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Abstract: This paper describes a class of algorithms for scheduling parallel 
programs represented by macro dataflow graphs (task precedence graphs) onto a 
muitiprocessor system such that the total execution time is minimized. The 
schedule will be computed dynamically during the runtime of the process system. 
The model allows to represent centralized and fully distributed algorithms as well 
as intermediate forms. The algorithms are able to schedule static as well as dynamic 
dataflow graphs. Knowledge of the execution times of the tasks is not necessary. 
Some variants of the model have been implemented using a multi-transputer 
system. Practical experiences are included in the paper. 

1 I n t r o d u c t i o n  

M/MD multiprocessor systems are increasingly applied in wide areas of computer science. 
In order to take advantage of the potential increase of computation power, it is first 
necessary to split the algorithm into parallel processes. In a second step, these processes are 
to be assigned to the individual processors of the multiprocessor. In existing applications, a 
specific assignment for a given multiprocessor and for the current problem is often 
developed by the software engineer. Even though this solution may be slightly more 
efficient than automatic scheduling, it still has the disadvantages of high development costs, 
weak portability and a high degree of fault-proneness. 

In recent years several variants of the task scheduling problem received increasing scientific 
attention. Many authors published especially on the following three problems: 

(1) Load Balancing Problem 

In a multiuser multitasking environment, the processes are started at any point in time. The 
tasks are to be assigned to the machines of  a multiprocessor such that the load of all 
processors is balanced. Often deadlines and additional resource requests have to be 
considered. On the other hand, there is usually no communication structure assumed 
[LtiM93] between the tasks. An overview is given in [CaK88]. 

�9 This work is partially supported by Deutsche Forschungsgemeinschaft DFG under contract number Ma 1412/1-2 
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(2) Task Scheduling with Task Interaction Graph 

For each pair of tasks (tl, 12), the amount of communication between tl and" 12 is given. 
The data transmission can become necessary at any time during the runtime of the process 
system. Contrary to (1), all tasks are started at the same time. The problem here is to find a 
mapping of the tasks to the multiprocessor making the best possible use of the 
interprocessor network. Solutions of the problem are suggested in e.g. [Lee-88, Lo88]. An 
introductory overview is given in [CHL80]. 

(3) Task Scheduling with Task Precedence Graph 

For some pairs of tasks (tl, t2), the dataflow graph (sometimes called "task precedence 
graph") defines that tl must be finished before t2 can start. A schedule must be found 
which minimizes the execution time of the process system by minimizing both the 
communication overhead and the idle time of the processor. The problem can be solved 
either statically (before the process system is started) or dynamically. While the static 
solutions usually require good estimations for the execution times of the tasks and a fixed 
(static) structure of the dataflow graph, the dynamic algorithms consume an increased 
overhead for communication. Static solutions are given, for example, in [KaN84, MaL86]. 
A dynamic solution which could be called "Team Scheduling" is suggested in [RoM90]. 

This paper mainly focuses on dynamic solutions of problem (3). Overviews to the subject 
are given in [Bok87, ReF87, Hwa93]. 

2 Problem Description 

2.1 Machine Configuration Graph 

The multiprocessor (here only distributed memory machines are considered) is modelled as 
a graph with nodes (PMU, processor memory units) and edges (communication links, 
connections). The processor nodes are labelled with processing power and memory 
capacity while the edges carry a link capacity. The machine configuration graph as well as 
the labels are assumed to be given. 

2.2 Dataflow Graph 

The dataflow graph (Fig, 1) is a bipartite graph consisting of task nodes (circles), data 
nodes (squares) and edges. The data nodes describe results produced by one task and 
required by another one. Usually the execution time of the individual tasks is unknown. 
Sometimes estimations are available. Note that in some kinds of parallel programs the 
structure of the dataflow graph is not completely known in advance. The degree of 
branching or the number of loop iterations may be unknown at design time. If more than 
one dataflow graph can be executed simultaneously, this is called "space sharing". A model 
("D2R, Dynamic Dataflow Representation") which is able to express such features is 
described in [Ros94]. 

Fig. 1 shows a dataflow graph which can be used to parallelize some kinds of iterative 
algorithms for solving partial differential equations CPDE"). For example, a heatened sheet 
is divided into two imaginary stripes. This division is made by tO and will result in data sets 
dl and d2. Then an iteration loop (named "loop") is entered. The graphic representation 
expresses the REPEAT structure of the loop (with at least one iteration). To identify the 
nodes of different iterations, the loop name is added to the node names within the loop 
body. During runtime the loop name is substituted by the loop counter value to provide the 
needed unique identification of the nodes. D2R provides a similar mechanism when 
dynamic forks are used which are not applied in the example above. Each of ~he tasks 
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tlAloop and t2Aloop executes one iteration step in one stripe. After completion of the 
iteration step, new data will be created (dllAloop, dl4Aloop). Moreover, the boundaries of 
the stripes must be exchanged (dl2.kloop, dl3Aloop). Finally the iteration is converging and 
the data is passed to "tx". 

t l .  

( 

Fig. 1. Dataflow graph 

3 Agency Schedul ing  Model  

Up to now only few dynamic algorithms for the task scheduling problem have been 
suggested. The model suggested permits to easily characterize a wide range of algorithms. 
According to this model, an algorithm consists of eight rather independent components for 
which heuristics will be suggested. 

3.1 Basic Ideas 

There are a number of agencies each of which is responsible for a so-called "employer 
area". The employer areas constitute a partition of the processors of the multiprocessor, i.e. 
each processor is assigned to exactly one employer area. In addition, each agency is 
equipped with an employee area which may either match the employer area or exceed it in 
size and thus overlap with other employer areas. Jobs generated within the employer area of 
an agency are reported to the agency, which allocates them within its employee area. In the 
case of matching areas, the jobs may be allocated via a command protocol. Otherwise a 
bidding phase is required. If temporarily charged with heavy duty, an agency can delegate 
jobs to neighbouring areas via a load balancing mechanism. The processor carrying out the 
function of the agency can be dedicated to this job or can execute user tasks in addition. 
Moreover, a parameter N is given, defining the number of user processes which are 
permitted to be executed simultaneously, i.e. multitasking of user processes is allowed. 
Such agencies are best illustrated by comparing them with human labor offices. 
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The specification of an algorithm consists of the following eight components: 

(1) A set of PMUs (the agencies). 

(2) The corresponding employer areas. 

(3) The corresponding employee areas. 

(4) A boolean variable called "dedicated". 

(5) The maximum number of user tasks running simultaneously on one PMU. On 
each processor, N virtual machines are running, each of which is executing its 
own protocols for reporting finished tasks and assigning unsolved jobs 
respectively. The individual user tasks may be running with different priorities. 

(6) The protocol for allocating jobs. If each processor is assigned to exactly one 
agency, an easy command protocol can be applied. Otherwise possible conflicts 
have to be resolved - for example by using a bidding protocol. 

(7) The protocol for reporting finished jobs. 

(8) The strategy of balancing the load among the agencies. 

Load balancing has been researched intensively. An overview is given in [CaK88]. 

3.2 "Team Scheduling" A Fully Distributed 
Variant of the Agency Scheduling Model 

In the Team Scheduling algorithm, each processor maintains a local knowledge containing 
the idle and working PMUs, the location of the data sets and the state of the processes. This 
local knowledge is updated via a broadcast mechanism whenever a task is started or 
finished. After a task t has been finished, the scheduling algorithm will check ff t has 
successors which can be started at that point. In this case, a bidding phase with presumably 
idle processors is triggered, during the course of which the successors are allocated. For 
more detail see [RoM90]. 

Team Scheduling is an extreme example of Agency Scheduling. Each processor is its own 
(non-dedicated) agency. The employer area is constituted by the processor only. The 
employee area is established by the entire multiprocessor. 

It can be shown [Ros94] that the execution time of the schedule computed by Team 
Scheduling is at most twice as long as the execution time of the optimum schedule. 

TTeamScheduling < Top t * (2-1/NumberProcessors) 

4 The Components of the Agency Scheduling Model 

4.1 Agencies and Areas 
An easy way of defining the areas lies in the manual division of the multiprocessor. Using a 
regular mesh-like connection network, the whole multiprocessor can be divided into X*Y 
rectangular areas. The agency function will be assigned to a central processor (geometric 
center of gravity). An example for applying this strategy is given in Fig. 2. In this example, 
the multiprocessor is divided into four areas of equal size and matching employer and 
employee areas. The agency of each area is marked by an "A". 

In the example of Fig. 3, the employee areas are overlapping. To avoid confusion, the 
employer areas are not displayed in the graphics - they are identical with the areas of Fig. 2. 
Note that in this example the employee areas exceed the employer areas in size. While in the 
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former example an easy command protocol can be used to allocate tasks, in the latter a more 
complex bidding phase is required which consists of "bid task", "accept t~k" or "not 
accept task", and "transfer task". On the other hand, overlapping areas open up a new 
prospect in load balancing: in this case, it is possible to balance the load without an explicit 
load balancing function. Instead (implicitly), tasks are assigned to the areas of the 
neighboring agencies. Applying overlapping areas in heavily loaded systems may cause 
several (or even many) agencies to send a "bid task" message as soon as an employee gets 
idle because the idle employee may belong to more than one employee area. To minimize 
the overhead caused by this message, an additional decision rule can be applied which says 
that in heavily loaded systems an agency bids a task mainly in its employer area. In other 
terms, in heavily loaded parts of the systems the overlapping areas are temporarily switched 
off. 

I 0 

I I  " I 

Fig. 2. Disjunct areas Fig. 3. Overlapping areas 

To demonstrate the flexibility of the model by means of extreme examples, a central 
configuration is shown in Fig. 4. Central scheduling algorithms can be implemented more 
easily and often cause less dynamic overhead than distributed ones. However, the main 
disadvantages here are that the central agency constitutes a potential bottleneck ("monitor 
bottleneck") in larger-scale systems and that it is more difficult to solve the problems of 
fault tolerance. On the other hand, the extreme example demonstrates the wide scope of the 
model. 

Quite the reverse of the central solution is the fully distributed configuration shown in Fig. 
5, which is applied in the "Team Scheduling" algorithm., The drawback of the fully 
distributed configuration is that "Team Scheduling" needs broadcast messages to be 
distributed among the agencies (i.e. messages from one agency to all others) to maintain the 
local knowledge. Since in the discussed configuration all processors perform the agency 
function, the broadcasts among the agencies are, in fact, broadcasts all over the system, 
which may cause quite a dynamic overhead in large multiprocessor systems. We have 
already developed a variant of "Team Scheduling" which needs no global broadcast; it is, 
however, more difficult to implement this variant For more details see section 4.3. 
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Fig. 4. Central configuration Fig. 5. Fully distributed configuration 

4.2 Al locat ion of  tasks 

An interesting question arises if a task t depends on the results of  more than one task, as for 
example tl and t2 (see Fig. 6). In this case there must be an agreement between the agency 
which has allocated tl (abbreviated as Agency(tl) ) and Agency(t2) as to the question who 
is responsible for starting t. We tested three rules to achieve this agreement. 

__ _ a ~ n c y ( t 2 )  a J e n c y ( t l ) _  _ 

( 

E 

Fig. 6. Task t depending on multiple predecessors 

In the following discussion, t x is an arbitrary successor of  t and the value WaitingTime is 
the time which a broadcast needs to be received all over the system. The function Oral(task) 
defines the lexicographic order of  the name of  the tasknode - in the easiest case the node 
number. 

Our first idea was that Agency(tx) is responsible for task t, if and only if t x is the 
predecessor which finished/ast. The advantage is that at this time all required input data is 
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available and t x can be started immediately. However, if t 1 and t 2 are finishing at almost the 
same time this rule can cause a conflict. Both Agency(tl) and Agency(t2) feel the other one 
to be responsible for starting t. To avoid this conflict, rule 1 uses a WaitingTime. 

Rule 1: 

case 1: if (V i ((i ~ x) => t i is finished) ) 
Agency(tx) is responsible 

case 2: if ( 3  i ((i ~ x) ^ t i is not yet started) ) 
Agency(t x) is not responsible 

case 3: else: 
- Agency(tx) broadcasts "t x is finished" 

Agency(tx) waits for at least two WaitingTime units 
- 3.1 Agency(tx) receives a "finish" broadcast from another Agency(q) 

The agency with the smaller PMU number is responsible 
- 3.2 else 

Agency(t x) is not responsible 

Rule 1 has some disadvantages: 
- Two broadcasts are required (after start and after finishing of a task). 
- The WaitingTime constitutes a source of dynamic overhead. 
- Case 2 implies the execution times of a task to be at least WaitingTime units. 

Rule 2: 
Similar to rule 1 but without broadcast at the start of a task. 
=> case 2 cannot arise 

disadvantage: WaitingTime occurs almost always. 

Rule 3: 

case 1: 

case 2: else 

v i  (0 * x) => Ord(t i) < Ord(t x) ) 
Agency(tx) is responsible 

Agency(tx) is not responsible 

Rule 3 is based on the idea that Agency(q) is responsible, if and only if t x has the highest 
lexicographic order among all predecessors of t. The disadvantage of this rule is the more 
complex implementation. According to the former rules, all input data of  t was already 
computed when an agency became responsible for a task t. This is usually not applicable to 
rule 3. Therefore, each agency maintains a list of processes for which it is responsible, but 
which cannot yet be started. After computation of new data sets, this list is searched for 
tasks which can be started at that point. Despite its complexer implementation we preferred 
rule 3 because of the dynamic overhead caused by the WaitingTime in rule 1 and 2. 

4.3 Maintaining the local knowledge without broadcast 

Among other things the local knowledge contains the information which task has been 
finished on which processor (the so-called "address component"). Parts of this information 
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are necessary to find out the location of the input data of a task to be started. In the first 
version of "Team Scheduling", the local knowledge was maintained via a global broadcast 
mechanism [RoM90]. Since broadcast constitutes a source of dynamic overhead, we have 
been searching for other solutions. 

Note that it is not necessary to inform each agency about every task which is being 
finished. It is sufficient to send a message to those agencies which are responsible for the 
predecessors of all successors of the task (perhaps "P"). One difficulty is how to find out 
the identity of the agencies which are responsible for the predecessors of all successors of 
P. 

Suppose that Agency(P) which has allocated task P wants to send the "fmish" message for 
P to Agency(t) which is responsible for task t. Task t is one of the predecessors of a 
successor of P. The idea here is to use quite another agency ("A") acting as an 
intermediary. The trick, however, is that the identity ofA = A(P, t) can be computed from 
the node names of P and t. 

One example for function A0 is given in the following formula: 

(1) Transform the node names of P and t to integer (named "int(P)" and "int(t)" ). If  
the node names are given by ASCII strings, the transformation intO could be the 
sum of the ASCII values of the individual characters. 

(2) Compute A := (int(P) + int(t)) modulo (number of agencies in the system). 

If Agency(P) does not know the identity of Agency(t), Agency(P) will act according to the  
following algorithm: 

(1) Agency(P) sends the "finish" message to agency A and requests agency A to 
transmit the "f-mish" message to Agency(t). 

(2) If agency A knows the identity of Agency(t), it will transmit the message, and the 
problem is solved; else, A will store the message and steps (3) to (5) are 
performed. 

(3) Later, Agency(t) will be confronted with the similar problem of wanting to tell 
Agency(P) that t has been finished. If it does not know the identity of Agency(P), 
it must ask A for help ( step (4a)); else, it performs step (4b). 

(4a) Due to the message agency A has received in the course of step 1, A knows the 
identity of Agency(P). So A is able to transmit both of the messages, and the 
problem is solved. 

(4b) Agency(t) sends Agency(P) a message that t has been finished. 

(5) Following step (4b), Agency(P) receives the message from Agency(t) without the 
aid of A. Agency(P) sends the message that P has been finished to Agency(t) and 
tells A that the problem with regard to the identity of Agency(t) is now solved. 

5 Test results 

5.1 Evaluation of scheduling algorithms 
For judging the quality of a schedule, it is necessary to know what to compare the schedule 
to. The most obvious way, i.e. to compare it with the optimum schedule, fails because the 
computation of the optimum schedule falls into the class of NP-hard problems. This means 
that the time needed for computation of the exact solution grows exponentially with the 
problem size. Therefore, only a few minor problems can be solved to optimum. To cope 
with this fact, bounds were looked for, the computation of which is easier than that of the 
exact solution. Two important lower bounds for a given datafiow graph are constituted by 
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the "critical path" and the "efficiency bound". The critical path is the longest path from an 
input node to an output node of the dataflow graph (the highest sum of execution times). 
Whatever scheduling algorithm is employed, the execution time of the process system 
cannot he shorter than the length of the critical path. The efficiency bound says that the 
speedup cannot be higher than the number of processors, in other words: efficiency < 1. 
Both bounds are very important and widely applied (see for example [KaN84]). They 
deliver a rather good estimation in many cases, but unfortunately not in all. 

in addition we applied a third bound expressed in the formula given below. Different to the 
two bounds described above, which provide a bound for a given dataflow graph, the third 
bound measures only the dynamic overhead of a given schedule and cannot judge the 
overall quality of a schedule. The formula computes the fictitious starting times of the 
processes if the given schedule could be executed on a multiprocessor system with an 
infinitely fast communication system and with no computation time required for the 
decision heuristics, in this way the formula reflects an intuitive idea of the "dynamic 
overhead". 

If (t is an input task) a (t is the first task at the processor PMU(t)) 
StartTime(task t) := 0 

else StartTime (task t) := min x (x fulfils condition (*) as well as condition (**)) 

V p (p is a predecessor of t) => 
x > StartTime(p) + ExecutionTime(p) (*) 

AND 

V p ((PMU(p) = PMU(t)) AND (Order(p) < Order(t)) ) => 
x > StartTime(p) + ExecutionTime(p) (**) 

in this formula according to the given schedule, the expression "PMU(t)" represents the 
processor which is executing task t and the phrase "Order(p) < Order(t)" means that task p 
is executed before task t. (*) is a formal description of the critical path rule: a task t cannot 
be started before all predecessors are finished. (**) states that the user tasks on the same 
PMU are executed strictly sequentially. 

5.2 Measurement  of  the dynamic overhead 

O 
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Fig. 7. Variation of execution times 

For the measurements we used the multi-transputer system DAMP [BBM91], which is a 
multi-user system where the users allocate static partitions. More than 2000 measurments 
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were made using up to 28 nodes of our DAMP system configured as tori. The user- 
applications were modeled by randomly created artificial dataflow graphs with up to 400 
task nodes with varying execution times equally distributed in fixed intervalls. The mean 
execution times and the observed dynamic overhead are given in Fig. 7." Very short 
execution times of 50 msec cause an overhead of about 32%. Tasks with medium 
granularity with execution times of 0.5 sec can be scheduled with an overhead of approx. 
1.8%. 

Multiple user tasks  on one P M U  

In a second test, the usefulness of multiple simultaneous user tasks executed on each 
processor has been analysed. The advantage of such a feature could be denied because, on 
the one hand, the switching of the multiple simultaneous tasks constitutes a source of 
dynamic overhead. On the other hand, no advantage is expected here as compared with the 
alternative of executing the tasks strictly sequentially. 
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El 0.5 see 

number of user tasks per PMU 

Fig. 8. Variation of the number of user tasks per PMU 

In Fig. 8, we measured the execution time for a given example and configuration, and 
compared it with the best configuration for this example. We measured that two user tasks 
on each processor lead to minimum execution times. Further investigation disclosed the 
underlying reason as described below. 

The allocation of tasks consumes a rather long time (in the test implementation at least some 
10 msec) for performing the protocols and transmitting the data. However, most of this 
time the PMU is waiting idly (sometimes more than approx. 98% to 99%). If  the processor 
has a second task it can use this time in a productive way. 

Inf luence o f  statistical  k n o w l e d g e  on the execut ion  t ime 

In many applications the execution times are not known exactly. One reason might be that 
the execution times are data-dependent. There arises the question as to the quality of the 
solutions for static and dynamic task scheduling under such restrictions. 

To answer this question, the execution times of the tasks were replaced by estimates 
(random numbers). The estimates were exponentially distributed. The expectation of the 
random numbers was identical with the actual value. To these approximately 250 examples, 
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a static optimum algorithm was applied. The computed results were about 4.6% weaker 
than the mathematical optimum produced by the same algorithm with exactly known 
execution times. I.e., a stile scheduler cannot produce solutions for the examples given 
which are better than 104.6% of the minimum schedule length. On the other hand, the 
dynamic scheduler suggested computed solutions of these problems which were only about 
3.4% weaker than the optimum. Due to these experiences we assume that the superiority of 
static task scheduling is limited to special applications. Note that, different to the actual 
measurements given in the sections above, these numbers are computed with a simulation 
tool. 

6 Conclusion 
Agency Scheduling is a model permitting the representation of a wide variety of dynamic 
task scheduling algorithms including centralized and fully distributed ones as well as 
intermediate forms. The model consists of eight almost independent components for which 
examples axe given. An extreme case of the model is the fully distributed "Team 
Scheduling" algorithm. The model has been implemented and tested using the mnlil- 
transputer system DAMP [BBM91]. Measurements with artificial loads have shown that 
Agency Scheduling is suitable for a wide variety of applications. For medium to large grain 
dataflow graphs with execution times greater than a few hundred milliseconds the measured 
overhead is less than 5 %. 

As described in [BMM94], we have extended our scheduling system by means for fault 
tolerance. The basic idea is that the input dam is always available on two different PMUs: 
the PMU which executes the task and that one which keeps the so called checkpoints. After 
a failure of one processor, the corresponding tasks can be easily restarted by the processors 
which store the checkpoints. If the checkpoints are replicated again after a failure, a 
subsequent second failure can be tolerated as well and fail-soft behaviour is achieved. The 
decision which processor gets which checkpoint under the restriction of limited memory 
capacity leads to a so called "Bin-Packing-Problem", which in itself is anything but trivial 
[CGJ87]. In our scheduling system we have tackled this problem by using a simple 
heuristic. Details of the fault-tolerant algorithm are given in [BMM94]. 

The measurements presented in this paper are based on automatically created artificial loads 
to cover a wide variety of load characteristics. Further measurements using real applications 
are currently under way. For the near future we plan to spend more effort in studying and 
comparing the performance of our scheduling scheme with others. Furthermore we plan to 
develop a graphical user environment. It will not only be used to aid the user in developing 
his application but will also supply help for debugging and performance evaluation. 
Therefor we want to use the monitoring tool DELTA-T [MaO92] also developed at our 
institute. 
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