
C O N S I S T E N T  T E R M  M A P P I N G S ,  

T E R M  P A R T I T I O N S ,  A N D  I N V E R S E  R E S O L U T I O N  

SHAN HWEI NIENHUYS-CHENG (*) PETER A. FLACH (**) 

(*) Erasmus University, POBox 1738, 3000 DR Rotterdam, Netherlands 

(**) Tilburg University, POBox 90153, 5000 LE Tilburg, Netherlands. Email: flach@kub.nl. 

Abstract 

We formalize the notion of inverse substitution, used in the context of inverse resolution, by 

means of consistent term mappings. An inverse substitution from a clause to a more general 

clause can also be characterized by means of a term partition. We can generate clauses more 

general than a given clause by taking an admissible subset of its term occurrences, and 

constructing a term partition of this subset. We show that these term partitions can be partially 

ordered. This ordering coincides with the generality of the induced clauses. Similar partitions 

have been used by Muggleton and Buntine for describing their absorption operator. We show 

that their absorption algorithm is incomplete, and we give an alternative, complete algorithm, 

based on our definitions of admissible subset and term partition. We show that under certain 

conditions, clauses generated by absorption are incomparable with respect to generality. 

Finally, we relate this to a recent result about least general absorption obtained by Muggleton. 

Keywords Inverse resolution, absorption, substitution. 

1. Introduction 

Muggleton and Buntine (1988) introduced inverse resolution in machine learning. Operators 

like absorption and intra-construction are used to generalize given first-order clauses, and to 

invent new predicates. They implement the absorption operator in a system GIGOL such that 



362 

for given clause C and positive literal O1, 02 can be found as the resolvent of O1 and C2. They 

present also an algorithm, which we call MB-absorption, to find C2 non-deterministically. They 

consider a subset TP' of the set of all term occurrences in Cv-C1. This subset is partitioned in 

blocks. Every block looks like 

B= { (r,p 1) ..... (r,pn) }u{ (s,ql) ..... (s,qm) } 

where (r,pi) is a term occurrence in C and (s,qj) is a term occurrence of ~C1. Furthermore, 

there is a substitution 0t from ~C1 which brings s to r. Every such block corresponds to a new 

variable in C2. That means, all the terms (r,pi) and (s,qj) are changed to a new variable. To 

understand what this algorithm can do or cannot do, we give a few examples. 

(i) Let CI=P(x), C=Q(v,g(v)) and C2=Q(v,g(v))v~P(h(v)). Although C is the 

resolvent of C1 and C2, yet we cannot find C2 with MB-absorption. A block which contains the 

term occurrence of x from C1 has to correspond to a variable. It cannot be changed to h(v). 

Hence, MB-absorption is incomplete: it does not find all C2 such that C is the resolvent of C1 

and C2. 

(il3 Another example of the incompleteness of MB-absorption: let Cl=P(x,y) ,  

C=Q(u,f(w)) and C2=Q(u,f(w))v~P(u,u). It is clear that C is the resolvent of C1 and C2. On 

the other hand, we cannot find C2 with MB-absorption. In that algorithm, the term occurrences 

(s,qj) from C1 in a block have to be the same term s. Here x, y from C1 are different but they 

have to be in the same block in order to go to the same variable u in C2. 

(iii) Let C=Q(f(a),f(b)), Cl=P(f(u),f(v)), then C2=Q(x,y)v~P(x,y) can be constructed 

by MB-absorption if we define 01={u/a, v/b}. The resolvent of C1 and C2 is Q(f(u),f(v)), 

which is more general than C. Thus, MB-absorption is also unsound: It constructs C2 such that 

C is not the resolvent of C1 and C2. 

Besides the incompleteness and unsoundness of the MB-algorithm there are still the 

following questions: 

• What kind of subsets of terms are used for partitions and which partitions are allowed 

for a given subset? 

• Different partitions induce different clauses. Is it possible to see that one induced 

clause is more general than another, just by comparing the associated partitions? 

To improve the MB-algorithm and to answer the two questions above we need a formal 

basis so as to discuss problems and prove theorems easily and more precisely. To this end, we 

introduce consistent term mappings in section 2. A consistent term mapping is defined on a 

subset of all term occurrences in a clause. A term occurrence is identified not only by the term 

but also by the position where this term occurs. In fact the position determines the term in the 

clause and we can use positions to prove several properties and theorems. A consistent term 

mapping has the effect of replacing a term occurrence in a clause by new ones and thus induces 



363 

a new clause. We can also formulate substitutions and inverses of  substitutions as special 

consistent term mappings and thus we have generalized these two concepts. The generalizations 

go beyond these aspects. For example, a substitution is defined on variables, now we can 

consider a consistent mapping which coincides with this substitution in variables but has a 

different domain. The flexibility of domains makes many mathematical formulations and proofs 

possible and easier. Consistent term mappings have been introduced (under the name 

consequent functions) in a report by the first author (Nienhuys-Cheng, 1990), which examines 

in more detail the properties of consistent term mappings in general. 

In section 3 we consider partitions which are defined on some subsets of term 

occurrences in a clause. Such a partition induces a more general clause by constructing an 

inverse substitution with respect to this partition. We can compare two partitions by an order 

relation. This order relation between partitions coincides with the generality relation between the 

induced clauses. The advantages of comparing term partitions instead of clauses is that.we do 

not have to construct the induced clauses and the substitutions explicitly. 

In section 4 we apply the theory in the first two sections to absorption. The problem with 

MB-absorption is that they consider Cv~C1 when they want to construct C2 and they 

distinguish the term occurrences from C and from C1. This approach is not general enough to 

construct all C2's. Our approach considers first a fixed substitution 01 and then Cv~C101 as a 

whole, thus we can apply the theory of section 3 about partitions which are based on one clause 

(i.e. Cv~C101) without taking into account which term occurrences comes from C and which 

ones comes from C1. Thus we establish a new algorithm. If we let 01 change, then we have all 

possible C2's. 

However, if we do consider Cv~C101 as combination of C and ~C101, we can compare 

C2's with respect to different 0 l'S by using C as a bridge. If C2 is induced on the basis of 

Cv~C101 and C2' is induced on the basis of Cv-C101', then a substitution from C2 to C2' 

implies that 01=01 ' under not very constraining conditions. Thus for a fixed substitution 01, 

we can build a partial ordering of C2's on Cv~C10t according to their generalities. For 

different 01's, the C2's are incomparable. The theorem about comparing C2's with respect to 

different 01's has as a corollary a result of (Muggleton, 1990). 

For the sake of brevity, we omk most proofs of theorems; the interested reader is referred 

to (Nienhuys-Cheng, 1990). 



364 

2 .  Consistent term mappings 

In this paper we use a language of first order logic. The constants are denoted by a, b, c .... and 

the variables are denoted by x, y, z, u, v, w . . . . .  The letters P, Q, R . . . .  are used to denote 

predicates and the letters f, g, h .... are used to denote functions. A term is either simple, i.e. a 

constant or variable, or compound which has the form of f(tl ,  t2 ... . .  tn) where ti's are terms 

and f is n-ary. An atom has the form of P(tl .. . . .  tn) where P is an n-ary predicate and ti's are 

terms. The negation of an atom has the form ~M where M is an atom and we call an atom or the 

negation of an atom a literal. A clause has the form LlvL2v. . .vLn where every Li is a literal. 

2.1 Term occurrences 

Let P(x,y) be a given clause. A mapping which maps x to f(u) and y to f(u) can be used to 

denote the action of substituting x and y in this clause both by f(u). The result is P(f(u),f(u)). I f  

we want to do this action reversely, the function to map f(u) to x or y is not enough and we 

have to specify that the first f(u) is mapped to x and the second f(u) is mapped to y. Thus we 

need to define positions of terms. This notation is also used in (Plotkin, 1970; Muggleton & 

Buntine, 1988). 

Definition. A position is a sequence <nl, n2 ..... nj> of positive integers. Let X be a term, 

literal or a non-unit clause. We use <> to denote the position of X related to itself. I f  

X = L l v L 2 . . . v L n ,  n_>2 is a clause, then <i> is used to denote the position of  Li in X. I f  

Y(t l  ..... tn) is a term or a literal in X with position <Pl,P2 ..... Pk>, then ti has the position 

<Pl,P2 ..... pk,i>. A term occurrence in X is a pair (t,p) which is used to denote the term t found 

at position p in X. 

For example, i f  X=P(f(x),y)vQ(f(x)),  the position of P(f(x),y) is <1>, the position of y in 

P(f(x),y) is <2> but in X is <1,2>. 

Notice that in one term or clause the position determines the term occurrence completely. 

I f  (t,p) and (s,q) are term occurrences in X where P=<Pl . . . . .  Pk> and q=<Pl ..... Pk,ql ..... qj>, 

then in position q'=<ql ... . .  qk> of t we find the term s, i.e. (s,q') is a term occurrence in t. In 

this situation (s,q) is called a subterm occurrence of (t,p) and we denote the relation by 



365 

(t,p)~(s,q). We also say that p is a subsequence of q, and we can use q-p to denote q' and pq' 

to denote q. If p=q, then (t,p)=(s,q); i f q  is longer than p, then (s,q) is called aproper subterm 

occurrence of  (t,p), denoted by (t,p)>(s,q). Notice that a variable or a constant occurrence has 

longest position specification because they do not have proper subterm occurrences. 

2.2  Consistent term mappings 

If  a clause C is given, it is easy to construct the set T(C) of  all term occurrences of C. We can 

ask the following reverse question: what kind of set K of pairs of term and position (t,p) can be 

used to construct a clause C which has K as a subset of  T(C)? For example, the set 

K={(f (x ,g(y)) ,< l>) ,  (h(y),<2>), (g(y),<l ,2>} can be used to construct a clause 

P(f(x,g(y)) ,h(y))  for  a 2-ary predicate P. A set K'={(f(x ,g(y)) ,<l>) ,  (h(y),<2>), 

(k(y),<l,2>)) cannot be used to construct a clause because <1> and <1,2> are nested but in 

position <2> of  f(x,g(y)) is not k(y). In a way we can say a new clause can be constructed only 

if we can glue the terms together so that the terms coincide if the positions coincide. For a given 

clause C, we can also replace some term occurrences by new term occurrences and hence 

construct a new clause. For this purpose we define consistent term mappings. 

Definition. An abstract term occurrence is a pair of  term and position (t,p) which is not yet 

associated to a special clause. For a given clause C, a mapping 0 from a subset of T(C) to a set 

of  abstract term occurrences is called consistent term mapping (abbreviated as CTM) i f  the 

following condition is satisfied: 

1) For every (t,p) in the domain of 0, (t,p)0=(s,p). That is to say 0 preserves positions. 

2) I f  (t,p) and (s,q) are in the domain and (t,p)>(s,q), then (t,p)0>_.(s,q)0. That is, if 

(t,p)0=(t',p) and (s,q)0=(s',q), then in t' we find s' in position q-p. 

We say that a CTM has minimal set as domain, if for every two different (t,p), (s,q) in the 

domain, p is not a subsequence of q and q is not a subsequence of p. In other words, one is not 

a subterm occurrence of the other. If we have a CTM 0 defined on {(tl,Pl) ..... (tn,Pn)} a n d  

(ti,Pi)0=(ti',Pi) for all i, we can denote this mapping also by {(tl/tl',Pl) ..... (tn/tn',Pn)}. Such a 

CTM with minimal domain can be used to construct a new clause. We just replace every (ti,Pi) 

in the original clause by (ti',Pi). Because Pi is not a subsequence of pj for different i, j, the 

replacement of such term occurrences do not interfere with each other. We can consider 

construct ion of  new clauses also for more general CTM's. For  example,  let 

C=P(f(g(u),v),g(u)) and the CTM be {(f(g(u),v)/k(x,y),<l>)}, then the new clause is 

C'=P(k(x,y),g(u)). We can also consider C' to be the induced clause by a CTM with bigger 



366 

domain, namely, {(f(g(u),v)/k(x,y),<l>), (g(u)/x,<l,l>)} because in <1,1> of  C is x and in 

<1,1> of  C is g(u). A CTM {(g(u)/x,<l,l>)] induces a different clause P(f(x,v),g(u)). 

Theorem 1. Let 0 be a CTM defined on a subset T of T(C). Let TO be the set of images of 0. 

Then there is a subset S of T which is minimal and 0 restricted to S induces a clause C such 

that T(C')DT0. 

Proof .  Let  S be the subset of T which consists of occurrences with shortest position 

specification, i.e. (t,p)E S iff there is no other (t',p') in T such that (t',p')>(t,p). For every (t,p) 

in S, we replace (t,p) in C by (t,p)0. The result is a clause C'. The proof proceeds by showing 

that every (t,p)0 for (t,p) in T is aterm occurrence in C'. 

From now on we use CO for the clause C' defined as in this theorem and we say it is induced 

by 0. Notice that the inverse 0 -1 of a CTM 0 is also a CTM. Thus, if C0=C', then C=C'0 -1. 

This theorem tells us every CTM can be reduced to a CTM with minimal domain. Why not 

define CTM's with the restriction of minimal domains? In following sections we compare two 

clauses induced by different mappings. There we need to consider CTM's with bigger 

domains. Although we can derive many properties about CTM's in general (Nienhuys-Cheng, 

1990), here we pay attention to two special kinds of  CTM's: substitutions and inverse 

substitutions, and CTM's which induce the same clauses as them. 

2 .3  Subst i tut ions  and inverse subst i tut ions 

Let C be a clause. A substitution 0 from C is a CTM defined on the set of all variable 

occurrences which maps the same variable to the same term. That is to say: if (v,p)0=(t,p) and 

(v,q)0=(t',q), then t=t'. A substitution induces a mapping defined on the set of all variables. 

For convenience we use 0 also for this mapping and we write (v,p)0=(v0,p). We define 

substitution with domain on all variable'o~currences for the convenience of  term partition in the 

following section. Under this definition a variable can also be mapped to itself. We use often 

{Vl]tl, v2]t2 .... Vn/tn} to denote a substitution where v/v can be omitted if we want. If 0 is a 

substitution, then the inverse 8 -1 of 0 is called inverse substitution. We can define inverse 

substitution without first considering the existence of a substitution. A CTM c defined on a 

subset of T(C) for a clause C is an inverse substitution iff the following conditions are satisfied: 

the domain is minimal; the images are variable occurrences; if (t,p)c=(v,p) and (t',q)c=(v,q), 

then t=t'; for every variable occurrence (w,q) of C, there is a (t,p) in the domain of cr such that 

(t,p)>(w,q). The last condition guarantees that the inverse o "--1 of  c is defined on all variable 



367 

occurrences, to ensure that the inverse of an inverse substitution is a substitution. Notice that 

both substitutions and inverse substitutions have minimal domains. A substitution 0 from C can 

be extended to a CTM 0 with maximal domain, i.e. T(C). We define (t,p)O=(t',p) where t' is 

obtained by replacing all variable occurrences in t by their images. An inverse substitution (r 

from C can also be extended to a CTM (r with a maximal domain. If (t,p) is in T(C) and there is 

a (s,q) in the domain of  (~ such that (t,p)>(s,q), then define (t,p)cr=(t',p) where t' is obtained 

by replacing all subterm occurrences in (t,p) which are also in the domain by their image 

variable occurrences. If (t,p) in T(C) contains no element from the domain of  (r as subterm 

occurrence and is also not a subterm occurrence of such an element, then (t,p)~=(t,p). 

There are still other extensions of  a substitution which have domains between the 

maximal domain and the Original domain. All such extensions induce the same clause as the 

original substitution. In fact these are not the only CTM's which induce the same clause. For 

example, consider C=P(g(f(x)),y) and a substitution 0={x/h(u,v)}. It induces the clause 

C'=P(g(f(h(u,v)),y). A CTM defined by {f(x)/f(h(u,v)),<l,l>} induces the same clause. With 

these ideas in mind we can prove theorem 2 and 3. Theorem 3 is used to prove theorem 5. 

Theorem 2. Let ~t be a substitution from C to CI.t and ~ be the maximal extension of Ix 

defined on T(C). Let 0 be another CTM on a subset T of  T(C) which is the same as Id, restricted 

to T. Furthermore, suppose that for every variable occurrence (v,q) in T(C), there is a (t,p) in 

T such that (t,p)_>(v,q), then 0 induces also Clx, i.e. C~t=C0. 

Theorem 3. Let I~ be an inverse substitution from C and it induces C~t. Let.~ be the maximal 

extension of  Ix. If 0 is a CTM, defined on a subset T of T(C) which is the same as 1~ restricted 

to T, and for every (s,q) in the domain of I~ there is a (t,p) in T such that (t,p)>(s,q), then 

C~.=CO. 

3. Term partitions and their comparisons 

In this paper the role of  inverse substitutions is important because we want to generalize 

clauses. We can divide the domain of an inverse substitution into a partition according to the the 

image variables. For example, for P(f(x),g(f(x)),h(x)) we can define inverse substitution 

{(f(x)/v,<l>), (f(x)/v,<2,1>), (h(x)/w,<3>)} and it induces P(v,g(v),w). Thus we have a 

partition {(f(x),<l>), (f(x),<2,1>)} and {(h(x),<3>)} of the domain which corresponds to the 

variables v and w. 



368 

Let C be a clause and p. be an inverse substitution defined on T. We can def'me a partition 

H in T by dividing T in blocks. A block B defined by the variable v is the set 

B= { (t,p)~ Tl(t,p)~=(v,p) }. 

We use B/v to denote that B is defined by v. 

Let ~t and ~ be two inverse substitutions which define the same partition rI. Then the 

clauses CI.t and G:3 differ only in the name of variables. If we are only interested in the structure 

of the induced clauses without concern for the names of variables, then we can use c(rI)  to 

denote one of such clauses. We want to define a partial ordering in partitions a such that rI'e_f2 

iff c(rI)_>c(f0, i.e. there is a substitution 0 from C(FI) to C(f~). If C1>C2, then for every 

(w,q) variable in C2, there must be a (v,p) in C1 such that (v,p)o contains (w,q) as subterm. In 

this situation w has relative position q-p in (v,p)o. If there is also (v,p') in C1, then (v,p')o 

contains also a variable w in the position q-p(=q'-p'). We try to translate such concepts to 

relations between partitions. For example, 

C=P(f(g(h(x),y))), g(h(x),y),k(a,h(x))) 

C2=P(f(g(w,y)), g(w,y), k(a,w)) 

Cl=P(f(u),u,v) 

To find C2, we need the following partition g2: 

D 1 = { (h(x),<l, 1,1>), (h(x),<2,1 >), (h(x), <3,2>) }, D1/w; 

D2={ (y,<1,l,2>),(y,<2,2>)},D2/y 

To find Cb we need the following partition rI: 

Bl={(g(h(x),y),<l,l>), (g(h(x),y),<2>)}, B1/u; 

B2={ (k(a,h(x)),<3>)}, BZ/v. 

Notice that ( u , < l , l > ) o = ( g ( w , y ) , < l , l > )  and ( u , < 2 > ) o = ( g ( w , y ) , < 2 > )  and 

(v,<3>)o=(k(a,w),<3>). The first two elements in D1 are related to BI. For (h(x),<1,1,1>) in 

D1 there is (g(h(x)),<l,l>) in B1 to contain it as subterm in position <1> and for (h(x),<2,1>) 

in D1 there is (g(h(x)),<2>) in B1 to contain it as subterm in position <I>. This is also the 

position of w in vo. For (h(x),<3,2>) in D1 there is (k(a,h(x)),<3>) in B2 which contains it as 

subterm in position <2>. This is also the position of y in vo. We can find similar relation 

between elements in D2 and elements in B1. Thus, first we want to define a partition without an 

explicit inverse substitution and then define the partial order relation > for partitions: 

Definition. Let C be a given clause. An admissible subset T of T(C) satisfies the following 

conditions: 

1) T is minimal. 

2) If  (w,q) is an variable occurrence in C, then there is a (t,p) in T such that (t,p)>(w,q). 



369 

A term partition of an admissible subset T is a set of disjoint non-empty subsets B 1 .... Bk such 

that B1u.. .UBk=T, and every block Bi contains occurrences of  only one term. Notice that 

every partition defined by an inverse substitution is also a term partition. On the other hand, we 

can define an inverse substitution ~t from T such that YI is also the partition induced by ~t. We 

just define (t,p)l.t=(vi,p) if (t,pi) is in Bi. Thus we can call the partition induced by an inverse 

substitution also term partition. 

Definition. Let C be a given clause and T, S be admissible subsets of T(C). Let YI be a term 

partition defined on T and f2 be a term partition defined on S. We say 1-12f~ if 

1) For every (s,q) in S, there is a (t,p) in T such that (t,p)_>(s,q). 

2) Let (t,p) be in a block B of H and (s,q) be in a block D in f2. I f  (t,p)>(s,q), and 

B= { (t,pl) ..... (t,pn)}, D={(s,ql),..,(s,qm)}, then m>n and by reordering the indices, 

we have pl=p, ql=q and qi-Pi=q-p for every i=l ..... n. 

Theorem 4. Let C be a given clause. Let ~ and IX be two inverse substitutions which induce 

term partitions II  and ~2 on T and S, admissible subsets of T(C), respectively. If there is a 

substitution from C3 to C~t, then l'12f~. 

To prove that Fief2 implies also C(II)~C(~2), we use theorem 3 of the last section which tells 

when a CTM induces the same clause as the inverse substitution. As an example, let 

C=P(f(g(x)). Let  C(H)=P(u) and D be the inverse substitution from C to C(YI). Let 

C(g2)=P(f(w)) and let IX be the inverse substitution from C to C(~2). Let ld, be also the maximal 

extension of Ix and D-1 be the substitution which is the inverse of 3. We can use the composition 

of D-l: u ~ f(g(x)), 1~: f(g(x)) ---> f(w) to define the composition cr: u ~ f(w). This CTM 

induces a clause based on C(H) and we can prove it is just C(gD. That means c is the 

substitution which we are looking for. The following diagram illustrates the situation. In the 

right diagram we left the letter T out to make things look more transparant. 

G G 

T(C(II)) ~ T(C(t'I)) P(u) ~ P(f(w)) 

T(C) P(f(g(x)) 

Theorem 5. Let C be a given clause and let Yl and f~ be two term partitions defined on S and 

T, admissible subsets of T(C), respectively. Let C(H) and C(f~) be two clauses induced by H 

and C2, respectively. If lI~fl ,  then there is a substitution ~ from C(H) to C(~). 



370 

For the given clause C, the relation > forms a partial ordering on all term partitions which 

are defined on subsets of T(C). The minimal term partition under this ordering induces the 

clause C itself. The ordering coincides with the generality ordering on clauses, which allows us 

to compare clauses without actually building them. The absorption algorithm, discussed in the 

next section, is based on such term partitions. A related problem is the construction of minimal 

generalizations of a given clause, and of the supremum of clauses (Plotldn, 1970; Reynolds, 

1970). In (Nienhuys-Cheng, 1991) we consider all partitions based on C and we give 

algorithms for building the least higher partitions (w.r.t. _>) for a given partition and the 

supremum of two partitions. 

4 .  Absorpt ion 

We briefly review the basic concepts related to resolution. Let L1 and L2 be two literals. A 

unifier of the L1 and L2 is a pair of substitutions (01,02) such that 01 is defined on all variable 

occurrences of L1 and 02 is defined on all variable occurrences of L2 and L101=L202. A unifier 

(01,02) is called a most general unifier (mgu) if for any unifier (crl,a2) for L1, L2 there is a 

substitution T such that L101Y=L202y=LlCrl=L2cr2 where Li0iY is the clause induced by Y based 

on Li0i. 

To define the resolution principle we need to know first how to extend a substitution from 

a literal to a clause which contains this literal. If C is a clause such that C=C'vL where L is a 

literal, then a substitution 0 on L can be extended to a substitution on the entire clause C. If 

v0=t, then for every (v,p) in C we can define (v,p)0=(t,p). Let CI=CI'vL1, C2=C2'vL2 be 

two clauses. If (01,02) is a mgu of ~L1 and L2, then the resolution principle allows to infer 

C1'01vC2'02. This is called a resolvent of C1 and C2. 

4.1 MB-absorption and a new algorithm 

In the introduction, we demonstrated the incompleteness and unsoundness of MB-absorption. 

On the other hand, (Muggleton, 1990) demonstrates that for any C2 constructed by MB- 

absorption from C1 and C, there are substitutions 01 and 02 such that C202=Cv-C101. Thus, 

the resolvent of C1 and C2 is either C, or some clause more general than C. Because in machine 

learning we are looking for generalizations, we may take this as an alternative soundness 



371 

condition. We have a sound and complete absorption algorithm, if it can construct all, and only 

those, C2's such that C202=Cv~C101. Essentially, such an algorithm first constructs 01 from 

C1 and then constructs an inverse substitution 02 -1 from an admissible subset of T(Cv~C101) 

by means of a term partition. 

Algorithm. A non-deterministic, sound and complete absorption algorithm. 

Input: clauses C and C1, where C1 is a positive literal. 

Output: C2 such that C202=Cv-C101 for some 01 and 02. 

Construct a substitution 01 from C1; 

Construct an admissible subset T of T(Cv~C101); 

Construct a term partition of T; 

Construct an inverse substitution and an induced clause C2 from this partition. 

To find an admissible subset T, we can begin with considering a set S of all variable 

occurrences plus some constant occurrences (optional). Initially, T:=O. For every (s,q) in S, 

find a (t,p) in T(Cv-C101) such that q contains p as a subsequence. If this (t,p) is not already 

in T, and there is no (t',p') in T with the property that p and p' have subsequence relationship, 

let T:=Tu{(t,p) }. When all elements in S have been considered, we have an admissible set. We 

define the partition in the following way. Let (t,p) in T, find some elements in T such that they 

are occurrences of the same term t. Define a block B by including these elements and (t,p). We 

repeat the same process for elements in T:=T-B. The partition is ready when there is no element 

in Tleft. 

C2's based on the same 01 can be compared by means of the term partitions of section 3. 

Notice that Cv~C101 is the least general C2 which can be constructed by using the same 01; it 

will be called an LG-absorption. The algorithm above is not directed and therefore inefficient. 

This can partly be remedied by constructing partitions which are least higher (w.r.t. ~) 

compared to a given partition based on Cv~C101, and constructing the supremum of some 

partitions based on CvNC101 (Nienhuys-Cheng, 1991). 

4 . 2  C o m p a r i s o n  of  C2  induced by  d i f f e r e n t  O l ' s  

Let C=P(f(x)) and CI=Q(y) and 01={y/f(x)}, then we have Cv~C101=P(f(x))v~Q(f(x)). For 

some term partition H we have c2(rI)=P(u)v-Q(u) .  For any other 01', we have 

Cv~C101'=P(f(x))v~Q(X), with X an unknown term. Suppose there is a term partition ~ on a 

subset of T(Cv~C101') such that C2(~)=P(f(v))v~Q(Y) and a substitution from C2(II) to 

C2(~), then it must bring u to f(v); hence Y=f(v). The variable v determines a block in the term 



372 

partition f~, and from C we know (x,<1,1,1>) must be in the block. Therefore, X=f(x) and 

01=01 '. In general, C2's are incomparable if they are built on different 01's which satisfy a 

certain condition. 

Lemma. Let C be a clause and Ct be a literal. Consider two substitutions 01, 01' from C1. Let 

I l  be a term partition defined on a subset of T(Cv-C101), and let f~ be a term partition defined 

on a subset of T(Cv~C101'). Let 02 and 02' be the substitution from C2(II) to Cv~C101 and 

C2(f~) to Cv~C101', respectively. Suppose there is a substitution a from C2(YI) to C2(~) and 

suppose a block B, B/v of rI contains both terms from C and ~C101, then if (t,p), a term 

occurrence in T(Cv-C101), is in B, then (t,p) is also in T(Cv-C101') and (t,p)=(va,p)9.2' 

where 9.2' is the maximal extension of 02'. 

Proof. The relations between different mappings can be seen in the following diagram: 

~C1 ~ ( ~  ~ C--2(~) 

t 

Cv~C1 01 Cv~C101 

Let us consider the following block of 1-I: B={(t,pl) ..... (t,pn),(t,ql) ..... (t,qm)}, B/v where 

(t,pi) are term occurrences of C and (t,qj) are term occurrences of -C101. From the given 

condition about a block of 1-I we know m>0 and n>0. We consider the set 

B'= { (vag..2.',p 1) ..... (vc~O_2',Pn),(vc.0_2',ql) ..... (vcg_2',qm) } 

B is a subset of T(Cv~C101) and B' is a subset of T(Cv-C101'). Furthermore, (t,pi) is the Pi- 

th term of C and so is (vc~9.2',Pi). Thus if the set of (t,pi)'s in B is not empty, then t=vag.2'. 

Thus (t,qj) is also a term occurence in Cv-C101'. 

Theorem 6. Let C, C1, 01, 01', C2, C2', 1-I, f~, 02 and 02' be defined as in the lemma. 

Suppose there is a substitution ~ from C2(II) to C2(f~) and every block in I l  which contains 

term occurrences from ~C101 contains also termoccurrences from C. Then for every variable 

w in CI, we have w01=w01 '. 

The proof goes as follows. If w is a variable such that there is a (t,qj) in block B such that 

(t,qj)>-(w,q)01, then (w,q)01' is the same subterm of  (t,qj) with position q-qj because 01' 

preserves positions and (t,qj) is also in T(Cv-C101') from the lemma. If (w,q)01 contains 



373 

(tl,Pl),..,(tk,Pk) which belong to blocks B1 ..... Bk, then (ti,Pi) are also in T(Cv-CleI ')  from 

the lemma and they are subterms of (w,q)ef and in fact (w,q)el=(w,q)el'. 

Let us define two conditions, V: Clel  should contain only variables occurring in C and 

W:  i f  a block B in a partition to define C2 contains a term in ~Cle 1 then it contains also term 

occurrences in C. If for some 01 there is a C2 which satisfies W, then el satisfies V because 

every variable occurrence in ~Clel is contained in a term occurrence in a block and the same 

term occurs also in C. On the other hand, if el satisfies v,  then we can take the trivial 

Cv~Clel  as a C2 which satisfies W. Thus, V for 01 is equivalent with the existence of a C2 

satisfying W. 

Consider the set of all C2's satisfying W, based on some 01 satisfying V" this set is 

partially ordered, but C2's based on different el's cannot be compared. In fact, we can prove 

that Cv~Clel for el satisfying v is least general, i.e. there exists no substitution.from it to a 

C2 based on another el (not necessarily satisfying V). If 01 does not satisfy condition V, then 

it may result in a C2 which is not least general. 

4 .3  Related work 

Muggleton (1990) investigates how to construct a least general C2 if C1 is not a literal. Let 

CI=CI'vL1, C2=C2'vL2, L1 (positive) and L2 (negative) are the literals resolved upon and 

(01,e2) is the mgu. Muggleton argues that c2'e2 should contain every literal in Cl'el, hence 

(C2'vL2)e2=Cv-Llel. Furthermore, 01 can partly be derived by comparing literals in CI' and 

C, because c l ' e l  must be a part of C. Therefore, he requires the variables in the head of C1 to 

be in its body, to assure Cv~Llel is least general. On the other hand, for us to construct such a 

C2 means to construct a term partition on Cv~L101, and the condition concerning the variables 

in C1 implies 01 satisfies V. Thus, his result is a corollary of our theory. We allow in addition 

CI to be a unit clause. 

Unlike what is implicitly suggested in (Muggleton, 1990), such a el  is not necessarily 

unique. For instance, let C=P(x,y)v~R(x)v~R(y) and Cl=Q(z)v-R(z), then we can take 

el={z/x} resulting in C2=P(x,y)v-R(x)v~R(y)v~Q(x), but also 01'={z/y} which yields 

C2'=P(x,y)v-R(x)v~R(y)v~Q(y). Both C2 and C2' are least general. 

(Rouveirol & Puget, 1989) present an approach to inverse resolution, based on a 

representation change. Before applying an inverse resolution step to clauses, they are flattened 

to clauses containing no function symbols (the functions are transformed to predicates). This 

simplifies the process of inverse resolution. For instance, an inverse substitution on a flattened 



374 

clause amounts to dropping some literals from the clause. Within our framework, the 

completeness of their Absorption operator could be analysed as well. 

5.  Conclusions 

In this paper, we have formalized the language for discussing problems about inverse 

resolutions by using consistent term mappings; we compare the clauses by comparing the 

partitions and we have improved the absorption algorithm. Finally, we have extended 

Muggleton's result about least general absorption by allowing C1 to be a unit clause. 

References 

Stephen Muggleton. Inductive Logic Programming. First Conference on Algorithmic Learning 
Theory, Ohmsha, Tokyo, October 1990. 

Stephen Muggleton & Wray Buntine. Machine Invention of First-order Predicates by Inverting 
Resolution. Proceedings of the 5th International Conference on Machine Learning, 
Morgan Kaufmann, pp. 339-351, 1988. 

Shan-Hwei Nienhuys-Cheng. Consequent Functions and Inverse Resolutions. Report Eur-CS- 
90-03, Erasmus University, Rotterdam, Netherlands, May 1990. 

Shan-Hwei Nienhuys-Cheng. Term Partitions and Minimal Generalizations of Clauses. Report, 
Erasmus University, Rotterdam, Netherlands, 1991. 

Gordon D. Plotkin. A Note on Inductive Generalisation. Machine Intelligence 5, B. Meltzer & 
D. Michie (eds.), Edinburgh University Press, 1970. 

John C. Reynolds. Transformational Systems and the Algebraic Structure of Atomic Formulas. 
Machine Intelligence 5, B. Meltzer & D. Michie (eds.), Edinburgh University Press, 
1970. 

C61ine Rouveirol & Jean-Francois Puget. A Simple Solution for Inverting Resolution, EWSL- 
89, Pitman, London, pp. 201-210, 1989. 


