
Loop Parallelization

Generation of Synchronous Code for Automatic
Parallelization of while Loops

Martin Griebl 1 and Jean-Franqois Collard 2

1Univemits Passau, FMI, Innstrage 33, D-94032 Passau, Germany.
Martin.Griebl@fmi.uni-passau.de

2 ENS Lyon, LIP, 46 AU4e dqtaiie, F-69364 Lyon Cedex 07, France.
Jean-Francois.Collard@lip.ens-lyon.fr

Abst rac t . Automatic parallelization of imperative programs has fo-
cused on nests of do loops with affine bounds and affine dependences,
because in this case execution domains and dependences can be precisely
known at compile-time. When dynamic control structures, such as while
loops, are used, existing methods for conversion to single-assignment
form and domain scanning are inapplicable. This paper gives an algo-
rithm to automatically generate parallel code, together with an algorithm
to possibly convert the program to single-assignment form.

1 I n t r o d u c t i o n

Automatic parallelization of imperative programs has focused on nests of do
loops with affine bounds and affine dependences [10], mainly because depen-
dences can then precisely be known at compile-time. Data or "memory-based"
dependences are due to reuse of memory cells, and thus are language- and
program-dependent, whereas dataflows or "value-based dependences" denote
transmissions of values and thus are algorithm-dependent. Memory-based de-
pendences can be eliminated if a memory cell is associated with each program
operation (the program is then in single-assignment form). Intuitively, cancelling
memory-based dependences allows to extract more parallelism, hence the inter-
est in automatic parallelization for algorithms to convert programs automatically
to equivalent single-assignment form. Then, parallelization through space-time
mapping boils down to finding a new coordinate system where some dimensions
correspond to t ime and the others to (virtual) processor coordinates. Code gen-
eration then consists of producing a program which scans the execution domain
in the new coordinate system,

However, using whi le loops and/or i f s introduces two main problems:

1. The flow of data is not precisely known at compile-time and must generally
be approximated, the ambiguity being resolved at run time. Thus, existing
algorithms for automatic conversion to single-assignment form fail.

2. The lack of regularity in execution domains of dynamic control programs
forbids scanning schemes to be entirely static. One needs a way of scanning
a conservative superset of the execution domain, and of checking on the fly
whether a given point corresponds to an actual execution.

316

This paper proposes solutions to both problems. Our assumed target machine
is some abstract shared-memory machine. Section 2 first gives some necessary
definitions. Section 3 gives the algorithms for code generation, which are the
topic of this paper.

2 D e f i n i t i o n s

Mathematical Definitions. The k-th element of a given vector x is denoted by
~[k]. Furthermore, << (<<) denotes the (strict) lexicographical order on such
vectors. "max,' denotes the maximum operator according to order <<. The
modulo operation is denoted by Z, and the true and false boolean values by tt
and if, respectively. A Z-polyhedron is the intersection of an integer lattice and
a convex real polyhedron [1].

Program Model. We shall restrict ourselves to the following program model:

- The only data structures are arrays of basic types, where array subscripts
are affine functions of the counters of surrounding loops and parameters.

- Basic statements are assignments to scalars or array elements.
- The only control structures for a static control program (SCP) are the se-

quence and the do loop; dynamic control programs (DCP) include, in addi-
tion, whi le or r e p e a t loop, and conditional i f . . t h e n . , e l s e constructs,
without restriction on predicates of whi le loops and i fs .

Statements and Their Instances. An operation is a dynamic instance of a (syn-
tactic) statement. The instance of a statement in a do loop nest is identified by
the statement 's name and the corresponding loop counter's values. The vector
of these values is called iteration vector.

While Loops. Since we also want to identify the operations specified by while
loops, we simply add an artificial counter to every while loop. (Note that some
variables may be used implicitly as counters, and that there exist algorithms to
detect such variables.) The initial value of every such artificial counter is some
arbitrary value lb (often 0), its step is 1, and its upper bound is not known.
Hereafter, we shall write while loops as: do w := Ib while (cond) S.

A nest of whi le loops that fits our program model is declared in program ~ :

program
G1 : do wl : = 0 w h i l e (P l (w l))
G2 : do w2 := 0 whi le (P2(wl ,w2))
S: a[wl+w2] := a[wl+w2-1]

The iteration vector is (wl, w2), thus an operation is identified by (S, wl, w2).
The execution domain is the set of values that the iteration vector takes in the
course of the execution. If the surrounding loops are only do loops, then the

317

execution domain is a finite 2~-polyhedron. Since we cannot predict statically
the flow of control of programs containing , h i l e loops, their execution domains
have to be approximated. The smallest possible approximate execution domain
of S in program ~ is the 2~-polyhedron D(S) = {(wl, w2)l (wl, w2) E 1~ 2, wl >
0, w2 > 0}. Dimensions of the approximate execution domain that correspond to
, h i l e loops are infinite, but only a finite subset of the infinite polyhedron is
executed at run time.

If there is at least one whi le loop not at the outermost level, the execution
domain is not convex. Together with its control dependences, it looks more like
a (possibly, multi-dimensional) comb (Figure 5a). The sequence of points along
a line of arrows in the execution comb--we call it a tooth---corresponds to the
execution of one entire , h i l e loop.

The maximal value that a , h i l e loop counter takes during program exe-
cution will be stored in a variable called a placeholder; its value is calculated
dynamically. For instance, let gl and 62 be the placeholders for wl and w2 in
program WW. Then, we can approximate the execution domain by { (wl, w2)10 <
wl < 61,0 < w2 < 62 } after the execution terminates.

Finally, note that unpredictable execution domains imply that da ta depen-
dences have to be approximated as well.

For now, we suppose that predicates P1 and P2 in program ~ do not depend
on array a, but only on wl, and wl and w2, respectively. This simplification
allows us to concentrate on code generation (the focus of this paper) without
having to deal with parallelization methods such as speculative execution [3].

Parallelization in the Polyhedron Model. A parallelization is a relaxation of the
execution order of the instances of S while preserving the dependences together
with the termination properties of the input program. Actually, the execution
order of whi le loop nests, such as program • , is over-constrained. To show this,
we proceed in several steps.

First, we apply a preprocessing step to the source program, in which we (1)
explicitely guard the loop body with a predicate executed and (2) add a boolean
variable terminated that stores the current global state of the execution. Then,
data dependence analysis and, optionally, conversion to single-assignment form
are applied. Based on these results, we derive a space-time mapping, i.e., we
calculate for every iteration when and where it shall be executed. Finally we
scan the space-time mapped index domains to generate the (parallel) target
loop nest. In the following subsections, we describe each of these steps in more
detail and demonstrate the problems that occur.

3 P a r a l l e l i z a t i o n P r o c e s s

3.1 C o n t r o l F low in . h i l e Loops

The flow of control in nests of while loops is less constrained than it may appear.
For instance, if P1 (0) evaluates to tt, then the program's semantics is not changed

318

if the operation PI(1) immediately follows P1 (0)--provided the input program
is correct, i.e. all , h i l e loops terminate and no fatal exception occurs.

More formally, program ~ is equivalent to the program in Figure 1.

E :
S:

(V (wl,w2) : wl > O, w2 _> 0 :do begin
i f executea[wl, w2)

then a[w, +w2] := a[wl +w2-- 1] endif ;
i f terminated then STOP endif

end)

Fig. 1. Program equivalent to program WW

In this recurrent form, the execution order is not over-specified anymore.
$TOP should be understood as a global immediate program stop. executed(w1, w2)
tests on the fly whether the current instance (operation) should execute or not;
executed(w1, w2) depends on some "previous" instances of this predicate, thus
implicitly giving some constraints on the execution order. As mentioned earlier,
terminated is a global, shared boolean scalar variable tha t stores the current
global execution status.

Predicate executed. The body of a nest of whi le loops (e.g., S in WW) is executed
at point x with level r, iff, for all points x' at level r ' < r whose coordinates
x~, �9 �9 �9 x r,' are identical to xl ," �9 xr,, respectively, all predicates of whi le loops
surrounding x' evaluate to tt. Formally, executed is defined recursively, where
executed at some level r means that the body of the loop at level r must be
executed--no mat ter whether it is a statement or another loop:

executed(x1,.. . , x~) = exeeuteda(xl , . . . , Xd) where (V r : 1 < r < d :
executedr (Xl , . - . , xr, lb~+l, . . ., lba) =

i f xr>lbr --~ execu tedr (x l , . . ' , x r - l , lbr+l , . - . , lbd) A c o n d r (x l , ' " , x r)
D Xr =lbr A r > 1 --+ executedr_l(Xl,.. . ,xr.-1, lbr , . . . , Ibd) A condr (x l , ' " ,Xr)
D x~=lbr A r = I --+ condl(Xl)

xr < lbr --+ ff
endif)

A more detailed explanation is given in [8]. Note that the recursive definition
of predicate executed~ follows the whi le dependences. If the space-time map-
ping respects these dependences we can be sure that , during scanning, predicate
executed never is evaluated at any point z before it was evaluated at z 's prede-
cessor.

Termination Problem. A subtle communication scheme for detecting termina-
tion in a distributed-memory model where only local communications exist was
proposed in [8]. In this paper, shared memory is assumed and detecting termi-
nation is simpler.

The execution of a whi le loop nest terminates when the outermost w h i l e
loop has terminated and all instances of inner , b i l e loops have terminated, too.
To implement this, we use a shared global counter that is incremented by every

319

tooth in any dimension tha t s tar ted its execution, and that is decremented by
every terminat ing tooth in any dimension. Thus, the whole program terminates
iff there are no active teeth at all, i.e., the counter has been reset to 0.

A formalizat ion of this idea can be added to an imperat ive specification of
executed such tha t the calculation of terminated is hidden as a side effect of the
masking function executed in the target program (execr is an r-dimensional per-
sistent array that stores the value of executedr(xl , . . . , x~, lbr+l, . . . , lbd)). Func-
tion executed is called for each scanned point in the approximate execution do-
main.

executed(x1,. . . , Xd) =--
r := level(xl , . . . ,Xd) ;
i f execs[x1,..., ~ , ~ - 1] ^-~condr(xl , . . . , x,) then decr(count) endif ;
execr[xl , '" ,Xr] := execr[xl , . . . ,xr] A condr(x i , . . . ,Xr) ;
do k := l+leve l (x l , - . . , xd) to d

execk[xl,' ' ' , Xk] := exeCk-l[Xl,..., Xk-1] ̂ condk(Xl,..., Xk) ;
i f execk[x~,..., ~1 th .n inc~(count) endif

enddo ;
barrier ;
terminated := (count = O) ;
r e t u r n (execd[Xl, ' ' ' , xa])

where functions incr(count) and decr(count) increment and decrement count by
1, respectively, condo() and executedoO must be initialized to tt. The level of a
point is defined as d minus the number of trailing Ib coordinates.

Case distinction by calculating the level above yields the code generation
scheme for executed in Fig. 2. The generated code for executed in the case of
program t~/is as follows:

function executed(wl,w2) : boolean

if w2 > Othen
if exec2[wl,w2--1] and not P2(Wl, w2) then decr(count) endif ;
exec2[w~, w2] := ~xec~[~1, w~-l] and P2(w~, ~2) ;

else if Wl>O then

if execl[Wl--1] and not PI(Wl) then decr(count) endif ;
exec~[~] := execl[wx--1] and P~(w~) ;
exec~[w~, ~2] := exeel[~l] and P ~ (~ , ~2);
if exec2[wl, w2] then iner(count) endif

else /* Wl----W2---- 0 * /
excelled] := P~(w~) ;
i f execl[wl] t hen incr(eount) e n d i f ;
exec2Cwl, w2] := execlCwl] and P,(wl , w ,) ;
i f e~ec~[~, w:] then incKcount) endif

endif ;
barrier ;
terminated := (count = O) ;
r e t u r n (exec2[wl, w2])

320

Algorithm executed genera tor
Input:

�9 The d while loop conditions.
�9 The d loop counters (x l , . . . , Xd) (become the arguments to executed).

Output: Code implementing function executed

generate(function e x e e u t e d (x l , . . . , X d) : boolean)
for r :=d downto 0

if r > 1 then
generatet
generatel

generatel

end if
for k := r + l

generate(

i f x r >Othen)
i f e x e c r [x l , . . . , xr-1, x r - 1] and not c o n d r (X l , . . . , Xr)
then decr(count) endif)
execr[xl , . . . , xr] := execr[xl , . . . , xr-a, x r - - 1] and
c o n d r (x , , . . . , xr))

to d
execk Ex l , . . . , Xk] := execk_ ~ [x l , . . . , Xk_l] and
c o n d k (x ~ , ' . . ,Xk))

generate(i f e x e c k [x l , . . . , ark] then incr(count) end i f)
end for
if r_> 1 then generate (e l s e) else generate (end i f)

end for
generate(barrier)
generate(t e rm ina t ed := (c o u n t = O))
generate(r e t u r n (execd[xa , . . . , Xd]))

Fig. 2. Algorithm executed qenera tor for automatic generation of the code for executed.

s 1 . T h e i m p l e m e n t a t i o n o f t e r m i n a t e d v ia the c o u n t e r s is correc t .

S k e t c h o f the P r o o f . T h e following proper t ies ensure tha t , at a given t ime s tep
t , t e r m i n a t e d is not set to tt if some w h i l e loop i te ra t ion has not t e rmina t ed in
the execut ion domain :

- For every too th in every d imens ion c o u n t is inc remented once (at its root)
and decremented once (at its t i p) - - i n this order. Dur ing execut ion every
t oo th contr ibutes 1 to the global value of coun t , whereas before the s t a r t
and after t e rmina t ion there is no cont r ibut ion to coun t .

- I f there is at least one processor evaluat ing some e x e c u t e d r (x l , . . . , z a) (1 <
r < d) to tt at t ime t then the t o o t h r a t level r t h rough (~1, �9 �9 ", zr , l b r + l , . . . ,

lbd) has s ta r ted bu t not yet finished. Thus, at this poin t in t ime, v is con-
t r ibu t ing 1 to coun t .

- T h e barr ier synchronisa t ion ensures t ha t all upda te s to c o u n t occurred before
the processors read the value of c o u n t . Since the order in which increments
and decrements take place is not relevant to the final value, all processors
see the same value.

- Since every t oo th wi th some execut ing point on it contr ibutes 1 to c o u n t

and since there could not have been more decrements t han increments c o u n t

mus t at least have the value 1, thus prevent ing t e rmina t ion .

321

Remark. In data-parallel languages with the construct whilesomewhere, termi-
nation detection by the counter scheme can be replaced by formulating the out-
ermost loop on time as whilesomewhere(executedlevel(xl,... ' xd))"

3.2 Dependence Analysis

Let E be the statement calling executed in Fig 1. Dependences due to access
to arrays execl and exec2 are one-to-one, corresponding to edges el and e2 in
Figure 3. In contrast, dependences on S have to be approximated by sets because
we cannot predict at compile-time which operations execute and which do not.
Hence, in the case of dynamic control programs, elaborate dependence analyses
have to be applied [5]. For instance, an analysis of program I~/tells that the
source of the datum read by (S, Wl, w2) is

i f w2 _> 1
t h e n {(S, wl, w2-1)}

i f Wl >_ 1
else t h e n {<S, ~, fl) l ~ + f i = ~Vl - - 1, a >_ O, fl > O, a < wl}

e l s e {•

(1)

The first leaf of (1) is a singleton, meaning that if w2 > 1, only one operation
can be the source of the flow of a[wl, w2-1] to (S, wlw2). In contrast, the second
leaf is a non-singleton set of possible sources. The last leaf only contains J_, the
"undefined" value, meaning that the read has no source in the given program.
The two non-bottom leaves yield edges e3 and e4 in Figure 3. Similarly, edges e5
and e6 correspond to memory-based, output and anti dependences respectively.

To eliminate memory-based dependences, the input program may be con-
verted into single-assignment form by applying the following rules:

- Replace lhs expressions by an array subscripted by iteration vectors.
- Replace rhs expressions by the result of the dataflow analysis (such as (1)):

�9 replace singleton leaves by references to the array cells written by the
corresponding operation, or by initial references if the leaf is {J-},

�9 replace non-singleton leaves by a call to a function last (defined later).

Example 1. A single-assignment version of program ~ is:

S:

(V (W1,~)2) : Wl__~0Aw 2~_~0 :do
begin

i f executed(w1, w2)
then A[wl, w:] :--if w2 > 1 then A[wl, w : - l]

e l s e i f wl > 1 then lastA,a(Wl, w2)
else a[wl +w2 -- 1]

if terminated then STOP

end)

322

Edges Description Conditions
el <E, w,, w2-1) -+ <E, w,, w2) w2 > 1
e2 (E, wl - 1, 0> --+ (E, wl, 0) wl > 1
e3 (S, Wl, w2--1) --+ (S, Wl,W2) w2_>1
e4 {(S,c~,/3)1c~+/3 = w~+w2-1,o~>O, fl>O,o~<wx} --+ (S,w~,O) w~_>l, w2=O
es {(S, a,fl)] o~+fl = wl+w2,o~>O, fl>_O,a<wl} --+ (S, wl,w2) w l > l
e6 {(s, ~,Z)I ~ + Z - 1 = w~+~o2, ~_>0,Z >0, ~ < w~} -~ (s, w~, ~0~) w1___1

Fig. 3. Dependences in program NW.

Predicate executed restores the flow of control [8, 9], and function last dynami-
cally restores the flow of data. In other words, predicate executed cheeks whether
the current loop iteration corresponds to an actual execution of statement S.
Function last returns the value produced by the operation executed last (ac-
cording to order <<), which wrote into memory cell a(wl +w2-1) . Function last
is similar to the C-function proposed by Cytron et al. [6], and implements the
result of an array dataflow analysis since the returned value is the one produced
by the last possible source that was executed, or by the initial element of array
a if no possible source was executed. An implementation for last is:

f u n c t i o n lastA,a(Wl,W2) : da tum
do c z : = w l - - 1 t o 0 s t e p --1

fl := w l - b w ~ - l - ~
i f exec2[., ~] then re turn (A [. , ~])

enddo

r e t u r n (a[wlq-W2--l])

Automatic Generation of Function last. In Figure 4, we propose an algorithm
last_generator to generate automatically the code for function last. This algo-
r i thm scans a given Z-po lyhedron /) in opposite lexicographical order, uk (4)
stores the upper (lower) bound on the kth coordinate of scanned operations and
is equal to the floor (ceiling) of the first component of the projection of :D on
the n - k + 1 first dimensions, uk and lk can be computed by thanks to software
such as PIP [7]. If the upper bound is undefined, then uk is set equal to the
corresponding placeholder (Section 2).

When the current point corresponds to an actual execution, then last returns
the corresponding cell in array A (passed as a second argument to last_generator).
If no scanned point corresponds to an executed operation, then a read from the
original cell of array a is returned.

Example2. For program WW, the first argument to lastgenerator is the non-
bo t tom part of the second leaf of (1), i.e. {a, fll c~+fl = wl-1, c~ > 0, f l> 0, a < wl};
so, n = 2. The remaining arguments are array A, the initial array expression

323

Algorithm last_.qenerator
Input:

�9 A Z-polyhedron 79 given by a system of affine constraints.
�9 An array A.
�9 An array expression e.
�9 The loop counters w (become the arguments to last).

Output: Code implementing Function last.

generate(f u n c t i o n lastA,, (w) : da tum)
let n be the dimension of l)
f o r k := 1 t o n

compute lk := [min<< {ak , . . . ,a,, Iot E :D}[1]]
compute uk := [max<< { a k , . . . , an] Ot E :D}[1]J
if uk = oo then uk := 6k
if lk = uk then

generate(ak := lk)
else

generate(do ak := uk to lk s t e p -1)
if k = n - 1 then

generate(i f execn[tr] t hen r e t u r n (A [(~]))
if lk ~ uk then

generate(endde)
end for
generate(r e t u r n (e))

Fig. 4. Algorithm last_generator for automatic generation of the code for last.

e = a[wl+w2-1] , and the counters of the loops surrounding the call to last, i.c.
w = (wl ,w2) . For k = 0, min<< {(~,f l) l (a, fl) E D} = (0, W l + W 2 - 1) , hence
l0 = 0. Symmetr ica l ly , max<< {(a , fl) l (a, fl) E 79} = (w l - 1 , w2), thus u0 = wa-1 .
Hence the bounds of the ou te rmos t do loop. For k = 1,

11 = n~n {(fl)l (a , fl) E 79} = (w l + w 2 - a - 1)

= 7 9 } =

Since ul = 11, a s imple ass ignment to fl is genera ted ins tead of an inner loop.

3.3 Finding Space-Time Mappings

Finding space- t ime mapp ings , i.e. schedules and processor mapp ings , is beyond
the scope of this paper . For more detai ls on the subject , the reader is referred
to [10].

I f p r o g r a m ~ is not conver ted to s ingle-ass ignment form, then a possible
schedule for bo th S and executed, is: O((S, wi , w2)) ---- 3Wl + w2 + C. (C is some
a rb i t r a ry addi t ive constant .) A possible processor m a p p i n g is wl, yielding a
u n i m o d u l a r space- t ime mapp ing .

324

In the case of single-assignment form, getting rid of dependences es and
e6 allows a faster schedule. The method proposed in [4] derives the following
scheduling function (for both S and executed, as before): 0((S, wl, w2)) = Wl+W2.
A possible processor mapping is also Wl.

In both cases, the target code will have to scan all operations that are really
executed and avoid "holes". Figure 5 shows, on the left, a possible execution of
program WW; black dots represent real executions and grey dots denote approx-
imated operations. When mapping t = W l T W 2 , p = W l is applied (right), only
three operations should be spawned at time step 3 and one (operation (3, 2))
should be skipped. Code generation is responsible for ensuring this [8].

4

31

2t

. . . . �9 0

P

| @ �9 @

t

1 2 ~ 4 5 6 7 8

Fig. 5. A given execution of Program WW (left) and the target execution domain (right)
with mapping t = wl+w2,p = wl.

3.4 C o d e G e n e r a t i o n

After applying the space-time mapping we must re-construct a target loop nest.
For that purpose, we shall first present the target loops themselves according
to standard techniques [10], then show how the body and the auxiliary func-
tions executed and possibly last are reindexed according to [2], and finally solve
implementational problems for the arrays exec.

W i t h o u t S i ng l e -Ass ignmen t . With the space-time mapping shown above,
the scanning of the target domain yields:

do t := 0 w h i l e (not terminated)
d o a l l p : = 0 t o

i f executed(w1, w2) then a[wlq-W2] := a[wl+w2--1]

Reindexing. Let T be the space-time transformation. It is defined by: t = 3w1+
w2, p = Wl, so its inverse T -1 is: wl=p , w2 = t -3p. Let L be the subscripting
function; subcript L(wl, w2) is replaced by T (L (T - l (t , p))) . For instance, when
L(wl, w2) = (wl, w2-1) , then L (T - l (t , p)) = (p , t - 3 p - 1) and eventually the
new subscript is (3p + (t - 3 p - 1), p) = (t - 1, p).

325

Thus, executed(t,p) is derived from executed(wl,w2) in Section 3.1 by re-
placing the array subscripts for execr by the result of T(L(T- I (t , p))) , and by
replacing all other occurrences of Wl, w2 by p, t - 3p , respectively.

Memory Allocation. Since the size of the arrays execr (for 1 < r < d) can grow
dynamically, we must use dynamic data structures instead of arrays. In general,
for reducing memory requirements, we fold the time dimension of the arrays for
exec~ according to the delay of accesses on them [2], and we bound the space
dimensions by expressions w.r.t, time.

In our concrete example, the longest delay of accesses on array exec2 is from
time t to t ime t - l , i.e., 1. Thus, we may fold the first dimension of array exec2
by modulo 2. The second dimension is bounded by p = wl = (t -w2)~3
[t /3] . Therefore, we have to insert the memory allocation statements exec2[t '/,
2] := raanoc ([t /3]) and f r e e ((t - 1) 7, 2) as the first and the penultimate
statement of the body of executed, respectively.

W i t h S i n g l e - A s s i g m e n t . The mapping presented in Section 3.3 is invertible
(Wl = p, w2 = t - p) , so program I~/becomes:

program WW
do t := 1 whi le (not terminated)

doall p := 0 to t--1
i f exec2[t,p] t h en

A (t , p) : = i f t - p - 1 > 1 then A (t - - l , p)
else i f p_> 1 t hen last(p,t--p) else a(t--2)

Functions executed and last have to be reindexed according to the space-time
transformation:

f u n c t i o n last(w1, w2)
do a : = W l - - 1 t o 0 s t e p - - 1

j3 := wl+w2- -1 - -a
if exec2[a, t3] then return (A(o~+ ~ , ~))

r e t u r n (a[wl+w2--1])

executed also has to be reindexed as explained in 3.4. Similarly, dynamic alloca-
tion is used as described in Paragraph 3.4.

4 C o n c l u s i o n s

Automatic parallelization of dynamic control programs, e.g. including while
loops, requires not only appropriate dependence analysis and scheduler, but
an appropriate code generator, too. This paper proposed algorithms for this
purpose.

To eliminate memory-based dependences while coping with unpredictable
data flows, a new mechanism (function last) has been introduced and an algo-
r i thm to generate the code implementing last has been proposed. Several other
implementation schemes for last can be imagined, and thorough experiments are
necessary to select the most effective one; the scheme presented in this paper is
the simplest, most abstract one.

326

Scanning irregular non-dense execution domains requires some run-t ime tests,
and thus incurs an execution overhead; it may also yield unbalanced workloads
on processors. Both properties mainly depend on the application, and we expect
tha t parallelizing nests of uh• loops will prove to be efficient only for some
types of algorithms.

On the other hand, we believe that one of the main drawbacks of current
automat ic parallelizers is their severe syntactical restrictions on input programs.
The methods proposed in this paper allow code generators in automat ic paral-
lelizers to accept a much wider range of programs than current implementat ions
do.

Acknowledgments

Thanks for the support by the German-French research exchange program P R O -
C O P E , the DFG project RecuR, the CNRS program PRS, P R C / M R E contract
ParaDigme, and the D R E T contract 91/1180.
Many thanks to Nils Ellmenreich for a careful reading and to Chris Lengauer
and Gil Utard for the perusal and fruitful comments on this paper.

References

1. C. Ancourt. Gdndration automatique de codes de transfert pour multiprocesseurs
mdmoires locales. PhD thesis, Univ. of Paris 6, Paris. March 1990.

2. J.-F. Collard. Code generation in automatic parallelizers. In C. Girault, editor,
Proc. of the Int. Conf. on Applications in Parallel and Distributed Comp., IFIP
W. G 10.3, pages 185-194, Caracas, Venezuela. North Holland, April 1994.

3. J.-F. Collard. Automatic parallelization of while-loops using speculative execu-
tion. Int. J. Parallel Programming, 1995. To appear. Earlier version: Proc. 1994
Scalable High Performance Comp. Conf., pages 429-436. IEEE, May 1994.

4. J.-F. Collard and P. Feautrier. A method for static scheduling of dynamic control
programs. Tech. Report 94-34, LIP, Ecole N. S. de Lyon. December 1994.

5. J.-F. Collard, D. Barthou and P. Feautrier. Fuzzy array dataflow analysis. In
Proc. of 5th ACM SIGPLAN Syrup. on Principles and Practice of Parallel Prog..
Santa Barbara, CA. July 1995.

6. R. Cytron et al. An Efficient Method of Computing Static Single Assignment
Form. In Proc. of 16th ACM Syrup. on Principles of Programming Languages,
pages 25-35. January 1989.

7. P. Feautrier. Parametric integer programming. RAIRO Recherche Opdrationnelle,
22:243-268, September 1988.

8. M. Griebl and C. Lengauer. On scanning space-time mapped wh• loops. In
B. Buchberger and J. Volkert, editors, Parallel Processing: CONPAR 94 - VAPP
VI, LNCS 854, pages 677-688. Springer-Verlag, 1994.

9. M. Griebl and C. Lengauer. On the parallelization of loop nests containing
while loops. In N. Mirenkov, editor, Proc. Aizu Int. Syrup. on Parallel Al-
gorithm/Architecture Synthesis (pAs'95), pages 10-18, Aizu-Wakamatsu, Japan.
IEEE, March 1995.

I0. C. Lengauer. Loop parallelization in the polytope model. In E. Best, editor, CON-
CUR'93, LNCS 715, pages 398-416. Springer-Verlag, 1993.

