
A Monitoring System for
Software-Heterogeneous Distributed

Environments*

Aleksander Laurentowski, Jakub Szymaszek, Andrzej Uszok,
Krzysztof Zielifiski

Institute of Computer Science
University of Mining and Metallurgy (AGH)

A1. Mickiewicza 30, Cracow, Poland
e-mails: {pinio,jasz, uszok, kz} @ics. agh:edu.pl

1 I n t r o d u c t i o n

Emerging trends in high performance computing tend to exploit massively par-
allel systems (like SPP 1000) and distributed memory architectures (e.g. SP1,
SP2), as well as workstation clusters. The most appropriate computational model
for this kind of systems is built of a set of autonomous objects, communicating
via message-passing mechanism. Advanced applications within this model may
be engineered of components implemented in various programming languages.
Hence, particular parts of such applications can be executed in those program-
ming environments which inherently express the nature of computation. This
allows mixing various programming and execution paradigms (e.g. imperative,
functional, object-oriented or logic programming) in one software-heterogeneous
system. Taking advantage of software components reuse and easier implemen-
tation process, this technique can speed-up the development of new, modern
applications - unfortunately, much increasing their complexity at the same time.

Tools for monitoring, debugging and maintaining such applications could
substantially help in that case. Our Managed Object-based Distributed Moni-
toring System (MODIMOS) aims at monitoring of large distributed software-
heterogeneous applications, organized according to an object wrapping tech-
nique. The area of its application covers visualization of the systems' structure
and activity, management of their logical configuration, thus enabling appropri-
ate tuning. This influenced characteristic features of MODIMOS, like e.g. con-
figurability of its modules, information management and filtering mechanisms,
expandability of monitored environments set.

2 M O D I M O S A r c h i t e c t u r e

The functionality of MODIMOS is determined by an abstraction we call the Uni-
form Model of Computation, pertinent to the object-based environments used

* This work was sponsored by the Polish State Committee of Scientific Research (KBN)
under grant no.: 8 $503 015 06.

708

for wrapping of programming modules. Well-known distributed systems used for
wrapping technology show some similarity of their computational models. We
have analyzed a set of them and decided that the abstract model should be a
superset (union) of their models of computation. Hence, in our Uniform Model
the following levels of abstraction have been recognized: environment, applica-
tion, container, object, interface and method. The detailed mapping of them
into a couple of popular programming environments, e.g. ANSA[1], SR[2], and
a CORBA-cornpliant[3] (Orbix) is shown in the table below.

Unit of J E n v i r o n m e n t ~
a b s t r a c t i o n ~ SR
apphc~tion ~ makefile
container]capsule]virtual machine] process I

object I object Iresource, glob l.oyj t I
interface Im~erIa.ce I resource spec. imrer1~.ce 1
method ~ operation

A set of relevant events is associ-
ated with each abstraction unit.
These events are reported to the
monitoring subsystem. Events
concern the aspects of the items'
behavior, such as initiation, cre-
ation, destroy, change of state,
operation call/reply, etc.

MODIMOS has a multi-layer architecture shown below. Functionality of
these layers may be described as follows. The Environments Layer consists of an

I a u l I

Global Monll~'lng ~
Interoperabillty ~n~pe rab l l l t y~ rve r~

Environment./~--~ , / ~ Local
.

~ ~ ~ ~ '~'f.~Monitored
~ Applications

Objects

expandable set of popular dis-
tributed programming envi-
ronments. Any new object-
wrapping environment can
join the Environments Layer,
provided it fits at least par-
tially the Uniform Model and
supports basic mechanisms
of communication with the
outside world. The Environ-
ments Layer consists of Mon-
itored Applications sublayer
and Local Monitoring sub-
layer.

The Monitored Application Sublayer represents original application code, in-
strumented by special preprocessors with addition of notification functions. The
events reported by notification functions are collected in the Local Monitors sub-
layer. Each local monitor is a managed object written in a language provided
by the given environment. It has three interfaces: Monitored Events, Manage-
ment and Reported Events. Management Interface is used for monitoring policy
setting, that determines which events received via Monitored Events Interface
are forwarded through Reported Events Interface. Information sent via Reported
Events Interface is structured according to the Uniform Model. Therefore, above
the first layer only the abstract semantics is recognized.

The second layer deals with interoperability aspects. The aim of the Inter-
operability Layer is to ensure a universal and general platform for operations
dispatching between local monitors and Global Monitoring Layer. The dispatch-

709

ing mechanisms used for this purpose are transparent to the local monitors.
This layer dispatches invocations concerning reported events notification to the
Global Monitoring module and, respectively, the management decisions from the
global monitor (i.e. the user) down to local monitors.

Global Monitoring Layer collects reported events in a database called In-
ternal Model (reflecting the architecture, configuration and current state of the
monitored environment), cooperates with Graphical User Interface in the pro-
cess of information visualization, implements the selective monitoring policy, and
ensures consistency of collected data.

3 B a s i c F e a t u r e s o f t h e S y s t e m

As MODIMOS is itseff a software heterogeneous application, the general inter-
operability mechanisms proposed and employed during its construction can be
used in further multi-paradigm systems. We have analyzed and compared several
variants of those mechanisms during design and construction of Interoperability
Layer. The first choice is its base platform: a primitive communication interface
(such as sockets) or an integrating glue environment, which offers more abstract
notion of communication providing localization, binding, dispatching, name ser-
vice, etc. We have chosen the latter solution and implemented Interoperability
Layer in Orbix CORBA-compliant system. Messages are sent by invocations
of functions from remote servers' interfaces, what frees the programmer from
buffers construction. This also ensures well structuring and encapsulation of IL
functionality into environments' objects. The glue environment must be some-
how integrated with the monitored environments. The perfect solution would be
construction of an object being, a full member of the glue and a given monitored
environment at the same time. It means that this object should be able to call
and receive invocations from both these environments, so it may act as a gateway
between them. However, there is a lot of environments which do not fulfill this
assumption. A solution for this problem is an idea of a plug [7]. It is a regular
glue environment object, which, however, represents the given monitored envi-
ronment in the glue system. It receives remote operations' invocations from the
given environment's local monitors, translates them into glue system's remote
operation calls format, and invokes them on behalf of the local monitors. Invo-
cations from all plugs are in an ordinary glue system form. The glue environment
serves as a communication framework for plugs, it localizes the global monitor,
binds plugs to its interface and dispatches their invocations to it.

Applications running in the environments to be visualized consist of items
composing a hierarchical structure (a tree), described in terms of the computa-
tional model specific for the particular environment, and in terms of the Uniform
Model. In order to visualize the items' hierarchy, we have implemented methods
of "box-like", two-dimensional trees visualization, in which "child" level figures
are placed into the figures representing "parent" levels of the hierarchy.

High performance computing imposes substantial requirements on monitor-
ing tools, e.g. ability to cope with large amount of data, high speed and intensity

710

of interactions. In contrast to systems like IPS-2 [4], Paragraph [5] or Falcon [6],
MODIMOS is not intended to present the whole program execution history. In-
troduction of filtering and selection mechanisms enables the user to significantly
limit the amount of collected data and focus on the the most interesting and
"hot" areas of the monitored system's activity. Filtering can take place at Envi-
ronments Layer, where selection rules can be set up at preprocessing time and
through the management interfaces of local monitors, as well as at the Global
Monitoring level. Moreover, selection options at GUI enable the user to eliminate
a group of objects or levels in the Uniform Model hierarchy during a particular
visualization process. We employ two kinds of the visualized tree nodes' selec-
tion: horizontal (eliminating items from one logical level, e.g. all containers) and
vertical (eliminating particular tree nodes with its subtrees).

To assure high flexibility of the system, we employed advanced software engi-
neering techniques during MODIMOS's design and construction. As an object-
oriented framework [8], the system consists of a set of cooperating software
components, thus enabling easy extensions (new monitored environments, mul-
tiple monitors, GUI's, etc.). We use design patterns [9] to describe architecture,
functionality and interfaces of those software-heterogeneous components.

The system is currently under development. Having implemented the En-
vironments, Interoperability and prototype Global Monitoring layers, we are
currently investigating methods of ensuring consistent global state of the moni-
toring trace. We are also designing the management mechanisms for global and
local monitors.

References

1. ANSAware 4.0 - - Application Programmer's Manual, APM Ltd. Cambridge, 1992.
2. G.R. Andrews, R.A. Olsson, The SR Programming Language: Concurrency in Prac-

tice, Benjamin/Cummings Publishing Company, 1992.
3. Draft Common Object Request Broker Architecture Revision 1.1, OMG Report 91-

12-1, OMG Inc., 1991.
4. B. P. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S. Lira and T. Torzewski,

"IPS-2: The Second Generation of a Parallel Program Measurment System", IEEE
Trans. on Parallel and Distributed Systems, 1,2, April 1990.

5. M. T. Heath and J. A. Etheridge, "Visualizing Performance of Parallel Programs",
IEEE Software, 8(5), September 1991.

6. W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan, J. Stasko, J. Vetter, N. Mallavarupu,
Falcon: On-line Monitoring and Steering of Large-Scale Paxallel Programs, Georgia
Institute of Technology, Technical Report No. GIT-CC-94-21, April 1994.

7. A. Uszok, G. Czajkowski, K. Ziefifiski, Interoperability Gateway Construction for
Object-Oriented Distributed Systems, Proceedings of the 6th Nordic Workshop on
Programming Environment Research, Lund, Sweden, June 1994.

8. R. Campbell, N. Islam, A Technique for Documenting the Framework of an Object-
Oriented System, Proc. IWOOS'9~, IEEE Computer Society Press, Sep. 1992.

9. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Object-
Oriented Software Architecture, Addison-Wesley, 1994.

