
Advancements in Symbol ic Traversal
Techniques *

Gianpiero Cabodi and Paolo Camurati

Politecnico di Torino, Dipartimento di Automatica e Informatica, Turin, Italy

Abst rac t . Symbolic state space traversal techniques are one of the most
notable achievements in the fields of formal verification and of automated
synthesis. Transition functions and transition relations are two alterna-
tive approaches. In terms of efficiency, transition functions have proven
to be superior, although the transition relation is much more expressive.
This paper brings the transition relation back to a new life, profiting
from recent advancements in the fields of boolean function representa-
tion, simplification, and image computation represented by BDDs and
by the generalized cofactor operator. A theoretical result allows us to
considerably simplify both the process of building the transition rela-
tion and of traversing the state space. Experimental results show that
performances similar to those of the transition function are obtained.

1 I n t r o d u c t i o n

Dealing with Finite State Machines (FSMs) [15] in the fields of formal verifica-
tion of correctness, of automated synthesis, and of testing essentially requires
a traversal of their state space, where properties, such as equivalence, language
containment, or temporal formulae are checked.

There are three major problems to be solved to reach the goal: an efficient
representation for boolean functions, an efficient way to represent and manip-
ulate sets, namely sets of states, and good algorithms for exploring the space
state. Binary Decision Diagrams (BDDs) [6], [5] are currently the most popular
answer to the first issue. Characteristic functions are used to represent sets and,
being boolean, they can benefit from the efficiency of BDDs. Symbolic traver-
sal techniques [7], [8], [3], [91 complete the framework, supporting reachability
analysis of real-size FSMs.

Analyzing reachable states essentially requires to represent the state transi-
tion function of the FSM and then to traverse it, either backwards or forwards.
In forward traversal, starting from a set of initial states, the next ones are com-
puted, i.e., the image of the state transition function on that set is evaluated.
In backward traversal, starting from a set of states, specified according to the
application, the ones from which that set is reached in one step are computed,
i.e., a pre-image'of the state transition function is evaluated.

* This work has been partially supported by the ESPRIT Working Group 6018
"CHARME-2".

156

There are two approaches to the representation of the state transition func-
tion, each with its own algorithm for image computation:

- the "transition relation";
- the "transition function".

With the "transition relation" [7], [3] the sequential behaviour of the FSM
is described by listing the couples "current state - next state", independently of
the inputs. Such a list is represented by its characteristic function, which in turn
is a BDD. Computing the image of the state transition function on a given set
of states is quite easy, as it is enough to consider only those couples "current
state - next state" of the transition relation where the current state belongs to
the domain being considered and to return the corresponding next states. These
operations are easily performed on BDDs, as they consist in and-ing two BDDs,
existentially quantifying ("smoothin]') the current states, and then relabeling
the resulting next states as the new current ones [3]. The FSM can easily be
traversed forwards or backwards, as computing images or pre-images makes no
difference. The main limit resides in the difficulty to build the transition relation
for big circuits, i.e., to first and many boolean functions and then to existentially
quantify the inputs. As existential quantification does not distribute over and-
ing, the resulting BDD rapidly grows too large.

In order to overcome this limit, the approach based on the "transition func-
tion" [8], [12], [13] was developed, i.e., on a vector of boolean functions, each
representing the behavior of the FSM along one of the dimensions in the space.
The recursive image computation algorithm for transition functions exploits the
powerful operator "cofacto?' [8], [11], that allows one to simplify a function
when it is constrained on a subset of its domain. Intuitively, this means that the
resulting function coincides with the original one on the subset of the domain
defined by the constraint, whereas for the rest of the domain its value can be
chosen arbitrarily. Among the many possible choices, an appropriate one allows
to guarantee that the image of the original function on the constrained domain
and of the simplified function on the whole domain are the same ("generalized
cofactor and image restricto?'). In the image computation algorithm, the state
transition function is first simplified on the subset of its domain currently be-
ing considered, then a recursive procedure is applied, based on the expansion
theorem, that computes the result by either splitting the inputs or the outputs
[11]. This second approach, although the image computation algorithm is not as
simple as the one for the transition relation, allowed a major breakthrough in
terms of efficiency and applicability. The transition function is less general than
the transition relation, as the former must be deterministic, the latter, though
implemented by BDDs, easily supports non-determinism, used for example with
Process Algebras [3], [14], [10]. Moreover, whereas pre-image computation is im-
mediate for the transition relation, it is more awkward for transition functions.

This brief discussion justifies the fact that neither approach has been dis-
missed in favor of the other and that research on both is still ongoing. In order
to be able to build the transition relation, partitioning techniques are intro-
duced, but either they are manual and based on the designer's knowledge [2] or

157

they may be computationally expensive [4]. This paper follows another avenue
of attack to bring the transition relation back to a new life. Existential quantifi-
cation and and-ing do not distribute, but, as one of the effects of the generalized
cofactor and image restrictor is to propagate the constrain while simplifying the
functions, it is possible to first apply it and then to distribute existential quan-
tification and and-ing. A minor condition is imposed on the way the cofactor
is built, preserving all its usual properties. This makes building the transition
relation feasible. Experimental results show that the CPU time is reduced by
an order of magnitude with respect to the basic method and it is comparable
with the best results obtained with the transition function approach. The same
considerations hold for the size of the BDDs.

Section 2 shows how the generalized cofactor and image restrictor can suc-
cessfully be used to build the transition relation. Section 3 presents in more
detail how the theoretical results are applied to reachability analysis. The ex-
perimental data on the ISCAS'89 [1] circuits of Section 4 support the claim that
the transition relation is again competitive with the transition function.

2 T h e o r e t i c a l F r a m e w o r k

A completely specified FSM M is 6-tuple M = (I, O, S, 6, A, So), where I (O)
is the input (output) space, S is the state space, 5 (A) is the state transition
(output) function, and So is the set of initial states. Without any loss of general-
ity, we hereinafter consider boolean spaces only, as other spaces can be mapped
into them by suitable binary encodings.

When working on boolean spaces, denoting with B the set {0, 1}, I, O, So,
and S are powers of B and 6 and A are functions from powers of B to powers
of B. In particular, let us suppose I = B m, m being the number of inputs,
O = B k, k being the number of outputs, S = B n, n being the number of state
variables, then, in the general case of Mealy machines, A : B m x B n ~ B k and
6 : B m x B n -~ B n.

Let A be a subset of B n : its "charac ter i s t i c f u n c t i o n " XA : B n --* B is
defined as follows:

10ifa E A
XA (a) = otherwise

Set operations are efficiently implemented by boolean operators on BDDs.
The state transition function 6 can be represented either as a transition

function [8] or as a transition relation [7], [3]. Let us follow the second choice.
The characteristic function 6c : B m • B n • B n --* B corresponding to 8

returns 1 iff the next state y E S is the image of the current state s E S and of
the input x E I according to function 5. As we are often interested only in the
existence of an input value, rather than in the value itself, the " t rans i t i on rela-

t ion" abstracts from the inputs. We write, with abuse of notation, T M , instead
of XTM, for the characteristic function of the transition relation, defined as:

158

i't

TM(S, y) = 3z E (y i -- 6i(z, s))
i = 1

Once the transition relation is given, computing the image (pre-image) of
on a set of states described by its characteristic function C(s) (C(y)) is rela-
tively easy, as it is enough to and it with the transition relation, to existentially
quantify, and to relabel the states:

IMa(~, C(s)) = 3sT~(s, y). C(s)~/,

PREIMG(8, C(y)) = 3yTM(S, y) " C(y)s/y

The transition relation TM is conceptually easy to build, but often, for
medium size and large circuits, it requires too much time and too many BDD
nodes. Individual terms in the product of the form (Yi -= ~i (z, s)) have relatively
small BDDs, but existential quantification and logical and do not distribute, un-
less the sets of support variables are disjoint. As a consequence, it is necessary
to build the whole product 1-Ii~=x(Yi = ~i(z, s)) before applying the existential
quantifier and this is often impossible, as the resulting BDD is too large.

Finding disjoint sets of support is one possible avenue of attack, though
literature reports only manual methods [2] or expensive ones [4]. Our approach
exploits the generalized cofactor and image restrictor to distribute existential
quantification and logical and, so that the BDDs stay reasonable in size.

Let us first formally define the generalized cofactor and image restrictor ~.
For boolean functions f (x) and g(x), given an ordering for the xs, f I g, or f
constrained by g, is defined by [8], [11]:

f f (x) i fg(x) = 1
(f ,~ g)(x) : ~. f (x o) i f g(x) =

where x0 is the minterm such that g(zo) = 1 and the distance [Ix - x011 is
minimal.

The operator satisfies the following identity:

g" f = g ' (f l g)

The following lemma and theorem form the basis for distributing existential
quantification and logical and by means of a suitable definition of the generalized
cofactor and image restrictor. The lemma is a particular case of the general result
proven in [16].

L e m m a 1. Let us consider a function f of the form f(x) = I-[in=l k(x) and a
constraint c(x), then f(x) I c(x) = IL:x(f~ I c)(x).

159

Proof. As f (x) Hi=I fi(x) f l (~) n = n = " l'Ii=2 fi(x) = a(x) . b(x), we can prove
the thesis by restricting investigation to the 2 term case. The thesis is rewritten
as:

(f ~ c)(x) = (a ~ c)(x) . (b ~ c)(x)

To prove the thesis, we split the cases according to the value of c(x):

- c(x) = 1:

(f t c)(x) ---- f (x) = (a I c)(x). (b l c)(x) = a(x) . b(x)

- c(x) = O: let us remind that the choice of x0 depends only on the constraint
c(x) and on variable ordering. Selecting the same x0

(f J. c)(x) -- f (xo) "- (a ~ c)(x). (b ~ c)(x) = a(xo) .b(xo)

0

T h e o r e m 2 . Hypothesis: let us define the ~ operator between two functions a(x, y)
and b(x, y) as follows:

(b I a)(x, = {
i f a(x, y) = 1 then b(x, y)
ira(x, y) = 0 then i f 3xoa(xo, y) = 1 then

b(zo, y)
else

b(xo, yo) I a(x0, yo) = :

There is no change in the way the cofactor is computed, provided that variable
ordering puts the ys before the xs.

Thesis:

3x a(x, y) . b(x, y) = 3x a(x, y) . 3x (b ~ a)(x, y)

Proof. By applying the rewrite rule f = g- f + ~. f , 3= a(x, y). 3x (b I a)(x, y)
becomes:

and, by applying g �9 (f ~ g) -- g. f , we obtain:

3x a(x, y) . 3x (a(x, y) . b(x, y) -4- ~t(x, y) . (b ~ a)(x, y)) =

3x a(x, y) . 3x a(x, y) . b(x, y) A- 3x a(x, y) . 3x (~(x, y) . (b I a)(x, y))

As 3x a(x, y) . b(x, y) ~ 3x a(x, y), the previous formula becomes:

3x a(x, y) . b(x, y) A- 3x a(x, y) . 3x(~t(x, y) . (b ~ a)(x, y))

160

and, applying the definition of cofactor to 3=(fi(=, y). (b I a)(=, y)), taking into
account that the term is logically and-ed with 3x a(x, y), the previous formula
becomes:

3x a(x, y) . b(=, y) -t- 3x a(x, y) . 3=(?t(x, y) . b(=o, y) " a(xo, y))

This equals 3= a(=, y). b(=, y), as whenever the left-hand side is true, the right-
hand side is also true and 3= a(=, y). b(=, y) = 0 =r b(=o, y)'a(=o, z) = O. []

The theorem holds also in the general case of the form f(x, y) = yIin=l fi(x, y),
as f(=, u) = 1-Ii"_-i fi(=, u) = f l (=, v) . 1q~%2 f~(=, v) = a(=, v) . b(=, U).

3 An Application: Reachability Analysis

Computing the reachable state space finds applications in equivalence proofs for
FSMs, in ATPG, and in the manipulation of Process Algebra formulm. In sym-
bolic breadth-first traversal multiple states, represented by their characteristic
function, are considered simultaneously, evaluating function ~ on them, the re-
sult being the characteristic function of the set of states reachable from them in
one step. The pseudo-code is shown in Fig. 1.

var Reached, From, New, Image: set o f S;
b e g i n

Reached := From := So ;
repea t

Image := IMG(~, From) ;
New := Image N ~ ;
Reached := Reached U Image ;
From := New ;

u n t i l New = ~1 ;
return Reached ;

e n d

Fig. 1. Symbolic Breadth-First Traversal

Computing the image requires the knowledge of the transition relation TM,
whose construction is often impossible, unless the theorem proven in the previ-
ous Section is used. The experimental results of the next Section confirm this
statement. The theorem can be applied by building a priori the transition re-
lation (algorithm A) or building it in a constrained and simpler form at each
traversal step (algorithm B).

161

Algorithm A The theorem of the previous Section helps building once and for
all the transition relation TM:

n

TM(S, y) = 3x (l'I(Yi = 5,(x, s))) = 3x (H fi(x, s, y))
i=1 i=1

Considering each term fi and omitting the argument variables for simpler
notation, let us write:

$~1) = fi l < i < n

f~J-1) ~ f(J._-11) 2 < j < n and j < i < n

i.e., let us iteratively simplify each term by cofactoring it with previously sim-
plified ones. The superscript indicated the simplification step. With abuse of
notation, let us write f~k)
expressed as:

with

__ f(k). The transition relation is then recursively

TM = T(~)

= ~ (k + l) T(M k) 3X f (k) . ~tM

T y) = 3x f(n)

Applying the cofactor propagates the constraints inside the functions and allows
to reduce their complexity by simplification and early quantification.

Computing IMG(~, From) is easy once TM is given. Set From is described
by its characteristic function C(s). Extending it so that it ranges over variables
z, s, y, such a function can be considered as the n + 1-th term of the product,
i.e., C(z, s, y) = fn+l(z, s, y). The traditional approach for image computation
is expressed by the following formula:

n + l

IMG(~, From) = 3s3x (H f i (z , s, y)) (i)
i = I

Applying the theorem yields:

n + l

IMG(6, From) = H (3 s 3 x (f(i)(x, s, y))) (2)
i=1

and the advantages are evident, as an early quantification takes place on the
simplified f (0 terms. Moreover, the first n terms of the product can be computed
once and for all.

162

Algorithm B Instead of building TM and then computing the image, if the goal is
merely forward state space traversal, it is possible to build at each step the tran-
sition relation, as in algorithm A, conveniently simplified on the set of starting
states From.

One can easily demonstrate that in the traditional approach the following
formula holds:

n

IMG(6, From) = IMG(5 I C(s), I) = qsqz (H((fi I C)(x, s, y)))
i=1

(3)

Applying the theorem yields, as easily demonstrated:

n

IMG(5, From) = IMG(5 I C(s), 1) -- H(3s3x((f ~ C)(0(x, s, y)))
i = l

(4)

with a considerable reduction in the number of BDD nodes and in CPU time.

4 Experimental Results

All experiments have been performed by a fully home made software on a 30 Mips
VAX-9000. The number of BDD nodes was limited to 2,000,000, and garbage
collection was disabled (except for a few cases) to allow exact quantification of
the generated BDDs .

Tab. 1 and 2 show the experimental data collected on the ISCAS'89 circuits
[1] that are currently dealt with by symbolic techniques. The column labelled
TF refers to the results obtained with the transition function and published in
[9]. The column labelled TR-A refers to the traditional approach of first building
once and for all the transition relation and then traversing the FSM (equation
(1)). The approach whose results are shown in column TR-B differs from the
former in the preliminary simplification of the state transition function 6 on
the initial state set From at each new image computation, before the transition
relation is built (equation (3)). Columns labeled Alg-A and AIg-B show the data
obtained by applying equations (2) and (4).

The last column, labeled Alg-Bsort, refers to a heuristic method, oriented to
obtain mimimum size BDDs for state sets. This is achieved through a dynamic
ordering for the variables, keeping on top of the BDDs the variables that are most
discriminating. The 5is are sorted from left to right in increasing complexity,
assuming that the more complex the 6i function, the more discriminating the
corresponding Yi. We measure BDD complexity by counting the number of nodes
of its tree expansion (BDD without sharings). The overhead incurred by this
ordering algorithm is due to the need to either reconvert the 6is in the next
state variables' space or the next states to the space of the 6is. Good results are
obtained with some of the circuits involving larger BDDs.

163

Circuit # states
TF

s298 218 874
s344 2625 11233
s349 2625 11233
s382 8865 19746
s386 13 255
s400 8865 19746
s420 17 554
s444 8865 8066
s510 47 469
s526 8868 9285
s526n 8868 9285
s641 1544 21511:
s641n 1544 22001
s713 1544 21585
s820 25 432
s832 25 432
s838 17 1310
s953 504 9722
s1196 2616 53158
s1238 2616 155375
s1488 48 636
s1494 48 635

BDD nodes
TR-A TR-B Alg-A Alg-B Al~-Bsort
52777 5037 4185 1229 2004

230247 62422 23363 19058 ~ 35319
230247 62422 23363 19058 35319
375901 319535 73065 33092 66227

575 581 519 362 404
375901 319535 73065 33092 66227

11980 1372 2003 421i 391
730998 196768 62654 20704 44149

1036 1229 1615 527 522
- * 149982190099 22060 53534
- * 149982 90099 22060 53534

590937* 234298 76533 34154 30530
490942* 213723 66498 30450 30861
590941* 234323 77832 35097 30659

1005 1005 1015 694 713
1005 1005 1015 694 713

- * 3852 8775 922 899
44993 76387 13443 17158 22968

239397 322783 49281 89003 74093
497813 919470 57082 205186 217258

1445 1609 1747 1026 1161
1454 1618 1735 1022 1154

Table 1. Experimental results on BDD nodes: Number of BDD nodes _< 2,000,000. -
means overflow on BDD nodes, * means garbage collection active.

It is easy to conclude that applying equations (2) and (4) improves by an
order of magnitude on the traditional transition relation and has performances
comparable with the transition functions. We thus conclude that the transition
relation is again competitive in terms of performances with the transition func-
tion, although it is much more powerful in terms of expressiveness.

Indeed, experimental data on the state set generation for the ISCAS'89 cir-
cuits show that our method has a complexity similar to the transition function,
as the increase in the number of nodes is mainly due to variable relabeling.

From a more theoretical point of view, for the transition function approach
the number of recursive IMG calls is roughly proportional to the number of nodes
of the image BDD. For each recursive call, an array of functions (derived from
the 6is) is considered and all the functions, starting from the second one, are
cofactored with the first one or with its complement. The so-called sharing or
sub-tree recombination effect can strongly modify this proportionality, because
equal BDDs are computed many times as partial images in different sub-spaces,
although they are shared in the resulting BDD. Two important techniques have
been introduced to avoid multiple evaluations: hash-based image evaluation [11],
and disjoint set partitioning [13]. Good results have been obtained, but both

164

Circuit CPU time Is]
TF TR-A TR-B AIg-A Alg-B Alg-Bsort

s298 0.1 10.6 0.3 0.6 0.2 0.2
s344 1.1 34.2 5.8 2.4 1.8 2.5
s349 1.1 35.2 5.7 2.5 2.0 2.8
s382 2.3 1797.1 30.5 9.3 5.1 6.5
s386 0.1 0.1 0.1 0.1 0.1 0.1
s400 2.2 1779.7 31.0 9.5 5.1 6.4
s420 0.0 2.2 0.1 0.3 0.1 0.1
s444 1.8 794.6 17.5 7.1 3.3 4.4
s510 0.1 0.1 0.1 0.2 0.1 0.1
s526 1.7 11.3 10.6 3.1 4.9
s526n 1.6 11.2 10.7 3.2 5.0
s641 2.4 405.3 37.6 10.9 3.4 2.9
s641n 2.7 482.6 38.6 10.1 3.3 2.9
s713 2.3 404.2 38.1 11.0 3.7 2.9
s820 0.1 0.2 0.1 0.1 0.1 0.1
s832 0.0 0.2 0.1 0.1 0.1 0.1
s838 0.1 0.3 1.2 0.1 0.1
s953 0.9 6.6 5.1 2.2 1.7 1.8
s1196 9.1 74.4 101.7! 45.3! 14.3 8.1
s1238 25.8 97.3 481.1 49.9 34.3 27.7
s1488 0.0 0.2 0.3 0.2 0.1 0.1
s1494 0.0 0.2 0.3 0.2 0.1 0.1

T a b l e 2. Experimental results on CPU time: - means overflow on BDD nodes.

levd # s t a t e s TF TR-B
BDD nodes CPU time ~] BDD nodes CPU time Is]

7 33698553 578170 213 414818 169
8 111100409 1110781 991 471322 542
9 489606397 832653 2450

I0 1682875721 1523625 9045

Tab le 3. s1423: the first unmanageable ISCAS'89: garbage collection is active, level
is the number of clock cycles required to reach all the states in the state set.

methods in t roduce considerable compu ta t iona l overheads.

For the me thod we propose the n u m b e r of recursive calls is n, where n is the
n u m b e r of s ta te t rans i t ion funct ions and it is reduced to a l inear i terat ion. Each
i tera t ion step is qui te complex, because on top of the cofactored ~s we bui ld
the BDDs of the next s tate variables. Handl ing sharings and subtree recombi-
nat ions , on the other hand, results au tomat ica l ly : at each i te ra t ion the terms
have all possible local sharings, quant i f icat ions are performed individual ly, and
thus sharings are kept as long and as much as possible. This effect is not readily

apparent in the ISCAS'89 circuits, as already demons t ra ted in [11], bu t we are

165

currently working on other cases where it results in considerable improvements.
As a preliminary result in this direction, we include (Tab. 3) a profile of partial
state space generation for the ISCAS'89 circuit s1423. No published data exist
at present about the full state space of this circuit (74 state elements). Our
experiments show a drastic advantage of the new transition relation algorithm,
compared with the transition function approach and this is mostly due to the
sharings possible in our new method.

5 C o n c l u s i o n s

Symbolic state space traversal techniques are one of the most notable achieve-
ments of the past few years that contributed to making formal verification quit
research labs and enter the world of industrial applications. Automated synthesis
and testing have also profited. Their limit resides in the inability to deal with
other than simple FSMs, where the control part dominates over the data path.
The struggle in terms of performances between the approaches based on the
transition function and on the transition relation ended with the victory of the
former ones. The application domain was restricted to FSMs and for this reason
the expressive advantages of the transition relation were often overlooked.

The borders for hardware description and verification are rapidly moving to-
wards higher abstraction levels, where systems are considered in terms of the
events they exchange with the outside environment and are modeled by possi-
bly non-deterministic labeled transition systems. In these cases, the transition
relation has proven to be an excellent means to mechanize Process Algebra ma-
nipulations [14], [10] and the proof of Temporal Logic properties [3]. For these
reasons, it is extremely important to have efficient ways to build it and to use
it.

The main contribution of this paper was to bring the transition relation back
to a new life, profiting from the recent advancements in the fields of boolean
function representation, simplification, and image computation represented by
BDDs and the cofactor operator. A theoretical result allows us to considerably
simplify both the process of building the transition relation and of traversing its
state space. It consists in distributing existential quantification and logical and by
propagating the constraints by means of successive cofactorings. Experimental
results show that performances similar to those of the transition function are
obtained.

Future work will consist in the investigation of new variable orderings and of
subtree recombination.

R e f e r e n c e s

1. Brglez, F. Bryan, D., KoSmifiski, K.: Combinatorial Profiles of Sequential Bench-
mark Circuits. ISCAS'89: IEEE Int'l Symposium on Circuits and Systems, Portland,
OR (USA), May 1989, pp. 1929-1934

166

2. Butch, J.R., Clarke, E.M., Long, D.E.: Representing Circuits More Efficiently in
Symbolic Model Checking. DAC'91: 28th ACM/IEEE Design Automation Confer-
ence, San Francisco, CA (USA), June 1991, pp. 403-407

3. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J..: Symbolic Model
Checking: 1020 States and Beyond. LICS'90: 5th Annual IEEE Symposium on Logic
in Computer Science, June 1990, pp. 428-439

4. Bochmann, D., Dreisig, F., Steinbach, B.: A new Decomposition Method for Multi-
level Circuit Design. EDAC'91: IEEE European Conference on Design Automation,
Amsterdam (The Netherlands), February 1991, pp. 374-377

5. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient Implementation of a BDD Package.
DAC'90: 27th ACM/IEEE Design Automation Conference, Orlando, FL (USA),
June 1990, pp. 40-45

6. Bryant, R.E.: Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computer, Vol. C-35, No. 8, August 1986, pp. 677-691

7. Coudert, O., Berthet, C., Madre, J.C.: Verification of Sequential Machines Based
on Symbolic Execution. "Automatic verification methods for finite state systems,",
J. Sifakis editor, Lecture Notes in Computer Science 407, Springer Verlag, Berlin
(Germany), 1989, pp. 365-373

8. Coudert, O., Berthet, C., Madre, J.C.: Verification of Sequential Machines Using
Boolean Function Vectors. IFIP Int'l Workshop on "Applied Formal Methods for
Correct VLSI Design", Leuven (Belgium), November 1989, Vol. 1, pp. 111-128

9. Cabodi, G.P., Camurati, P., Corno, F., Gai, S., Prinetto, P., Sonza Reorda, M.:
A new Model for Improving Symbolic Product Machine Traversal. DAC-29: 29th
ACM/IEEE Desing Automation Conference, Anaheim, CA (USA), June 1992,
pp. 614-619

10. Camurati, P., Corno, F., Prinetto, P.: Exploiting symbolic traversal techniques for
efficient Process Algebra Manipulation. CHDL'93: IFIP Conference on Hardware
Description Languages and their Applications, Ottawa (Canada), April 1993

11. Cho, H., Hachtel, G., Jeong, S.W., Plessier, B., Schwarz, E., Somenzi, F.: ATPG
Aspects of FSM Verification. ICCAD-90: IEEE Int'l Conference on Computer Aided
Design, Santa Clara, CA (USA), November 1990, pp. 134-137

12. Coudert, O., Madre, J.C.: A Unified Framework for the Formal Verification of
Sequential Circuits. ICCAD-90: IEEE Int'l Conf. on Computer Aided Design, Santa
Clara, CA (USA), November 1990, pp. 126-129

13. Coudert, O., Madre, J.C.: Symbolic Computation of the Valid States of the Sequen-
tim Machine: Algorithms and Discussion. 1991 Int'l Workshop on Formal Methods
in VLSI Design, Miami, FL (USA), January 1991

14. Enders, R., Filkorn, T., Taubner, D.: Generating BDDs for Symbolic Model Check-
ing in CCS. CAV'91: Computer-Aided Verification Workshop, Aalborg (Denmark),
July 1991, K.G. Larsen, A. Skou Editors, Lecture Notes in Computer Science 575,
Springer Verlag, Berlin (Germany), pp. 203-213

15. Kohavi, Z.: Switching and Finite Automata Theory. second edition, Computer
Science Series, Mc Graw Hill, New York, NY

16. Touati, H., Savoj, H., Lin, B., Brayton, R.K., Sangiovanni-Vincentelli, A.: Implicit
Enumeration of Finite State Machines Using BDDs. ICCAD-90: IEEE International
Conference on Computer Aided Design, Santa Clara, CA (USA), November 1990,
pp. 130-133

