 3 x  (f(i)(x, s, y))) (2) 
i=1  

and the advantages are evident, as an early quantification takes place on the 
simplified f (0  terms. Moreover, the first n terms of the product can be computed 
once and for all. 
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Algorithm B Instead of building TM and then computing the image, if the goal is 
merely forward state space traversal, it is possible to build at each step the tran- 
sition relation, as in algorithm A, conveniently simplified on the set of starting 
states From. 

One can easily demonstrate that in the traditional approach the following 
formula holds: 

n 

IMG(6, From) = IMG(5 I C(s), I) = qsqz (H((fi I C)(x, s, y))) 
i=1 

(3) 

Applying the theorem yields, as easily demonstrated: 

n 

IMG(5, From) = IMG(5 I C(s), 1) -- H(3s3x((f ~ C)(0(x, s, y))) 
i = l  

(4) 

with a considerable reduction in the number of BDD nodes and in CPU time. 

4 Experimental  Results 

All experiments have been performed by a fully home made software on a 30 Mips 
VAX-9000. The number of BDD nodes was limited to 2,000,000, and garbage 
collection was disabled (except for a few cases) to allow exact quantification of 
the generated BDDs . 

Tab. 1 and 2 show the experimental data collected on the ISCAS'89 circuits 
[1] that are currently dealt with by symbolic techniques. The column labelled 
TF refers to the results obtained with the transition function and published in 
[9]. The column labelled TR-A refers to the traditional approach of first building 
once and for all the transition relation and then traversing the FSM (equation 
(1)). The approach whose results are shown in column TR-B differs from the 
former in the preliminary simplification of the state transition function 6 on 
the initial state set From at each new image computation, before the transition 
relation is built (equation (3)). Columns labeled Alg-A and AIg-B show the data 
obtained by applying equations (2) and (4). 

The last column, labeled Alg-Bsort, refers to a heuristic method, oriented to 
obtain mimimum size BDDs for state sets. This is achieved through a dynamic 
ordering for the variables, keeping on top of the BDDs the variables that are most 
discriminating. The 5is are sorted from left to right in increasing complexity, 
assuming that  the more complex the 6i function, the more discriminating the 
corresponding Yi. We measure BDD complexity by counting the number of nodes 
of its tree expansion (BDD without sharings). The overhead incurred by this 
ordering algorithm is due to the need to either reconvert the 6is in the next 
state variables' space or the next states to the space of the 6is. Good results are 
obtained with some of the circuits involving larger BDDs. 
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Circuit # states 
TF 

s298 218 874 
s344 2625 11233 
s349 2625 11233 
s382 8865 19746 
s386 13 255 
s400 8865 19746 
s420 17 554 
s444 8865 8066 
s510 47 469 
s526 8868 9285 
s526n 8868 9285 
s641 1544 21511: 
s641n 1544 22001 
s713 1544 21585 
s820 25 432 
s832 25 432 
s838 17 1310 
s953 504 9722 
s1196 2616 53158 
s1238 2616 155375 
s1488 48 636 
s1494 48 635 

BDD nodes 
TR-A TR-B Alg-A Alg-B Al~-Bsort 
52777 5037 4185 1229 2004 

230247 62422 23363 19058 ~ 35319 
230247 62422 23363 19058  35319 
375901 319535 73065 33092  66227 

575 581 519 362 404 
375901 319535 73065 33092  66227 

11980 1372 2003 421i 391 
730998 196768 62654 20704  44149 

1036 1229 1615 527 522 
- * 149982190099 22060 53534 
- * 149982 90099 22060  53534 

590937* 234298 76533 34154  30530 
490942* 213723 66498 30450  30861 
590941* 234323 77832 35097 30659 

1005 1005 1015 694 713 
1005 1005  1015 694 713 

- * 3852 8775 922 899 
44993 76387 13443 17158  22968 

239397 322783 49281 89003  74093 
497813 919470 57082 205186 217258 

1445 1609 1747 1026 1161 
1454 1618 1735  1022 1154 

Table 1. Experimental results on BDD nodes: Number of BDD nodes _< 2,000,000. - 
means overflow on BDD nodes, * means garbage collection active. 

It is easy to conclude that applying equations (2) and (4) improves by an 
order of magnitude on the traditional transition relation and has performances 
comparable with the transition functions. We thus conclude that the transition 
relation is again competitive in terms of performances with the transition func- 
tion, although it is much more powerful in terms of expressiveness. 

Indeed, experimental data on the state set generation for the ISCAS'89 cir- 
cuits show that our method has a complexity similar to the transition function, 
as the increase in the number of nodes is mainly due to variable relabeling. 

From a more theoretical point of view, for the transition function approach 
the number of recursive IMG calls is roughly proportional to the number of nodes 
of the image BDD. For each recursive call, an array of functions (derived from 
the 6is) is considered and all the functions, starting from the second one, are 
cofactored with the first one or with its complement. The so-called sharing or 
sub-tree recombination effect can strongly modify this proportionality, because 
equal BDDs are computed many times as partial images in different sub-spaces, 
although they are shared in the resulting BDD. Two important  techniques have 
been introduced to avoid multiple evaluations: hash-based image evaluation [11], 
and disjoint set partitioning [13]. Good results have been obtained, but both 
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Circuit CPU time Is] 
TF TR-A TR-B AIg-A Alg-B Alg-Bsort 

s298 0.1 10.6 0.3 0.6 0.2 0.2 
s344 1.1 34.2 5.8 2.4 1.8 2.5 
s349 1.1 35.2 5.7 2.5 2.0 2.8 
s382 2.3 1797.1 30.5 9.3 5.1 6.5 
s386 0.1 0.1 0.1 0.1 0.1 0.1 
s400 2.2 1779.7 31.0 9.5 5.1 6.4 
s420 0.0 2.2 0.1 0.3 0.1 0.1 
s444 1.8 794.6 17.5 7.1 3.3 4.4 
s510 0.1 0.1 0.1 0.2 0.1 0.1 
s526 1.7 11.3 10.6 3.1 4.9 
s526n 1.6 11.2 10.7 3.2 5.0 
s641 2.4 405.3 37.6 10.9 3.4 2.9 
s641n 2.7 482.6 38.6 10.1 3.3 2.9 
s713 2.3 404.2 38.1 11.0 3.7 2.9 
s820 0.1 0.2 0.1 0.1 0.1 0.1 
s832 0.0 0.2 0.1 0.1 0.1 0.1 
s838 0.1 0.3 1.2 0.1 0.1 
s953 0.9 6.6 5.1 2.2 1.7 1.8 
s1196 9.1 74.4 101.7! 45.3! 14.3 8.1 
s1238 25.8 97.3 481.1 49.9 34.3 27.7 
s1488 0.0 0.2 0.3 0.2 0.1 0.1 
s1494 0.0 0.2 0.3 0.2 0.1 0.1 

T a b l e  2. Experimental results on CPU time: - means overflow on BDD nodes. 

levd # s t a t e s  TF TR-B 
BDD nodes CPU time ~] BDD nodes CPU time Is] 

7 33698553 578170 213 414818 169 
8 111100409 1110781 991 471322 542 
9 489606397 832653 2450 

I0 1682875721 1523625 9045 

Tab le  3. s1423: the first unmanageable ISCAS'89: garbage collection is active, level 
is the number of clock cycles required to reach all the states in the state set. 

methods  in t roduce  considerable compu ta t iona l  overheads. 

For the me thod  we propose the n u m b e r  of recursive calls is n, where n is the 
n u m b e r  of s ta te  t rans i t ion  funct ions  and it is reduced to a l inear i terat ion.  Each 
i tera t ion step is qui te  complex, because on top of the cofactored ~s we bui ld  
the BDDs of the next  s tate  variables. Handl ing  sharings and  subtree recombi- 
nat ions ,  on the other  hand,  results au tomat ica l ly :  at each i te ra t ion  the terms 
have all possible local sharings,  quant i f icat ions  are performed individual ly,  and  
thus sharings are kept as long and as much as possible. This  effect is not  readily 

apparent  in the ISCAS'89 circuits, as already demons t ra ted  in [11], bu t  we are 
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currently working on other cases where it results in considerable improvements. 
As a preliminary result in this direction, we include (Tab. 3) a profile of partial 
state space generation for the ISCAS'89 circuit s1423. No published data exist 
at present about the full state space of this circuit (74 state elements). Our 
experiments show a drastic advantage of the new transition relation algorithm, 
compared with the transition function approach and this is mostly due to the 
sharings possible in our new method. 

5 C o n c l u s i o n s  

Symbolic state space traversal techniques are one of the most notable achieve- 
ments of the past few years that contributed to making formal verification quit 
research labs and enter the world of industrial applications. Automated synthesis 
and testing have also profited. Their limit resides in the inability to deal with 
other than simple FSMs, where the control part dominates over the data path. 
The struggle in terms of performances between the approaches based on the 
transition function and on the transition relation ended with the victory of the 
former ones. The application domain was restricted to FSMs and for this reason 
the expressive advantages of the transition relation were often overlooked. 

The borders for hardware description and verification are rapidly moving to- 
wards higher abstraction levels, where systems are considered in terms of the 
events they exchange with the outside environment and are modeled by possi- 
bly non-deterministic labeled transition systems. In these cases, the transition 
relation has proven to be an excellent means to mechanize Process Algebra ma- 
nipulations [14], [10] and the proof of Temporal Logic properties [3]. For these 
reasons, it is extremely important to have efficient ways to build it and to use 
it. 

The main contribution of this paper was to bring the transition relation back 
to a new life, profiting from the recent advancements in the fields of boolean 
function representation, simplification, and image computation represented by 
BDDs and the cofactor operator. A theoretical result allows us to considerably 
simplify both the process of building the transition relation and of traversing its 
state space. It consists in distributing existential quantification and logical and by 
propagating the constraints by means of successive cofactorings. Experimental 
results show that performances similar to those of the transition function are 
obtained. 

Future work will consist in the investigation of new variable orderings and of 
subtree recombination. 
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