
Real.Time Image Compression Using Data-Parallelism

P. MORAVIE 1, H. ESSAFI 1, C. LAMBERT-NEBOUT 2, J-L. BASILLE 3

1 LETI (CEA - Technologies Avanc~es), DEIN - CE/S, F91191 Gif sur Yvette.
2 Centre Spatial de Toulouse, 18 Av. Belin BP 1421, F31055 Toulouse Cedex.

3 ENSEEIHT, 2 rue camichel, 31071 Toulouse Cedex.

Abstract

The purpose of this paper is to present this new parallel image compression al-
gorithm. We present implementation results on several parallel computers. We
also examine load balancing and data mapping problems. We end by presenting
a well-suited architecture for Real-Time image compression.
Keywords : Data-Parallelism, Image Compression, Wavelet Transform, Vector
Quantization, Huffman Coding.

1 I n t r o d u c t i o n

Today, in the digitized satellite image domain, the needs for high dimension
images increase considerably. To transmit or to stock such images (6000 by
6000 pixels), we need to reduce their data volume and so we have to use image
compression technics. In most cases, these operations have to be processed in
Real-Time. But the large amount of computations required prohibits the use of
common sequential processors. To solve this problem, CEA in collaboration with
CNES developed and evaluated a new parallel image compression algorithm for
general purpose parallel computers using data-parallelism. This paper introduces
this new parallel image compression algorithm. Thus, in a first section, we briefly
describe the image compression technics on which our algorithm is based. In
section two, we develop our algorithm. We also present implementation results
on several parallel computers and we examine load balancing and data mapping
problems. As a conclusion, we present a well-suited architecture for Real-Time
image compression.

2 S e q u e n t i a l I m a g e C o m p r e s s i o n A l g o r i t h m s

Image compression is classically achieved in three steps. The image is first trans-
formed in a set of decorrelated coefficients. Then, the transformed coefficients
are quantized. Finally, the quantized values are entropy coded.
During the past few years several design algorithms have been developed for
each step. It has been shown that compression algorithms based on Wavelet
Transform[l], Vector Quantization[3] and Huffman Coding[4] provide one of the
best trade-off between compression rates and quality. Therefore, we based our
algorithm on all these technics.

724

2.1 Wavelet Transform (W.T)

The Wavelet Transform is a powerful tool for signal, image processing. For image
compression, using wavelet transform offers two essential advantages. First, the
produced coefficients are well decorrelated due to the good localization of the
wavelet function in both space and frequency. And the multi-resolution of wavelet
transform is suitable with quantization: each sub-image produced by W.T can
be quantized using an adapted quantizer.
In order to reduce the computation time, we used one of the fastest wavelet
transform algorithm (designed by Mallat[2]). It is based on a subband coding
scheme, i.e it uses linear filter convolutions and image shrinking.

2.2 Vector Quantization (V.Q)

Quantization is the most essential part of common image compression algo-
rithms. In fact, it is the part which provides the major bits rate reduction.
Indeed, this technic reduce the number of grey levels used to code the image
and so reduce the number of bits required to represent each pixels. According to
Shannon's rate distortion theory, better results are always obtained when vec-
tors rather than scalars are encoded. Therefore, our algorithm is based on vector
quantization.
This technic is achieved in three steps. First, the pixels are organized into k-
dimensional vectors. Then, each vector is approximated by a vector (named
centroid) belonging to a predefined catalogue (named codebook). And finally,
each vector to be coded is replaced by the reference of its centroid.

2.3 Huffman Coding (H.C)

Huffman coding[4] is the most popular lossless compression technique. It is a
statistical data compression technique which gives a reduction in the average
code length used to represent the symbols of a Mphabet. In fact, it assigns codes
to input symbols in such a way that each code length in bits is approximatively
log2 (symbol probability).
Usually, a Huffman code is built as follow. First, we rank all symbols in order
of probability of occurrence. Next, we successively combine the two symbols of
the lowest probability to form a new composite symbol. And finally, we trace a

p a t h to each leaf, noticing the direction at each node. The code assign to each
symbol is the path.

3 Our Parallel Image Compression Algorithm

3.1 Parallelization mode

After studying implementations of all the technics described above, on MIMD,
SIMD and message passing architecture, we concluded that using data-parallelism
and pipeline technics are the best way to parallelize this type of algorithm. This

725

is due to the regularity of the processing involved. Indeed, each block of pixels is
processed in the same way and all these have to be chained in good order. As our
aim is to define a parallel algorithm for general purpose machine, we developed
our parallel image compression algorithm solely using data-parallelism.

3.2 D a t a O r g a n i z a t i o n

From implementations of these technics on several parallel machines (such as
Connection-Machine CMb, Maspar, Symphonie, Sympati2) we noted that for
each network and memory organizations, there are few data organizations which
allow a real speed-up. This is due to the large amount of regular communica-
tions required by all these technics. In fact, these data organizations respect two
essential conditions.

- Each processor must have the same amount of data in order to ensure
correct load-balancing

- The amount of communications required by the processes must be mini-
mum. It means:

* (V. Q) Each vector must be stocked in one processor memory.
* (W. T) Each processor only gets adjacent pixels in its memory.

An interesting point we underlined is that if a data organization is optimal for
Wavelet Transform, then it is also optimal for the quantization. As the wavelet
transform do not change data organization, we recommend to optimize the data
organization according to wavelet transform and to architecture.

3.3 T h e Para l l e l I m a g e C o m p r e s s i o n A l g o r i t h m

The parallel algorithm can be described as follow :
- Get an new image and map the pixels into the processors memories.
- Apply a double Wavelet Transform Decomposition on the image.
- Quantify each sub-image (vector) with the adequate codebook.
- Encode each result using a Huffman encoder.

Vector quantization and Huffman encoding consist in replacing a group of pixels
(vector or reference) by a code. By using an appropriate codebook it is possible
to mix this 2 process and so to speed-up the computations.

3.4 I m p l e m e n t i n g r e su l t s

Each part of this algorithm has been evaluated on several parallel machine with
several parameters. In table l, we give few results for a 8:1 compression ratio
and a quality of 36 DB PSNR).

W.T (Float. point)
W.T (16 bits)
V.Q + H.C (16 bits)

Table I. Corn

SYMPATI-2 SYMPHONIE
(32 proc.) (32 proc.)

1502 200
115 7
190 22

rotation time in Milliseconds

CM5 Cm200
(32 proc.) (4096 proc.)

250 1855
1870

"256x256 image).

726

We note that when the computations is process using floating or fix point pre-
cision operations, the best results are obtained by Symphonie. This is due to its
well suited architecture. In fact, Symphonie do not have floating point processors
but its architecture has been designed for Real-Time Image Processing.

4 Real-Time image compression architecture

To process the satellite image compression in real-time, we need to execute our
algorithm in less than 4 milliseconds. Using fix point precision, Symphonie fitted
out with 32 PE processes our algorithm in 29 milliseconds. But, using floating
point precision, it processes in 420 millisecond. As quality test shows that in most
of cases using 16 bits fix precision to do all the calculations, we can estimate
that Symphonie architecture (fitted out with 1024 PE) is well suited for process
real-time image compression.
From studying all the implementations we have made, we pointed out the main
characteristics of Symphonie (in italic) which are interesting for satellite image
compression :

-Symphonie is a Mult i-SIMD architecture where each node is a linear ar-
ray of superscalar processors. Each PE consists mainly of 32 bits processor, a
co-processor dedicated to memory address computation, a floating point accel-
erator and a communication module. Symphonie is also fitting out with two
communications networks (one asynchronous and one synchronous).

5 Conclusion

We presented here a new parallel image compression algorithm which likely to
be implemented on SIMD and MIMD architecture. We evaluated this algorithm
on several machines. We showed that when the computation is done using fix
point precision, it allows us to process the image compression in real time.

References

1. M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies. Image coding Using Wavelets
Transform. IEEE Trans. on Image processing 1(4):205-220, 1992.

2. S. G. MaUat. A theory for multiresolution signal decomposition: The wavelet repre-
sentation. IEEE Trans. on Pattern Analysis and Machine Inte iligence, 11(7):674-
693, 1989.

3. A. Gersho, R.M. Gray Vector Quantization and Signal Compression. Kluwer Aca-
demic Publisher, Boston, 1992.

4. M. Nelson. The Data Compression book. Prentice Hall, Redwood Cityes, 1991.
5. M. J. Quinn. Designing Efficient Algorithms for Parallel Computers. McGraw-Hill,

New York, NY, 1987.
6. R. W. Hockney and C. R. Jesshope. Parallel Computers: 2 Architecture, Program-

ming, and Algorithms, Pnd Ed. IOP Publishing Ltd., Pennsylvania, 1988.

