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Abst rac t .  Automatic parallelization of imperative programs has fo- 
cused on nests of do loops with affine bounds and affine dependences, 
because in this case execution domains and dependences can be precisely 
known at compile-time. When dynamic control structures, such as while 
loops, are used, existing methods for conversion to single-assignment 
form and domain scanning are inapplicable. This paper gives an algo- 
rithm to automatically generate parallel code, together with an algorithm 
to possibly convert the program to single-assignment form. 

1 I n t r o d u c t i o n  

Automatic  parallelization of imperative programs has focused on nests of do 
loops with affine bounds and affine dependences [10], mainly because depen- 
dences can then precisely be known at compile-time. Data or "memory-based" 
dependences are due to reuse of memory cells, and thus are language- and 
program-dependent,  whereas dataflows or "value-based dependences" denote 
transmissions of values and thus are algorithm-dependent. Memory-based de- 
pendences can be eliminated if a memory cell is associated with each program 
operation (the program is then in single-assignment form). Intuitively, cancelling 
memory-based dependences allows to extract more parallelism, hence the inter- 
est in automatic parallelization for algorithms to convert programs automatically 
to equivalent single-assignment form. Then, parallelization through space-time 
mapping boils down to finding a new coordinate system where some dimensions 
correspond to t ime and the others to (virtual) processor coordinates. Code gen- 
eration then consists of producing a program which scans the execution domain 
in the new coordinate system, 

However, using whi le  loops and/or  i f s  introduces two main problems: 

1. The flow of data  is not precisely known at compile-time and must generally 
be approximated, the ambiguity being resolved at run time. Thus, existing 
algorithms for automatic conversion to single-assignment form fail. 

2. The lack of regularity in execution domains of dynamic control programs 
forbids scanning schemes to be entirely static. One needs a way of scanning 
a conservative superset of the execution domain, and of checking on the fly 
whether a given point corresponds to an actual execution. 
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This paper proposes solutions to both problems. Our assumed target machine 
is some abstract shared-memory machine. Section 2 first gives some necessary 
definitions. Section 3 gives the algorithms for code generation, which are the 
topic of this paper. 

2 D e f i n i t i o n s  

Mathematical Definitions. The k-th element of a given vector x is denoted by 
~[k]. Furthermore, << (<<) denotes the (strict) lexicographical order on such 
vectors. "max,' denotes the maximum operator according to order <<. The 
modulo operation is denoted by Z, and the true and false boolean values by tt 
and if, respectively. A Z-polyhedron is the intersection of an integer lattice and 
a convex real polyhedron [1]. 

Program Model. We shall restrict ourselves to the following program model: 

- The only data  structures are arrays of basic types, where array subscripts 
are affine functions of the counters of surrounding loops and parameters.  

- Basic statements are assignments to scalars or array elements. 
- The only control structures for a static control program (SCP) are the se- 

quence and the do loop; dynamic control programs (DCP) include, in addi- 
tion, whi le  or r e p e a t  loop, and conditional i f . .  t h e n . ,  e l s e  constructs, 
without restriction on predicates of whi le  loops and i fs .  

Statements and Their Instances. An operation is a dynamic instance of a (syn- 
tactic) statement. The instance of a statement in a do loop nest is identified by 
the statement 's name and the corresponding loop counter's values. The vector 
of these values is called iteration vector. 

While Loops. Since we also want to identify the operations specified by while 
loops, we simply add an artificial counter to every while loop. (Note that  some 
variables may be used implicitly as counters, and that  there exist algorithms to 
detect such variables.) The initial value of every such artificial counter is some 
arbitrary value lb (often 0), its step is 1, and its upper bound is not known. 
Hereafter, we shall write while loops as: do w := Ib while ( cond ) S. 

A nest of whi le  loops that  fits our program model is declared in program ~ :  

program 
G1 : do wl : = 0 w h i l e  ( P l ( w l ) )  
G2 : do w2 := 0 whi le  (P2(wl ,w2)  ) 
S:  a[wl+w2] := a[wl+w2-1] 

The iteration vector is (wl, w2), thus an operation is identified by (S, wl, w2). 
The execution domain is the set of values that  the iteration vector takes in the 
course of the execution. If the surrounding loops are only do loops, then the 
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execution domain is a finite 2~-polyhedron. Since we cannot predict statically 
the flow of control of programs containing , h i l e  loops, their execution domains 
have to be approximated. The smallest possible approximate execution domain 
of S in program ~ is the 2~-polyhedron D(S)  = {(wl, w2)l (wl, w2) E 1~ 2, wl > 
0, w2 > 0}. Dimensions of the approximate execution domain that  correspond to 
, h i l e  loops are infinite, but  only a finite subset of the infinite polyhedron is 
executed at run time. 

If there is at least one whi le  loop not at the outermost level, the execution 
domain is not convex. Together with its control dependences, it looks more like 
a (possibly, multi-dimensional) comb (Figure 5a). The sequence of points along 
a line of arrows in the execution comb--we call it a tooth---corresponds to the 
execution of one entire , h i l e  loop. 

The maximal value that  a , h i l e  loop counter takes during program exe- 
cution will be stored in a variable called a placeholder; its value is calculated 
dynamically. For instance, let gl and 62 be the placeholders for wl and w2 in 
program WW. Then, we can approximate the execution domain by { (wl, w2)10 < 
wl < 61,0 < w2 < 62 } after the execution terminates. 

Finally, note that  unpredictable execution domains imply that  da ta  depen- 
dences have to be approximated as well. 

For now, we suppose that  predicates P1 and P2 in program ~ do not depend 
on array a, but  only on wl, and wl and w2, respectively. This simplification 
allows us to concentrate on code generation (the focus of this paper) without 
having to deal with parallelization methods such as speculative execution [3]. 

Parallelization in the Polyhedron Model. A parallelization is a relaxation of the 
execution order of the instances of S while preserving the dependences together 
with the termination properties of the input program. Actually, the execution 
order of whi le  loop nests, such as program • ,  is over-constrained. To show this, 
we proceed in several steps. 

First, we apply a preprocessing step to the source program, in which we (1) 
explicitely guard the loop body with a predicate executed and (2) add a boolean 
variable terminated that  stores the current global state of the execution. Then, 
data  dependence analysis and, optionally, conversion to single-assignment form 
are applied. Based on these results, we derive a space-time mapping, i.e., we 
calculate for every iteration when and where it shall be executed. Finally we 
scan the space-time mapped index domains to generate the (parallel) target 
loop nest. In the following subsections, we describe each of these steps in more 
detail and demonstrate the problems that  occur. 

3 P a r a l l e l i z a t i o n  P r o c e s s  

3.1 C o n t r o l  F low  in  . h i l e  Loops 

The flow of control in nests of while loops is less constrained than it may appear. 
For instance, if P1 (0) evaluates to tt, then the program's semantics is not changed 



318 

if the operation PI(1) immediately follows P1 (0)--provided the input program 
is correct, i.e. all , h i l e  loops terminate and no fatal exception occurs. 

More formally, program ~ is equivalent to the program in Figure 1. 

E :  
S:  

(V (wl,w2) : wl > O, w2 _> 0 :do begin 
i f  executea[wl, w2) 

then a[w, +w2] := a[wl +w2-- 1] endif ; 
i f  terminated then STOP endif  

end) 

Fig. 1. Program equivalent to program WW 

In this recurrent form, the execution order is not over-specified anymore. 
$TOP should be understood as a global immediate program stop. executed(w1, w2) 
tests on the fly whether the current instance (operation) should execute or not; 
executed(w1, w2) depends on some "previous" instances of this predicate, thus 
implicitly giving some constraints on the execution order. As mentioned earlier, 
terminated is a global, shared boolean scalar variable tha t  stores the current 
global execution status. 

Predicate executed. The body of a nest of whi le  loops (e.g., S in WW) is executed 
at point x with level r, iff, for all points x' at level r '  < r whose coordinates 
x~, �9 �9 �9 x r,' are identical to xl ,"  �9 xr,, respectively, all predicates of whi le  loops 
surrounding x' evaluate to tt. Formally, executed is defined recursively, where 
executed at some level r means that  the body of the loop at level r must be 
executed--no mat ter  whether it is a statement or another loop: 

executed(x1,.. . ,  x~) = exeeuteda(xl , . . . ,  Xd) where (V r :  1 < r < d  : 
executedr (Xl , . - . ,  xr, lb~+l, . . ., lba) = 

i f  xr>lbr --~ execu tedr (x l , . . ' , x r - l , lbr+l , . - . , lbd)  A c o n d r ( x l , ' " , x r )  
D Xr =lbr A r > 1 --+ executedr_l(Xl,.. . ,xr.-1, lbr , . . . ,  Ibd) A condr (x l , ' " ,Xr )  
D x~=lbr A r = I  --+ condl(Xl) 

xr < lbr --+ ff  
endif ) 

A more detailed explanation is given in [8]. Note that  the recursive definition 
of predicate executed~ follows the whi le  dependences. If the space-time map- 
ping respects these dependences we can be sure that ,  during scanning, predicate 
executed never is evaluated at any point z before it was evaluated at z 's  prede- 
cessor. 

Termination Problem. A subtle communication scheme for detecting termina- 
tion in a distributed-memory model where only local communications exist was 
proposed in [8]. In this paper, shared memory is assumed and detecting termi- 
nation is simpler. 

The execution of a whi le  loop nest terminates when the outermost w h i l e  
loop has terminated and all instances of inner , b i l e  loops have terminated, too. 
To implement this, we use a shared global counter that  is incremented by every 



319 

tooth  in any dimension tha t  s tar ted its execution, and that  is decremented by 
every terminat ing tooth  in any dimension. Thus, the whole program terminates 
iff there are no active teeth at all, i.e., the counter has been reset to 0. 

A formalizat ion of this idea can be added to an imperat ive specification of 
executed such tha t  the calculation of terminated is hidden as a side effect of the 
masking function executed in the target  program (execr is an r-dimensional per- 
sistent array that  stores the value of executedr(xl , . . . ,  x~, lbr+l, . . . ,  lbd)). Func- 
tion executed is called for each scanned point in the approximate  execution do- 
main. 

executed(x1,. . . ,  Xd) =-- 
r := level(xl , . . . ,Xd)  ; 
i f  execs[x1,..., ~ ,  ~ - 1 ]  ^-~condr(xl , . . . ,  x,) then decr(count) endif  ; 
execr[xl , '" ,Xr] := execr[xl , . . . ,xr]  A condr(x i , . . . ,Xr)  ; 
do k := l+leve l (x l , - . . , xd )  to  d 

execk[xl,' ' ' , Xk] := exeCk-l[Xl,..., Xk-1] ̂  condk(Xl,..., Xk) ; 
i f  execk[x~,..., ~1 th .n  inc~(count) endif  

enddo ; 
barrier ; 
terminated := (count = O) ; 
r e t u r n  ( execd[Xl, ' ' ' ,  xa] ) 

where functions incr(count) and decr(count) increment and decrement count by 
1, respectively, condo() and executedoO must  be initialized to tt. The level of a 
point is defined as d minus the number  of trailing Ib coordinates. 

Case distinction by calculating the level above yields the code generation 
scheme for executed in Fig. 2. The generated code for executed in the case of 
program t~/is  as follows: 

function executed(wl,w2) : boolean 

if w2 > Othen 
if exec2[wl,w2--1] and not P2(Wl, w2) then decr(count) endif ; 
exec2[w~, w2] := ~xec~[~1, w~-l] and P2(w~, ~2) ; 

else if Wl>O then 

if execl[Wl--1] and not PI(Wl) then decr(count) endif ; 
exec~[~] := execl[wx--1] and P~(w~) ; 
exec~[w~, ~2] := exeel[~l] and P ~ ( ~ ,  ~2); 
if exec2[wl, w2] then iner(count) endif 

else /* Wl----W2---- 0 * /  
excelled] := P~(w~) ; 
i f  execl[wl] t hen  incr(eount) e n d i f  ; 
exec2Cwl, w2] := execlCwl] and P,(wl ,  w , ) ;  
i f  e~ec~[~,  w:] then  incKcount) endif  

endif ; 
barrier ; 
terminated := (count = O) ; 
r e t u r n  ( exec2[wl, w2] ) 
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Algorithm executed genera tor  
Input: 

�9 The d while  loop conditions. 
�9 The d loop counters ( x l , . . . ,  Xd) (become the arguments to executed). 

Output: Code implementing function executed  

generate( function e x e e u t e d ( x l , . . . , X d )  : boolean ) 
for r :=d downto 0 

if r > 1 then 
generatet 
generatel 

generatel 

end if 
for k := r + l  

generate( 

i f x r  >Othen) 
i f  e x e c r [ x l , . . . ,  xr-1, x r -  1] and not c o n d r ( X l , . . . ,  Xr) 
then decr(count) endif ) 
execr[xl ,  . . . , xr] := execr[xl ,  . . . , xr-a, x r - -  1] and 
c o n d r ( x , , . . . ,  xr) ) 

to d 
execk Ex l , . . . , Xk] := execk_ ~ [x l , . . . , Xk_l] and 
c o n d k ( x ~ , ' . .  ,Xk) ) 

generate( i f  e x e c k [ x l , . . . ,  ark] then  incr(count )  end i f  ) 
end for 
if r_> 1 then generate ( e l s e  ) else generate ( end i f  ) 

end for 
generate( barrier ) 
generate( t e rm ina t ed  := ( c o u n t  = O) ) 
generate( r e t u r n  ( execd[xa , . . . ,  Xd] ) ) 

Fig.  2. Algorithm executed  qenera tor for  automatic generation of the code for executed. 

s  1 .  T h e  i m p l e m e n t a t i o n  o f  t e r m i n a t e d  v ia  the  c o u n t e r s  is correc t .  

S k e t c h  o f  the  P r o o f .  T h e  following proper t ies  ensure tha t ,  at  a given t ime  s tep 
t ,  t e r m i n a t e d  is not  set to tt if  some w h i l e  loop i te ra t ion  has  not  t e rmina t ed  in 
the execut ion domain :  

- For every too th  in every d imens ion  c o u n t  is inc remented  once (at  its root )  
and  decremented  once (at  its t i p ) - - i n  this order.  Dur ing  execut ion every 
t oo th  contr ibutes  1 to the global  value of coun t ,  whereas  before the  s t a r t  
and after  t e rmina t ion  there is no cont r ibut ion  to coun t .  

- I f  there is at  least  one processor  evaluat ing  some e x e c u t e d r ( x l , . . . ,  z a )  (1 < 
r < d) to tt at  t ime  t then  the t o o t h  r a t  level r t h rough  (~1, �9 �9 ", zr ,  l b r + l , . . . ,  

lbd) has s ta r ted  bu t  not  yet finished. Thus,  at  this  poin t  in t ime,  v is con- 
t r ibu t ing  1 to  coun t .  

- T h e  barr ier  synchronisa t ion  ensures t ha t  all upda te s  to  c o u n t  occurred before 
the  processors read the  value of c o u n t .  Since the order  in which increments  
and decrements  take  place is not  relevant  to the  final value, all processors 
see the same  value. 

- Since every t oo th  wi th  some execut ing point  on it contr ibutes  1 to c o u n t  

and since there could not  have been more  decrements  t han  increments  c o u n t  

mus t  at  least have the  value 1, thus  prevent ing t e rmina t ion .  
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Remark. In data-parallel languages with the construct whilesomewhere, termi- 
nation detection by the counter scheme can be replaced by formulating the out- 
ermost loop on time as whilesomewhere(executedlevel(xl,... ' xd) )" 

3.2 Dependence  Analysis  

Let E be the statement calling executed in Fig 1. Dependences due to access 
to arrays execl and exec2 are one-to-one, corresponding to edges el and e2 in 
Figure 3. In contrast, dependences on S have to be approximated by sets because 
we cannot predict at compile-time which operations execute and which do not. 
Hence, in the case of dynamic control programs, elaborate dependence analyses 
have to be applied [5]. For instance, an analysis of program I~/tells that the 
source of the datum read by (S, Wl, w2) is 

i f  w2 _> 1 
t h e n  {(S, wl, w2-1)} 

i f  Wl >_ 1 
else t h e n  {<S, ~,  fl) l ~ + f i  = ~Vl - -  1, a >_ O, fl > O, a < wl} 

e l s e  {• 

(1) 

The first leaf of (1) is a singleton, meaning that if w2 > 1, only one operation 
can be the source of the flow of a[wl, w2-1] to (S, wlw2). In contrast, the second 
leaf is a non-singleton set of possible sources. The last leaf only contains J_, the 
"undefined" value, meaning that the read has no source in the given program. 
The two non-bottom leaves yield edges e3 and e4 in Figure 3. Similarly, edges e5 
and e6 correspond to memory-based, output and anti dependences respectively. 

To eliminate memory-based dependences, the input program may be con- 
verted into single-assignment form by applying the following rules: 

- Replace lhs expressions by an array subscripted by iteration vectors. 
- Replace rhs expressions by the result of the dataflow analysis (such as (1)): 

�9 replace singleton leaves by references to the array cells written by the 
corresponding operation, or by initial references if the leaf is {J-}, 

�9 replace non-singleton leaves by a call to a function last (defined later). 

Example 1. A single-assignment version of program ~ is: 

S: 

(V (W1,~)2) : Wl__~0Aw 2~_~0 :do 
begin 

i f  executed(w1, w2) 
then A[wl, w:] :--if  w2 > 1 then A[wl, w : - l ]  

e l s e  i f  wl > 1 then lastA,a(Wl, w2) 
else a[wl +w2 -- 1] 

if terminated then STOP 

end) 
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Edges Description Conditions 
el <E, w,, w2-1) -+ <E, w,, w2) w2 > 1 
e2 (E, wl - 1, 0> --+ (E, wl, 0) wl > 1 
e3 (S, Wl, w2--1) --+ (S, Wl,W2) w2_>1 
e4 {(S,c~,/3)1c~+/3 = w~+w2-1,o~>O, fl>O,o~<wx} --+ (S,w~,O) w~_>l, w2=O 
es {(S, a,fl)] o~+fl = wl+w2,o~>O, fl>_O,a<wl} --+ (S, wl,w2) w l > l  
e6 {(s, ~,Z)I ~ + Z - 1  = w~+~o2, ~_>0,Z >0,  ~ < w~} -~ (s, w~, ~0~) w1___1 

Fig. 3. Dependences in program NW. 

Predicate executed restores the flow of control [8, 9], and function last dynami- 
cally restores the flow of data. In other words, predicate executed cheeks whether 
the current loop iteration corresponds to an actual execution of statement S. 
Function last returns the value produced by the operation executed last (ac- 
cording to order <<), which wrote into memory cell a(wl +w2-1) .  Function last 
is similar to the C-function proposed by Cytron et al. [6], and implements the 
result of an array dataflow analysis since the returned value is the one produced 
by the last possible source that  was executed, or by the initial element of array 
a if no possible source was executed. An implementation for last is: 

f u n c t i o n  lastA,a(Wl,W2) : da tum 
do  c z : = w l - - 1  t o  0 s t e p  --1 

fl := w l - b w ~ - l - ~  
i f  exec2[., ~] then re turn  ( A [ . ,  ~] ) 

enddo 

r e t u r n  ( a[wlq-W2--l] ) 

Automatic Generation of Function last. In Figure 4, we propose an algorithm 
last_generator to generate automatically the code for function last. This algo- 
r i thm scans a given Z-po lyhedron / )  in opposite lexicographical order, uk (4) 
stores the upper (lower) bound on the kth coordinate of scanned operations and 
is equal to the floor (ceiling) of the first component of the projection of :D on 
the n - k  + 1 first dimensions, uk and lk can be computed by thanks to software 
such as PIP [7]. If the upper bound is undefined, then uk is set equal to the 
corresponding placeholder (Section 2). 

When the current point corresponds to an actual execution, then last returns 
the corresponding cell in array A (passed as a second argument to last_generator). 
If no scanned point corresponds to an executed operation, then a read from the 
original cell of array a is returned. 

Example2. For program WW, the first argument to lastgenerator is the non- 
bo t tom part of the second leaf of (1), i.e. {a, fll c~+fl = wl-1,  c~ > 0, f l>  0, a < wl}; 
so, n = 2. The remaining arguments are array A, the initial array expression 
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Algorithm last_.qenerator 
Input: 

�9 A Z-polyhedron 79 given by a system of affine constraints. 
�9 An array A. 
�9 An array expression e. 
�9 The loop counters w (become the arguments to last). 

Output:  Code implementing Function last. 

generate( f u n c t i o n  lastA,, ( w ) : da tum) 
let n be the dimension of l) 
f o r k  := 1 t o n  

compute lk := [min<< {ak , . . .  ,a,, Iot E :D}[1]] 
compute uk := [max<< { a k , . . . ,  an] Ot E :D}[1]J 
if uk = oo then uk := 6k 
if lk = uk then 

generate( ak := lk ) 
else 

generate( do ak := uk to  lk s t e p  -1 ) 
if k = n - 1  then 

generate( i f  execn[tr] t hen  r e t u r n  ( A [ (~ ] ) ) 
if lk ~ uk then 

generate( endde ) 
end for 
generate( r e t u r n  ( e ) ) 

Fig.  4. Algorithm last_generator for automatic generation of the code for last. 

e = a[wl+w2-1] ,  and the counters  of  the  loops surrounding the  call to last, i.c. 
w = (wl ,w2) .  For k = 0, min<< {(~,f l ) l  (a, fl) E D} = (0, W l + W 2 - 1 ) ,  hence 
l0 = 0. Symmetr ica l ly ,  max<< {(a ,  fl) l (a,  fl) E 79} = ( w l - 1 ,  w2), thus u0 = wa-1 .  
Hence the  bounds  of the  ou te rmos t  do loop. For k = 1, 

11 = n~n  {(fl)l (a ,  fl) E 79} = ( w l + w 2 - a - 1 )  

= 7 9 }  = 

Since ul  = 11, a s imple  ass ignment  to fl is genera ted  ins tead of an inner loop.  

3.3 Finding Space-Time Mappings 

Finding space- t ime  mapp ings ,  i.e. schedules and  processor mapp ings ,  is beyond  
the scope of this paper .  For more  detai ls  on the subject ,  the reader  is referred 
to [10]. 

I f  p r o g r a m  ~ is not  conver ted to s ingle-ass ignment  form,  then  a possible 
schedule for bo th  S and  executed, is: O((S, wi ,  w2) ) ----  3Wl + w2 + C. (C is some 
a rb i t r a ry  addi t ive  constant . )  A possible processor  m a p p i n g  is wl,  yielding a 
u n i m o d u l a r  space- t ime  mapp ing .  
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In the case of single-assignment form, getting rid of dependences es and 
e6 allows a faster schedule. The method proposed in [4] derives the following 
scheduling function (for both S and executed, as before): 0((S, wl, w2)) = Wl+W2. 
A possible processor mapping is also Wl. 

In both cases, the target code will have to scan all operations that  are really 
executed and avoid "holes". Figure 5 shows, on the left, a possible execution of 
program WW; black dots represent real executions and grey dots denote approx- 
imated operations. When mapping t = W l T W 2 , p  = W l  is applied (right), only 
three operations should be spawned at time step 3 and one (operation (3, 2)) 
should be skipped. Code generation is responsible for ensuring this [8]. 

4 
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Fig. 5. A given execution of Program WW (left) and the target execution domain (right) 
with mapping t = wl+w2,p = wl. 

3.4 C o d e  G e n e r a t i o n  

After applying the space-time mapping we must re-construct a target loop nest. 
For that purpose, we shall first present the target loops themselves according 
to standard techniques [10], then show how the body and the auxiliary func- 
tions executed and possibly last are reindexed according to [2], and finally solve 
implementational problems for the arrays exec. 

W i t h o u t  S i ng l e -Ass ignmen t .  With the space-time mapping shown above, 
the scanning of the target domain yields: 

do t := 0 w h i l e  ( not  terminated ) 
d o a l l  p : =  0 t o  

i f  executed(w1, w2) then a[wlq-W2] := a[wl+w2--1] 

Reindexing. Let T be the space-time transformation. It is defined by: t = 3w1+ 
w2, p = Wl, so its inverse T -1 is: wl=p ,  w2 = t -3p.  Let L be the subscripting 
function; subcript L(wl,  w2) is replaced by T ( L ( T - l ( t , p ) ) ) .  For instance, when 
L(wl,  w2) = (wl, w2-1) ,  then L ( T - l ( t , p ) )  = ( p , t - 3 p - 1 )  and eventually the 
new subscript is (3p + ( t - 3 p -  1), p) = ( t -  1, p). 
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Thus, executed(t,p) is derived from executed(wl,w2) in Section 3.1 by re- 
placing the array subscripts for execr by the result of T(L(T- I ( t , p ) ) ) ,  and by 
replacing all other occurrences of Wl, w2 by p, t - 3p ,  respectively. 

Memory Allocation. Since the  size of the arrays execr (for 1 < r < d) can grow 
dynamically, we must use dynamic data  structures instead of arrays. In general, 
for reducing memory requirements, we fold the time dimension of the arrays for 
exec~ according to the delay of accesses on them [2], and we bound the space 
dimensions by expressions w.r.t, time. 

In our concrete example, the longest delay of accesses on array exec2 is from 
time t to t ime t - l ,  i.e., 1. Thus, we may fold the first dimension of array exec2 
by modulo 2. The second dimension is bounded by p = wl = ( t -w2)~3 
[ t /3 ] .  Therefore, we have to insert the memory allocation statements exec2[t '/, 
2] := raanoc  ( [ t /3])  and f r e e  ( ( t - 1 )  7, 2) as the first and the penultimate 
statement of the body of executed, respectively. 

W i t h  S i n g l e - A s s i g m e n t .  The mapping presented in Section 3.3 is invertible 
(Wl = p, w2 = t - p ) ,  so program I~/becomes: 

program WW 
do t := 1 whi le  ( not  terminated) 

doall p := 0 to t--1 
i f  exec2[t,p] t h en  

A ( t , p ) : = i f  t - p - 1  > 1  then  A ( t - - l , p )  
else i f  p_> 1 t hen  last(p,t--p) else a(t--2) 

Functions executed and last have to be reindexed according to the space-time 
transformation: 

f u n c t i o n  last(w1, w2) 
do a : = W l - - 1  t o 0 s t e p - - 1  

j3 := wl+w2- -1 - -a  
if exec2[a, t3] then return ( A( o~+ ~ , ~  ) ) 

r e t u r n  ( a[wl+w2--1] ) 

executed also has to be reindexed as explained in 3.4. Similarly, dynamic alloca- 
tion is used as described in Paragraph 3.4. 

4 C o n c l u s i o n s  

Automatic  parallelization of dynamic control programs, e.g. including while 
loops, requires not only appropriate dependence analysis and scheduler, but 
an appropriate code generator, too. This paper proposed algorithms for this 
purpose. 

To eliminate memory-based dependences while coping with unpredictable 
data  flows, a new mechanism (function last) has been introduced and an algo- 
r i thm to generate the code implementing last has been proposed. Several other 
implementation schemes for last can be imagined, and thorough experiments are 
necessary to select the most effective one; the scheme presented in this paper is 
the simplest, most abstract one. 
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Scanning irregular non-dense execution domains requires some run-t ime tests, 
and thus incurs an execution overhead; it may  also yield unbalanced workloads 
on processors. Both properties mainly  depend on the application, and we expect 
tha t  parallelizing nests of uh•  loops will prove to be efficient only for some 
types of algorithms. 

On the other hand, we believe that  one of the main  drawbacks of current 
automat ic  parallelizers is their severe syntactical restrictions on input programs.  
The methods proposed in this paper  allow code generators in automat ic  paral- 
lelizers to accept a much wider range of programs than  current implementat ions 
do. 
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