
Learning By Explanation of Failures

Paulo Urbano t

Labora t6r io de Inform~itica e S is temas

Univers idade de Co imbra

Quinta da Boavis ta , lote 1, P

3000 Co imbra

Po r tuga l

A b s t r a c t

The EBG learning technique has been mainly used in learning processes based on positive examples and

successful experiences. However, several authors have demonstrated that failed proofs revealed to be

quite useful as a form of avoiding future failures. The first attempts to learn from failure were based on the

axiomatization of the problem-solver and on the creation of a specific meta-theory for all possible failures.

Whenever there is a positive example of a failure, EBG is used to make operational the meta-theory.

Siqueira & Puget designed a new technique with a different philosophy to learn from counter-examples

using only the domain theory. Their method finds a sufficient generalized condition from the failed proof

of a goal. EBGF is still a fragile and incomplete technique as it doesn't cover all cases. The failure of a

proof has specific characteristics which are not considered when we deal with positive proofs. In this

paper we show the weaknesses of EBGF and we propose an improved technique to learn from failures in

the presence of a counter-example. Our method is implemented in Prolog and its efficiency is currently

under analysis.

K e y w o r d s Explanation based learning, failure.

1 Introduction

Learning from unsuccessful experiences can be as important in a deduction or planning task as it is the

current approaches to learning from positive examples (Minton & Carbonell, 1987; Gupta, 1987;

1 Current adress: Departamento de Inform~itica da Universidade de Lisboa, Av ~- 24 de Julho, 131, 73, P-
1200 Lisboa Portugal.

328

Hammond, 1987). Learning from failures can be very useful in presence of default knowledge and,

generally, whenever we reason with incomplete knowledge. As Hirsh showed (Hirsh, 1987), if we want

to apply the EBG method (Mitchell, Keller & Kedar-Kabelli, 1986) using a default rule of some goal

(Goal), we have to introduce in the domain theory a particular predicate of the kind "unknown(Goal)",

which will also appear in the learned rule. The problem with this procedure is that this predicate is not

operational and so the EBG technique is not fully effective. Therefore, we also have to make operational

the predicate which represents the incomplete information. This is an example of the large domain of

applications suited for learning from failures in presence of counter-examples.

The first attempts to learn from failures were based on the definition of a recta-theory representing all

possible failures. EBG was then applied to make operational the failure's theory using positives examples

of a failure. This approach can be inefficient because we have to define all possible failures in the meta

theory.

Siqueira & Puget developed a new technique and an algorithm called EBGF (Siqueira & Puget, 1988), in

the universe of logic programming, that learns from counter-examples using only the domain theory. The

method is similar to EBG but uses a counter-example rather than an example. EBGF, from a failed proof,

finds a generalized condition which satisfies the counter-example, is sufficient to warrant the failure of the

goal, covering similar counter-examples.

This method is still incomplete and ambiguous. There are some cases in which it cannot even make the

failure operational. The different quality of literals deserves an importance that has been ignored because

there are literals which demand that at least one of their variables should be instantiated before tested.

EBGF is only able to deal with literals that make no demands on their variables Moreover, the order of the

literals in a conjunction can be very important and cannot be changed without the risk of aborting the

process.

We have developed a learning technique that is a revision and a major extension of EBGF, and is able to

solve the problems found.

In section (2) we describe EBGF illustrated with an example; in (3) we analyze its insufficiencies; in

section(4) we present our method and finally in section (5) we present an example showing the

functioning mode of our method.

2 Explanation Based Generalization of Failures (EBGF)

Siqueira & Puget's algorithm is situated in the universe of logic programming. Its aim is to find the

minimal sufficient conditions for failure during the process of classifying a counter-example. The failure is

then generalized in a way to cover similar counter-examples.

2.1 Logical framework of EBGF

329

The logical framework supporting this method depends on the Negation As Failure assumption (NAF). It

also depends on the notion of Completed Data Base (CBD) - each concept is rewritten in its complete

form. EBGF uses first order predicate logic restricted to Horn clauses and the interpreter is SLD-

resolution.

The method is based on Clark's conclusion that using NAF inference rule is equivalent to make

deductions from the completed domain theory. We rewrite the theory so that the right part of each clause

of the target concept G is a conjunction of atomic literals CLj (literals that cannot be defined through other

literals). We can expand this notion of atomic to different operationality criterion as in EBG (Hirsh,

1988). We have then a theory in which every clause of the target concept G is compiled - each CLj is

formed by atomic or operational literals .The process is described in (Siqueira & Puget, 1988).

G <--- CL1vCL2v... vCLm

The negation of G corresponds to the rule:

--10 ~ ~CLIA~CL2A ...A~CLm

However, this rule is not in general an operational rule since it is too complex and may have redundant

literals - literals that are not responsible for the failure. Moreover, the process of transforming any theory

in its complete form can be a difficult task, especially in the presence of recursive clauses.

The idea of EBGF is to simplify each conjunction of litcrals CLj so that in the end we have only sufficient

litcrals for the failure.

2.2 General description of EBGF

Given a domain theory, a target concept, an opcrationality cfiterion and a counter-example, EBGF finds

an operational definition for the negation of the target concept, increasing the problem-solver efficiency.

For that purpose it builds a negative explanation of why the counter-example is not an example of the

target concept. The explanation is generated from the failed proof and it is generalized covering a larger

number of similar counter-examples.

330

EBGF is divided in three steps which we will describe:

a) Finding the generalized conjunctions CLj

The manipulation of the completed data base can be too complex and expensive, so the system tries to

prove the goal using the domain theory and the counter-example. When the proof is not possible it can

collect one of the generalized conjunctions CLj mentioned above; the system backtracks and collects every

generalized conjunction. The generalization is done in parallel, taking as input a generalized version of the

target concept and performing SLD-resolution as done in (Kedar-Kabelli & Me Carry, 1987).The role of

the counter-example is to bias the search and to avoid recursivity problems.

b) Simplification of every conjunction CLj

The next step consists in the simplification of each generalized conjunction using the counter-example.

The simplification method relies on the rightmost literal heuristics. Siqueira & Puget give an intuitive

definition of the rightmost literal of a conjunction: it is the one that always fails and doesn't allow the

proof to go further to the right. This method deletes, from the original conjunction, every literal which is

redundant.

We wiU describe in detail the simplification algorithm:

Input: a conjunction of literals CL=AiLi (i = 1..n).

Output: a conjunction of literals CS, sufficient for the failure.

0- Initially, the simplified conjunction CS has no literals.

1- Let Ld be the rightmost literal of AiLi. We remove it from AiLi and insert it on the end of the

simplified conjunction CS.

2- If CS is true for the counter-example, all the literals from CS are satisfied by an instantiation I; we

apply I to the variables of AiLi and return to step 1. Otherwise, if S is false for the counter-

example then CS is the final simplified conjunction.

c) Operational rule of failure

The learned operational rule representing the negation of the target concept is:

~-- -~CSIA...A~CSm

where CSj is the result of simplifying each CLj.

2.3 E x a m p l e o f E B G F

331

The following example, representing the game of Othelo (Siqueira & Puget, 1988), will illustrate the

EBGF technique.

We have a theory expressing the conditions in which a square, with a particular colour and occupying a

particular position on the game board (8*8), can be flipped. "status" defines the square's situation; "pos"

defines a relation of distance between two board positions. Each position is represented by a number

(1...64). The surrounding of any square is made by symmetric distances and is represented by "surrl"

and "surr2".

Examole 1

- theory
flips_to(P,C1) e- opponent(C1,C0) A surrl(P,D,C0) A surr2(P,D,C0)

surrl(P,D,Cl) ~-- pos(P,P1,D) A status(Pl,empty)

surrl(P,D,C1) e-- pos(P,P1,D) A status(P1,C1) A surrl(P1,D,C1)

surr2(P,D,C1) e-- pos(P2,P,D) A status(P2,empty)

surr2(P,D,C1) 6-- pos(P2,P,D) A status(P2,C1) A surr2(P2,D,C1)

- target concept

flips_to(P, C1)

- Operationality criterion

operational(pos(__,_,__)) operational(statusC,_))

- Counter-example

opponent(black,white) opponent(white,black)

pos(1,2,1) pos(1,9,8)

pos(1,10,9) pos(2,3,1)

pos(2,1,- 1)

status(1,white) status(2,black)

status(3,empty) status(9,empty)

status(10,empty)

We cannot prove "flips__to(1,white)".

One of the generalized conjunctions obtained from the failed proof, when the resolution couldn't go

further, is:

CLl=opponent(C1,C0) A pos(P,P1,D) n status(Pl,empty) A pos(P2,P,D) A status(P2,empty)

332

We will show, in detail, the simplification algorithm, taking CL1 as input:

0- CS I initially has no literals.

cyclel
1- We apply the instantiation of the target concept, [P=I,C1 =white], to CL1. The rightmost literal of

CL1 is "pos(P2,P,D)"; we delete it from CL1 and we insert it in CS1.

2- CSI=pos(P2,P,D) is true for the counter-example; we can apply the instantiation [P2=2, P=I,

D=-I] to the variables of CL1 and return to step 1.

cycle 2
1- CLl=opponent(white,C0) A pos(1,P1,-1) A status(Pl,empty) A status(P2,empty);

the rightmost literal of CL1 is "pos(P,P1,D)"; we delete it from CL1 and insert it in CS1.

2- CSI=pos(P2,P,D) A pos(P,P1,D) is false for the counter-example and it is the final simplified

conjunction.

When we apply the simplification algorithm to the other conjunctions CLj we obtain exactly the former

simplified conjunction CL1.

At the end, the system will learn the operational rule:

~fiips_to(P,Cl) ~ ~[pos(P2,P,D) A pos(P,PI,D)]

This learned rule represents the fact that square P cannot be fiiped if it is a corner.

3 Insufficiencies detected in EBGF

The two limitations we found in EBGF are in the second step: the process of simplification of the original

conjunctions.

The first is an error detected in the rightmost heuristics due to the dependance upon the choice of

instantiations. In fact, the algorithm can output different answers depending on the chosen instantiations.

The second limitation reveals EBGF to be unprepared to deal with the particularities of the failure

universe. In a conjunction there are literals that are responsible for the first instantiations of some

variables, given the atomic attributes of the counter-example, and the consequent value propagation to the

333

right. Other literals need to receive decisive instantiations from the left and cannot be tested otherwise. The

order of the literals in a conjunction can, for this reason, be very important and cannot be altered when we

transform one conjunction into another. EBGF is only capable to deal with literals which make no

demands on the instantiations of their variables making the method limited.

In the following two sections we are going to describe these two limitations in more detail by means of

examples.

3 . 1 I n c o r r e c t n e s s o f E B G F

We are going to analyze how EBGF deals with the following example adapted from (Siqueira & Puget,

1988).

Example 2

- Theory

a(X,Y) ~ b(X,Z) A c(X) A d(Z,Y)

a(X,Y) <---- e(X) A f(Y)

b(X,Y) ~- g(X,Y)

b(X,Y) ~-- h(X,Y)

- Target concept

a(X,Y)

- Every attribute from the counter-example is operational.

- Counter-example

c(2), d(1,2), d(3,2), f(1), g(2,2), g(1,1), h(2,2)

We cannot prove "a(X,Y)". Let's initiate the failure analysis:

CLI=g(X,Z) A c(X) A d(Z,Y) is one of the generalized conjunctions returned after the first step.

Now, we will apply the rightmost heuristics to CL1 to find the conjunction of literals which is the

sufficient condition for CLI's failure:

0- CS1 is initially empty of literals.

334

cycle 1

1- "d(Z,Y)" is the rightmost literal of CL1. We delete it from CL1 and insert it in the sufficient

conjunction CS 1.

2- CS 1 is true for the counter-example: there are two instantiations that satisfy CS 1: I I=[Z= I,Y=2]

and I2=[Z=3,Y=2]. We can apply I1 or I2 to CL1.

cycle 2

1- the rightrnost literal of CL1 after I1 is "c(X)". the rightmost literal of CL1 after 12 is "g(X,Z)",

which is not a correct one.

This case demonstrates that the simplification algorithm is ambiguous and can output wrong answers. The

simplification process cannot depend on a casual choice of instantiations of the current sufficient

condition.

3.2 I n c o m p l e t e n e s s of E B G F

Let us consider the following example taken from (Mitchell & Kedar-Kabelli, 1986):

Examole 3

- Theory

safe to stack(X,Y) e - lighter(X,Y)

lighter(X,Y) e-- weight(X,Px) A weight(Y,Py) A <(Px,Py)

weight(X,Px) ~ volume(X,Vx) A density(X,Dx) A ×(Vx,Dx,Px)

weight(X,5) ~-- isa(X,table) (default rule)

- Target concept

safe to_stack(X,Y)

- Operationality criterion

operational(volume(_,__))

operational(isa(_,_))

operational(x(_))

operational(density(__,__))

operational(<(_,_))

- Counter-example

volume(box1,2)

density(boxl,4)

isa(boxl,box)

volume(tablel,3)

density(table 1,2)

isa(table 1,table)

335

After the first step of the algorithm, one of the operational conjunctions that causes the failure of

"safe to stack(boxl,tablel)" is:

CLl=volume(X,Vx) A density(X,Dx) A ×(Vx,Dx,Px) A isa(Y,table) A <(Px,5)

Now, we will apply the rightmost heuristics to CL1 to find the conjunction of literals which is the

sufficient condition for CLI's failure:

0- CS 1 is initially empty of literals.

1- The rightmost literal of CL1 is "<(Px,5)"; we delete it from CL1 and insert it in the sufficient

conjunction CL1.

2- When we try to test if CSI=<(Px,5) is satisfied for the counter-example we detect an error: literal

"</2" demands its first variable instantiated before tested.

In this way, we conclude that it is not enough to find the rightmost literal of a conjunction. The

simplification algorithm has to be changed to cover the case in which there are literals that demand at least

one of its variables previously instantiated. We have to put other literals in the sufficient condition to

warrant the necessary instantiations. Note that when we put literals in the sufficient conditions CSj we

have to maintain their original order in CLj because if not there is the risk of breaking the original link of

variables that guaranteed the propagation of instantiations.

4 Alternative method

Our method has also three steps as EBGF. We have reviewed and expanded EBGF on two points: we

have a different and improved process of finding the initial generalized conjunctions from the failed proof,

and we have reformulated the rightmost literal heuristics in a way to solve both limitations analyzed above.

4.1 Finding the initial generalized conjunctions

In EBGF, we initially obtain the generalized conjunctions responsible for the failure. However, these

conjunctions might be too complex and redundant, which made us think in a way of simplifying them.

3 3 6

The advantage is that we can directly obtain a conjunction with the first rightmost literal in the end. To

accomplish this goal we built a special interpreter adapted to failures.

The interpreter is quite simple: the explanation of the failure of a literal which is not operational and is the

head of a clause, is the explanation of the failure of the clause's body. The explanation of the failure of an

operational literal which fails is just the literal. The explanation of the failure of a conjunction of literals

AiNi (i=l. . .x.. .n), is based on the first conjunction AiNi (i=l. . .x) which does not satisfy the counter-

example because of its last literal Nx. That is, AiNi (i=l. . .x) is false but AiNi (i=l . . .x-l) is true. We

operationalize the conjunction AiNi (i=l . . .x-l) using EBG and concatenate it with the explanation of the

failure of the literal Nx.

That way, when we fall to prove a goal we always obtain an explanation represented by a conjunction of

operational literals in which the last one is the first rightmost literal. In conclusion, our initial generalized

conjunctions represent a fast direct simplification to the initial generalized conjunctions of EBGF. We do

the generalization process in parallel, maintaining a generalized version of the goal. If there is more than

one clause for some literal then the system backtracks, collecting every explanation. This interpreter has to

ignore all control symbols he finds traversing every possible path, otherwise it could ignore other clauses

that could fail.

Now we will show the difference between our method and EBGF, using example 3 with the following

counter-example:

Example 4

- Counter-example

isa(box3,box) density(box4,4)

volume(box3,2) isa(box4,box)

In this case EBGF outputs CL1 as one of the initial generalized conjunctions for the failure of

"safe_to_stack(box3,box4)":

CLl=volume(X,Vx) A density(X,Dx) A x(Vx,Dx,Px) A weight(Y,Py) A <(Px,Py)

Let's apply our method:

- safe to_stack(box3,box4) fails because weight(box3,Px) A weight(box4,Py) A <(Px,Py) fails.

- weight(box3,Px) A weight(box4,Py) A <(Px,Py)] fails because weight(box3,Px) fails.

- weight(box3,Px)] fails because volume(box3,Vx) A density(box3,Dx) A x(Vx,Dx,Px) falls.

-volume(box3, Vx) A density(box3, Dx) A x(Vx, Dx, Px) fails because volume(box3,Vx) A

density(box3,Dx) falls; volume(box3,Vx) is true.

337

We conclude that the failure of volume(box3,Vx) A density(box3,Dx), which is already composed by

operational literals, explains the failure of the target concept. Therefore, the generalized conjunction is:

CLl=volume(X,Vx) A density(X,Dx)

When we try to prove the goal we simplify directly the conjunction wich is obtained by EBGF. If the

rightmost literal is the last to be responsible for the failure then the literals which are positioned on its right

are redundant for the failure.

4.2 Reformulation of the simplification algorithm

We begin by formally defining the concept of the rightmost literal of a conjunction.

Deirmition 1

The rightmost literal of a conjunction CL = AiLi (i=l...n) is:

- L1 if L1 is always false.

- Ld if Ail-4 (i=l...d-l) is true and AiLi (i=l...d) is always false.

Next, we will present two algorithms that solve the two insufficiencies detected in EBGF.

The former algorithm solves the first problem: the next rightmost literal of a conjunction CL during the

simplification process cannot depend on the different instantiations that satisfy the conjunction formed by

the past rightmost literals CS.

The final algorithm expands the ftrst as it is capable to deal with literals that demand at least one of their

variables previously instantiated to be correctly applied.

4.2.1 First simplification algorithm

When we want to output the rightmost literal of a conjunction in any moment of the simplification

algorithm, we must take into account every literal of the original conjunction. EBGF separates the

sufficient literals and looks for the next rightmost literal in the remaining conjunction, making the process

dependent on the instantiations of the separated literals, as we have shown above. To solve this problem,

what we do is to change the order of the several rightmost literals, putting them on the left of the

338

remaining conjunction. Then we look for the next rightmost literal in the conjunction formed by every

original literal where the past rightmost literals have changed order.

This way the choice of the rightmost literal is not ambiguous, giving as output the only rightmost literal of

a conjunction of literals.

T h e a l g o r i t h m

We consider that the initial conjunction CL is composed by two kinds of literals: those which are decisive

for failure and belong to the sufficient conjunction CS and those which are redundant.and belong to the

redundant conjunction CR.

Input: a conjunction of literals CL=AiLi (i = 1..n).

Output: a sufficient conjunction of literals CS.

a conjunction of redundant literals CR.

0- initially CR = CL; CS has no literals.

1- Find the rightmost literal of the ordered concatenation of conjunctions CS and CR (CSACR);

delete it from CR and put it in the end of CS.

2- If CS is false for the counter-example then CS is the final simplified conjunction, else return to

step 1.

Example

Now we are going to apply the simplification algorithm to the conjunction of example 2 that created

problems to EBGF.

CL=g(X,Z) A c(X) A d(Z,Y)

0- CR=CL; CS is a conjunction with no literals.

cycle 1

1- The rightmost literal of CSACR is "d(Z,Y)". CR=g(X,Z) A c(X); CS--d(Z,Y).

2- d(Z,Y) is true for the instantiation [Z=I,Y=2]; we return to step 1.

339

cycle 2

1- CSACR--d(Z,Y) A g(X,Z) A c(X). By definition 1, the rightmost literal of CSACR is "c(X)".

The literals from CS always have to take part in the conjunction where every rightmost literal is sought -

this conjunction has always the same literals, their order only being changed during the aplication of the

algorithm.

4.2.2 The final simplification algorithm

Type of literals

We consider two types of literals: those which do not need any of its variables previously instantiated and

those which demand that at least one of their variables should be previously instantiated.

The fast is the general case. The second type of literals have to be declared in the domain theory.

For instance, if we want to assert that the literal with symbol "x" and arity 3 needs its first two variables

instantiated before it is applied, we declare:

instantiated(xk3,[1,2])

The former version of the rightmost literal algorithm we designed is only able to deal with the first type

literals. To deal with all kinds of literals, we have to be sure that when we test the successive rightmost

literals conjunction CS, there are always literals that supply them with the necessary instances. We have

thus to formalize the notion that a literal receives its necessary instances from a conjunction of other

literals. The following section is entirely dedicated to this formalization.

Def in i t ions

Definition 2

A literal Lx is a basic literal if

- it is a literal that does not need any of its variables previously instantiated

or i f

- it is a literal in which every variable that needs instantiation is instantiated.

340

Definition 3

A literal Lx is sup_o~ed in a conjunction of literals AiLi (i =l...x...n) if

-it is a basic literal

orff

- x>l and each variable in Lx that needs instantiation and it is not instantiated, belongs to some

literal in AiLi (i=l...x-l) wich is supported in AiLi (i=l...x...n).

The a lgor i thm

Now, we can expand the first version of the rightmost literal algorithm:

Input: A conjunction of literals CL.

Output: CS - sufficient conjunction of literals for the failure of CL.

CR - conjunction of redundant literals.

0- Initially CR=CL and CS is empty of literals.

1- Find Ld,the rightmost literal of the ordered concatenation of conjunctions CS and CR (CSACR).

Delete Ld from CR and insert it in CL.

2- Case1: ifLd is supported in CS goto 3, else

Case 2: Look for a minimum set of literals of CR that once inserted in CS result in Ld being now

supported in CS. Delete the set of literals found from CR and goto to 3.

3- If CS is false then ~CS is the sufficient condition; else goto step 1.

Note that, whenever we insert any literal in CS,we have to maintain its original position in LC. If we

change the order we might break the link between variables that allows the propagation of decisive values.

E x a m p l e

We are going to show how this algorithm deals with the following generalized conjunction taken from

example 3.

CLl=volume(X,Vx) A density(X,Dx) A ×(Vx,Dx,Px) A isa(Y,table) A <(Px,5)

341

We have to add the following literals to the original theory.

instantiated(<k2[1,2])

instantiated(xk3,[l,2])

Let's apply our method to simplify CL1.

0- CRI=CL1; CS1 has no literals.

1- The rightmost literal in CS1ACR1 is Ld="<(Px,5)". We inserte it in CS1.

2- "<(Px,5)" is not a basic literal because, by definition 2, it needs Px previously instantiated. Ld is

the only literal in CS1 and so, by definition 3, it is not supported in CS1. We have to find a

minimum set of literal s from CR1 so that when inserted in CS 1, Ld will be supported in CS I:

[volume(X,Vx),density(X,Dx),x(Vx,Dx,Px)] is the minimum set of literals from CR1 so that when

inserted in CS 1, maintaining their original positions in CL 1, Ld will be supported in CS 1. Next, we

are going to prove it:

The sufficient condition will be:

CS l=volume(X,Vx) A density(X,Dx) A x(Vx,Dx,Px) A <(Px,5)

"<(Px,5)" is supported in CSI: it is not a basic literal but Px belongs to the literal "x(Vx,Dx,Px)"

which is supported in CS 1.

"x(Vx,Dx,Px)" is supported in CSI: It is not a basic literal (it needs Vx and Dx instantiated);

however, Vx and Dx belong respectively to the literals "volume(X,Vx)" and "density(X,Dx)" which

are both supported in CS 1, because they are basic literals.

3- Finally, CS 1 is false for the counter-example and the redundant conjunction is CR1---isaCY,table).

At the end we have ~[volume(X,Vx) A density(X,Dx) A x(Vx,Dx,Px) A <(Px,5)] as the

sufficient condition for the failure of CL1.

5 E x a m p l e of o u r t e c h n i q u e

342

Let us illustrate our method solving example 3 in order to obtain the operational rule for the failure of

"safe to_stack(boxl,tablel)".

After the first step we have as the initials conjunctions for failure:

CLl=volume(X,Vx) A density(X,Dx) A ×(Vx,Dx,Px) A volume(Y,Vy) A density(Y,Dy) A

x(Vy,Dy,Py) A <(Px,Py)

CL2=volume(X,Vx) A density(X,Dx) A x(Vx,Dx,Px) A isa(Y,table) A <(Px,5)

CL3=isa(X,table)

The final operational rule the system learns is:

-,safe_to_stack(X,Y) <---

~[volume(X,Vx) A density(X,Dx) Ax(Vx,Dx,Px) A volume(Y,Vy) A

density(Y,Dy) A x(Vy,Dy,Py) A <(Px,Py)]

A
~[volume(X,Vx) A density(X,Dx) A ×(Vx,Dx,Px) A <(Px,5)]

A

~[isa(X,table)]

6 C o n c l u s i o n

We have developed a revision and a major extension of the method EBGF which learns from failure.

EBGF is a method that on the contrary of the current approaches doesn't need a meta-theory specific for

failures. We found insufficiencies in EBGF in which the most serious was the fact that it was not capable

to deal with literals which demand at least one of their variables previously instantiated. These problems

limited EBGF making learning inefficient. We have developed and implemented a technique which solves

the insufficiencies limiting EBGF.

343

Acknowledgments

I would like to thank Prof. Ernesto Costa for all his support.

References

Siqueira, J. CL. ¢ Puget, J. F., Explanation-Based Generalization of Failures, Proceedings of the ECAI-

88, pp 339-344, 1988.

Mitchell T. M., Keller R. M.,& Kedar-Kabelli S. T., Explanation-based Generalization: a unifying view,

Machine Learning 1:1, pp 47-80, 1986.

Minton, S. and Carbonell, J. G., Strategies for Learning Search Control Rules: An Explanation-based

Approach. Proceedings of the 10th. LICAI, Milan, pp 228-235, 1987.

Gupta, A., Explanation-Based Failure Recovery, Proceedings AAAI- 87, pp 606-610, 1987.

Hirsh, H., Explanation-based generalization in a logic-programming environment. In Proceedings of the

10th. LICAI, Milan, pp 221-227, 1987.

Hirsh H., Reasoning about operationality for Explanation-based Learning. In Proceedings of the Fourth

International Workshop on Machine Learning, pp 214-220, 1988.

Kedar-Kabelli, S. T.& Mc Carry, CL. T., Explanation-Based Generalization as Resolution Theorem

Proving, Proceedings of the Fourth International Workshop on Machine Learning, pp 383-389, 1987.

Hammond, J. K., Explanation and Repairing Plans that Fail, Proceedings of the 10th. !JCAI, Milan, pp

109-114, 1987.

