
LEARNING NONRECURSIVE DEFINITIONS
OF RELATIONS WITH LINUS

N a d a Lavra~ , Sago D~eroski a n d M a r k o G r o b e l n i k

Jo~ef S t e f an I n s t i t u t e , J a m o v a 39

61000 L j u b l j a n a , Yugos lav ia

P h o n e : (+38) (61) 214 399, Fax: (+ 3 8) (6 1) 219 385

E-mai l : n a d a @ i j s . a c . m a i l . y u

Abstract

Many successful inductive learning systems use a propositional attribute-value language
to represent both training examples and induced hypotheses. Recent developments are
concerned with systems that induce concept descriptions in first-order logic. The deduc-
tive hierarchical database (DHDB) formalism is a restricted form of Horn clause logic in
which nonrecursive logical definitions of relations can be expressed. Having variables,
compound terms and predicates, the DHDB formalism allows for more compact de-
scriptions of concepts than an attribute-value language. Our inductive learning system
LINUS uses the DHDB formalism to represent concepts as definitions of relations. The
paper gives a description of LINUS and presents the results of its successful applica-
tion to several inductive learning tasks taken from the machine learning literature. A
comparison with the results of other first-order learning systems is given as well.

1 I n t r o d u c t i o n

The general framework for machine learning can be stated as follows. Given a set of
positive training examples JET, a (possibly empty) set of negative training examples EF,
and background knowledge B, find an hypothesis or concept description H such that
B, H ~" JET and B, H ~ E~.

The development of inductive learning systems can focus on different problems,
such as restricted representation language, inability to make use of background knowl-
edge, noise in training examples, and bias of vocabulary. Our work deals with the first
three problems. Our system LINUS can effectively use background knowledge (B) in
inducing hypotheses (H). Hypotheses have the form of DHDB (deductive hierarchical
database) clauses, i.e., typed nonrecursive Horn clauses with negation, and represent
logical definitions of relations.

266

Many successful inductive learning systems use a propositional attribute-value
language to represent training examples and concept descriptions, for example, the
members of the AQ (e.g., Michalski et al. 1986) and TDIDT (top-down induction
of decision trees, e.g., Quinlan 1986) families of inductive learning programs. Recent
developments are concerned with systems that induce concept descriptions in first-
order logic. Very promising approaches are used in CIGOL (Muggleton & Buntine
I988), GOLEM (Muggleton & Feng 1990) and FOIL (Quinlan 1989, 1990), which induce
descriptions of complex relations in Horn clause logic.

Our approach can b e best compared to FOIL, since both systems are based on
ideas that have proved effective in attribute-value learning programs. Each extends
these ideas to a more expressive first-order logical formalism in its own way. The idea
in LINUS is to incorporate existing attribute-value learning programs into the DHDB
environment. LINUS now incorporates ASSISTANT (Cestnik, Kononenko & Bratko
1987), a member of the TDIDT family, and NEWGEM (Mozeti~ 1985), a member of the
AQ family, which are used in learning attribute-value descriptions. The incorporation
into the DHDB environment is done by a special interface implemented in Prolog. The
DHDB formalism is used to enhance the expressiveness of the propositional attribute-
value languages used in ASSISTANT and NEWGEM. In DHDB, a typed language is
used; the increase in expressiveness is due to universally quantified variables, compound
terms, and utility predicates and functions, which can be used in the induced hypothe-
ses. Despite the fact that recursively defined predicates and infinite terms (i.e., terms
which can take a value from an infinite set) are not allowed in concept descriptions, the
formalism is appropriate for a large scale of real-life problems.

An initial algorithm for learning in the DHDB formalism is a part of QuMAS
(Qualitative Model Acquisition System, Mozeti~ 1987). Its further development is de-
scribed in (Mozeti~ & Lavra~ 1988, Lavra~ & Mozeti~ 1988). The algorithm was first
used to learn functions of components of a qualitative model of the heart in the KAR-
DIO system (Bratko, Mozeti~ & Lavra~ 1989). A detailed description of its successor
LINUS and results of a number of other experiments can be found in (Lavra~ 1990).

The aim of this paper is to show how LINUS can be used to learn nonrecursive
logical definitions of relations. Section 2 introduces the DHDB formalism, gives an
overview of the system, and describes the learning algorithm. Section 3 gives results
of the successful application of LINUS to several inductive learning tasks taken from
machine learning literature. Our results are compared to the results obtained by FOIL
(Quinlan 1989, 1990). In the chess endgame domain, we compare the classification
accuracy and efficiency with FOIL, DUCE and CIGOL (Muggleton et al. 1989).

2 Learning in t h e D H D B formal i sm

2 . 1 T h e D H D B f o r m a l i s m

A deductive database is a finite set of typed Horn clauses with negation of the form:

A ~-- L o , . . . , L n

267

where A is an atom (predicate symbol applied to terms) and each Li is a literal (positive
or negative atom).

A deductive database is called hierarchical if its predicates can be partitioned into
levels so that the bodies of the clauses in the definitions of higher level predicates contain
only lower level predicates (Lloyd 1987). Consequently, recursive predicate definitions
are not allowed in deductive hierarchical databases (DHDB).

In deductive databases a typed language is used. Types provide a natural way
of specifying the domain of a database. We emphasize that, in contrast to the usual
restriction in deductive databases, in our formalism compound terms are allowed to
appear as arguments of predicates in a database and in queries. However, only hier-
archical (nonreeursive) types are allowed. This restriction bans recursive data types,
which means that there are only a finite number of ground (non-variable) terms of each
type, and consequently, that each query can only have a finite number of answers (Lloyd
1987). A comparison of DHDB to other logical formalisms is given in (Mozeti~ & Lavra~
1988).

2 . 2 L e a r n i n g i n L I N U S

In attribute-value learning, given is a set of training instances {given as n-tuples of
values of a fixed collection of attributes), each belonging to exactly one of the possible
classes. Classes are values of the decision or dependent variable and attributes are called
independent variables. The learning task is to find a rule, called a hypothesis or a concept
description, that can be used to predict the class of an unseen object as a function of
its attribute values.

In DHDB, a set of training instances is given as a set of ground facts specifying
a relation between n domain entities. By analogy with an object's class, each ground
fact is labeled ~ or O to indicate whether or not it is in the relation, i.e., whether it is
to be treated as a positive or as a negative instance for learning.

In LINUS, hypothesis H (i.e., the description of the target relation to be learned),
has the form of a predicate definition (a set of typed nonrecursive Horn clauses with
negation, having the same predicate in the head); positive examples ET are given ground
facts; negative examples EF are either given or generated ground facts; and background
knowledge B consists of predicate definitions in the form of typed (possibly recursive)
Horn clauses with negation.

The main idea in LINUS is to incorporate existing attribute-value learning pro-
grams into a more powerful DHDB environment. This is done by a special DHDB
interface, consisting of over 2000 lines of Prolog code. The structure of the system is
shown in Figure 1. The DHDB interface transforms positive instances (given facts) and
negative instances (possibly generated by the DHDB interface) from the DHDB form
into attribute-value tuples and vice versa, from induced if-then rules into the DHDB
form. The most important feature of this interface is that, by taking into account type
theory, utility predicates and functions are considered as possible new attributes for
learning by an attribute-value learning program.

268

Currently LINUS incorporates two attribute-value learning programs, ASSIS-
TANT and NEWGEM. In our environment it is easy to incorporate other learning
algorithms, e.g., GINESYS (Gams 1989) and CN2 (Clark & Niblett 1989), which were
already used in some of our experiments. Having different systems in the same DHDB
environment, the idea (promoted in GINESYS and LOGART (Cestnik & Bratko 1988))
that multiple knowledge can increase system performance can naturally be further ex-
ploited.

[positivel I generation _I negative ~atility predicate~
[and functions [(facts [of negative 7 facts !

\ [facts J
applic~a ion of utility predicates and functions,

t r a n s f o r m ~ t o a I t r i b ~ e tuples

training
I examples

decision ... [VLlrules tree [

t~r nscription int~rule form j ~

transformation to DHDB form
LINUS

I DHDB clauses I

Figure 1: An overview of the LINUS system

2.3 Training examples and domain knowledge

We briefly describe the input to LINUS and illustrate it on a simple example.

Given are training instances in the form of ground facts determining a relation
between n domain entities. Suppose that relation r(a.b.c) is defined by the following
three ground facts labeled ~:

269

dal,bl.bl}.
r(al,b2.b2).
r(a2,b1.52).

Facts labeled 8 , not belonging to the relation, may also be provided. Associated with
relation r{a.b.¢) is the declaration of the names and the types of its arguments, stating
that the first argument of relation r named a is of type_a, and the other two arguments
named b and c are of type_b. Each type has an associated set of possible values, e.g.,
{al.a2} for type_a, and {bl,b2} for type_b. In general, values are constants or compound
terms with constant arguments. The use of compound terms allows for the descrip-
tion of compound or structured objects. Values can be nominal, linear, continuous, or
structured (hierarchical). The type boolean is defined by default.

Background knowledge consists of predicate definitions specifying relations be-
tween domain entities. These predicate definitions can be recursive. We distinguish
between what we call utility predicates and utility functions. Utility functions are predi-
cates with an annotation which determines the input and output arguments, while utility
predicates only have input arguments. This is similar to mode declarations in GOLEM
(Muggleton & Feng 1990). Utility predicates can be declared symmetric in certain pairs
of arguments of the same type. For example, a binary predicate q(X, Y) is symmetric in
X and Y if they are both of type T and q(X, Y) -- q(Y, X) for every value of X and Y.
A built-in symmetric utility predicate equality (=/2} is defined by default on arguments
of the same type.

For each relation, utility predicate and utility function there is a definition of the
types of arguments. In our example, a binary utility predicate p is defined on arguments
of type_a and type_b, respectively.

p(al,bl).
p(al.b2).
p(a2.b2).

The form of examples to be used in learning is determined by the so-called de-
pendence relation. We may select any subset of the n arguments of the given relation
for learning the target relation. Apart from the kArg selected arguments, we can also
select kv,z utility predicates and functions as interesting for the given learning task.
In this way we have k = kAro + kvtll selected arguments. In our example, the depen-
dence relation states that all arguments (a. b and c) are selected, and that the possible
applications of the utility predicates p and equality {=]2) should be considered as new
attributes for learning (k = 3 + 2 = 5).

Having selected the k arguments, some of them can be treated as dependent vari-
ables (analogous to class variables) and the others as independent variables (analogous
to attributes in attribute-value learning). This distinction is important since LINUS
can be used both for learning definitions of relations (relation learning mode) and for
inducing descriptions of particular classes (class learning mode). In class learning mode,
dependent variables are not used for learning, but are only used to determine the dif-
ferent classes, where a class is a combination of values of the dependent variables. In

270

relation learning mode, on the other hand, the two classes to be learned are ~ and @,
denoting whether the arguments do or do not satisfy the target relation. When generat-
ing negative examples (see Section 2.4) we also need to distinguish between dependent
and independent variables. In the paper we restrict our scope only to relation learning.

2.4 The learning algorithm

The outermost level of the LINUS learning algorithm consists of the following steps:

• establish the set of positive and negative facts,
• transform facts from the DHDB form into attribute-value tuples,
• induce a concept description by an attribute-value learning program,
• transform the induced if-then rules into the form of DHDB clauses.

Below is a short description of the individual steps illustrated by an example.

In the first s tep, the sets of positive and negative facts are determined. Positive
facts are always given explicitly, while negative facts may be either given explicitly, or
generated automatically. In class learning mode, where examples from different classes
are provided, no negative examples are needed. On the other hand, in relation learning
mode, where there are only two classes (~ and e) , negative examples are necessary.
Consequently, if they are not given explicitly, they have to be generated. The generation
of negative facts takes into account the type theory. In LINUS, there are several options
for generating negative examples.

• When generating negative facts under the closed-world assumption (cwa mode),
all possible combinations of values of kAr¢ arguments of the target relation are
generated.

• In partial closed-world assumption (pcwa) mode, for a given combination of val-
ues of the kArgI,d independent variables all combinations of values of the k~trgD,p
dependent variables are generated.

• In near_misses mode, facts are generated by varying only the value of one of the
kArg variables at a time, where kArg = kA, gO,p + kA~gX,d.

The generated facts are used as negative instances of the target relation, except
for those given as positive. In our example, negative facts are generated under the
closed-world assumption. The following facts labeled @ are generated:

r(al.bl.b2}.
r(al.b2.bl).
r(a2.bl.bl}.
r(a2.b2.bl}.
r(a2.b2.b2).

In the second s tep of the algorithm, positive and negative facts are transformed
into an attribute-value form. The algorithm first checks which are the possible appli-
cations of the utility predicates and functions on the arguments of the target relation.

271

Next, attribute-value tuples are generated by assigning values to the enlarged set of
attributes. Values true or false are assigned to each application of a utility predicate
on the argument values of the target relation. Similar computation is performed for
utility functions, except that values of all output arguments of a function are computed
(instead of only assigning values true or false).

In our simple example, the possible applications of predicate p are p(a.b} and p(a.c};
for the equality predicate the only possible application is b=c on arguments of the same
type type.b. Positive tuples of the form (a. b. c. (b=c). p(a.b), p(a.¢}) are then generated.

(al, bl, bl. true, true. true)
al, b2. b2. true. true, true)

(a2. bl, b2. false, false, true)

A similar computation is performed for the negative facts.

To show the complexity of the so obtained learning task, let us consider the
number of attributes to be used for learning. The total number of attributes kAur
equals:

kUti!

where kArg iS the number of arguments of the target relation, and kNetO,po iS the number
of new attributes, resulting from the possible (with regard to given types) applications
of one of the kwlz utility predicates/functions p, on the arguments of the target relation.

Suppose that the arguments of a n-ary utility predicate po are of types T~, i =
1 , . . . , u. ktc~,p, is then equal to the product of the numbers of variations (with repeti-
tion) of the numbers of arguments of the same type:

i=1

where kargT: is the number of arguments of type T~ in the target relation, ni is the
number of arguments of type T~ in the utility predicate, and u is the number of different
types of arguments in the utility predicate (n = ~=x n~). Since a relation where two
arguments are identical can be represented by a relation of a smaller arlty, we could
restrict the arguments of a utility predicate to be different. In this case the following
formula would hold:

~=I\ ni /

Utility predicates can be declared as symmetri~ in certain pairs of arguments. In
case that p~ is symmetric in all pairs of arguments, the number of variations (without
repetition) in (1) is replaced by the number of combinations:

kNetu,p : f i (kAr'T'~
~=i\ ni /

272

For example, the number of possible applications of the built-in symmetric utility pred-
icate equality {=]2} equals to:

i=1 i=1

where kAraT ~ denotes the number of arguments of the same type Ti, and r is the number
of different types in the target relation. Similar formulas hold for utility functions.

The th i rd s tep of the algorithm is the induction of the concept description
which depends on the choice of the learning algorithm. Training examples in the form
of tuples are transformed into the appropriate input form for learning by ASSISTANT
or NEWGEM, learning by the chosen attribute-value algorithm is invoked and the
obtained concept description (in the form of a decision tree or VL1 rules) is transcribed
into the form of if-then rules.

In the f o u r t h step, the induced if-then rules are transformed into DHDB form.
Before this transformation is performed, a special post-processor checks whether rules
can be made more compact by eliminating irrelevant literals and by discarding redun-
dant clauses. A literal in a clause is irrelevant if, after it has been eliminated, the clause
does not cover any new negative examples. A clause is redundant if it is covered by some
more general clause. Post-processing is especially effective when transforming decision
trees into rules (Quinlan 1987).

In our example, the if-then rules induced by NEWGEM are the following:

class = ~ i f a = a l /~ (b=c) = true.

class = ~) if c=b2 A p(a,b) = false.

The DHDB interface transforms these rules into the DHDB clauses below.

r(A.B.C} +-- A=a l . B=C.
r(A.B.C} +- C=b2. not p(A,B).

For comparison, the description induced by 'LINUS using NEWGEM without
background relations p and equality (which is equivalent to NEWGEM itself) was exactly
the same as the set of ground facts given as positive examples.

3 Experimental results and comparison with
other approaches

This section discusses the performance of LINUS on three learning tasks taken from the
machine learning literature. The descriptions of the domains are taken from Quinlan
(1989,1990) and our results are compared to the ones obtained by his system FOIL.

LINUS was used in relation learning mode to learn definitions of relations from
examples of the relation and background relations given as utility predicates. No pred-
icates of the form Attribute -- Value for binding a variable to a constant were allowed

273

in concept descriptions; this was achieved by selecting only applications of background
relations as independent variables for learning (kAttr = z~=lV'ku'~z klCew,p,, kAro = 0).

The arguments of the background relations used in FOIL are not typed and
the same relations are sometimes used for different types of arguments which can be
confusing. In LINUS, each such relation was replaced by several relations, one for each
combination of types, e.g., the precedes relation in the Eleusis example was replaced by
the two relations precedes_rank and precedes_suit.

Using two algorithms ASSISTANT and NEWGEM, we typically got slightly dif-
ferent results on the same domain; they were all comparable to the results obtained by
FOIL. In the chess endgame domain we were able to compare the classification accu-
racy and efficiency. Our res.ults are also compared to the ones obtained by DUCE and
CIGOL (Muggleton et al. 1989).

3.1 Learning the concept of an arch

In this example, taken from Winston (1975) and described by Quinlan (1990), four
objects are given. Two of them are arches and two are not, as shown in Figure 2.

Figure 2: Arches and near misses, from Winston (1975) and Quinlan (1990)

For the target relation arch(A.B.C), stating that A. B and C form an arch with
columns B and C and lintel A, the following background relations were used: supports(X.Y}.
left_of(X,Y}, touches(X.Y), brick(X), wedge(X) and parallelepiped(X).

LINUS was first run with explicitly given (two) negative examples, and then with
negative examples generated in the closed-world assumption mode. Results of LINUS
and FOIL are listed below.

% LINUS
negative examples: explicitly

arch(A.B.C} ~--
supports(B.A).
not touches(B,C}.

negative examples: cwa
arch(A.B.C} ~-

left_or(B.c).
supports(B,A).
not touches(B,C).

% FOIL
negative examples: explicitly
no clauses generated because
of encoding length restriction

negative examples: cwa
arch(A,B.C) ~-

left_of(B.c).
supports{B.A).
not touches(B,C).

274

The definition induced with explicitly given negative examples can be para-
phrased as follows: "A, B and ¢ form an arch if B supports A and B does not touch
C". Note that this definition is more general than the one obtained in cwa mode; the
latter has an additional condition stating that B must be left of C.

With explicitly given negative instances FOIL was unable to learn the concept
description because of the encoding length restriction. Namely, a heuristic used in
FOIL restricts the total length of the concept description to the number of bits needed
to enumerate the training instances explicitly. Our result in cwa mode is the same as
the one by FOIL.

On an enlarged set of training instances containing two more negative examples
(Lavra~, D~.eroski & Grobelnik 1990) the result using both ASSISTANT and NEWGEM
was essentially the same as reported by Winston (1975):

arch(A,B.C} <--- supports(B,A}, supports(C.A}, not touches(B.C}.

3 .2 E l e u s i s - L e a r n i n g r u l e s t h a t g o v e r n c a r d s e q u e n c e s

The Eleusis learning problem was originaly attacked by the SPARC/E system (Diet-
terich & Michalski 1986). The description here is taken from Quinlan (1990). In the
Eleusis card game, the dealer invents a secret rule specifying a condition under which
a card can be added to a sequence of cards. The players attempt to add a card to
the current sequence. If a card is a legal successor it is placed to the right of the last
card, otherwise it is placed under the last card. The horizontal main line represents the
sequence as developed so far, while the vertical side lines show incorrect plays. Three
layouts, reproduced from Quinlan (1990), are given in Figure 3.

Each card other than the first in the sequence provides an example for learning
the target relation can_follow. The example is labeled @ if the card appears in the main
line, and O if it is in a side llne. The target relation can_follow(A.B.C.D.E.F) states that
a card of rank A and suit B can follow a sequence ending with: a card of rank C and
suit D; E consecutive cards of suit D; and F consecutive cards of the same color. Back-
ground relations that can be used in induced rules are the following: precedes_rank(X,Y).
precedes_suit(X,Y), Iower_rank(X,Y), face(X), same_color(X,Y), odd_rank(X), and odd_num(X).

In the first layout, the intended dealer's rule was: "Completed color sequences

must be odd and a male card may not appear next to a female card". Neither FOIL nor

LINUS could discover the intended rule, because no information on the sex of cards was
encoded in the background relations. LINUS using ASSISTANT with post-processing

induced the clauses given below.

can_follow{A.B.C.D,E.F) <-- same_color(B.D).
can.follow(A,B,C,D,E,F} ~ odd.num(F}, not precedes_suit(D.B).
can_follow(A,B,C,D,E,F} ',-- odd_num(F), not precedes_rank(C,A).

While the clauses induced by LINUS using both ASSISTANT and NEWGEM cover
all positive examples, the ones induced by FOIL are not complete: they do not cover

275

main line
side lines

main (ctd)
side (ctd)

main line
side lines

main (ctd)
mainline
side line

h(3 75

lO& K5
Q(3

A(>

65 95 10(3 7(3 10(> J& A(> 4(3 8(> 75 95
K(> 55 Q(> 35 9(3
J(3 6(3

25 lO5 J&

J& 45 Q(3
K& 55

75

45 K(> 65

35 QO 9(3 Q$ 7(3 Q(> 9(> Q& 3(3 K(3
45 10(>

J(> 8~ J(3 75 J(> 7(3 J(3 6(3 K(>
4(3 5(> 8& J 5
75 65 K& A(3
J(3 7(3 3(3 K(>
4& 25 q 5

105 75
8(3 6(>

A(> 6(3
2(> 45

2& 55 A& 55 10(3
65 A5

Figure 3: Three Eleusis layouts, from Dietterich and Michalski
(1986) and Quinlan (1990)

the positive example can_follow(10.heart.9.spade.l.3). This is due to the encoding restriction,
which prevents further search for clauses. Although this might be useful when dealing
with noisy data, it is unsuitable for exact domains. The application of the encoding

4

restriction could be controlled by a parameter: it should be applied if the domain is
noisy or inexact, but should not be applied to exact domains with no noise, such as
the domains presented in this paper. Here are the clauses induced by LINUS using
NEWGEM, and by FOIL:

% layout 1
% negative examples: explicitly

LINUS using NEWGEM
ca n.follow (A.B.C.D.E.F) ~--

same.color(B.D).
ca n_folIow(A,B,C.D.E.F) #--

odd_num(F),
odd.rank(A).

can_follow(A,B.C.D.E.F) *--
not face(A).
Iower.rank(C.A).

% negative examples: explicitly
% FOIL
ca n_follow (A.B.C.D.E,F) *--

same_color(B.D).
can_follow (A.B.C,D.E.F) * -

odd.hum(F),
odd_rank(A).

276

In layout 2 both LINUS using NEWGEM and FOIL correctly induced the in-
tended rule: "Play alternate face and non-face cards". ASSISTANT's rule set contains
a superfluous clause which was not removed in post-processing.

layout 2
% LINUS using NEWGEM % FOIL
can_follow(A.B,C.D.E.F) ~- can_follow(A,B,C.D,E.F} +-

face(A), face(A},
not face(C), not face(C).

can_follow(A.B.C.D,E,F) *-- can_follow(A.B.C.D,E.F) ~--
face(C), face(C).
not face{A), not face(A).

% LINUS using ASSISTANT (after post-processing)
can_follow(A.B.C.D.E.F) ~-- face(C), not face{A).
can_follow(A,B,C.D.E,F) +-- face(A), not face(C).
can_follow(A.B,C.D,E,F) ~-- not odd_num(E).

In layout 3 the intended rule was: "Play a higher card in the suit preceding that
of the last card; or, play a lower card in the suit following that of the last card". FOIL
discovered only one clause, approximately describing the first part of the rule. LINUS
using ASSISTANT discovered an approximation of the whole rule: "Play a higher or
equal card in the suit preceding that of the last card; or, play a lower card in the suit
following that of the last card". The DHDB clauses are given below.

can_follow(A,B,C.D,E,F} *-- Iower_rank(A.C}, precedes_suit{D.B).
can_follow(A,B.C.D,E,F) +- precedes_suit(B.D}, not Iower_rank(A,C).

Again, the descriptions induced by LINUS are complete, while FOIL's is not.
Using NEWGEM, LINUS generated exactly the intended dealer's rule.

layout 3
% LINUS using NEWGEM % FOIL
ca n Jollow (A.B,C.D.E,F) *--

Iower_rank(A,C).
precedes_suit(D.B}.

can_follow (A,B,C.D,E.F) *--
Iower_rank(C.A).
precedes_suit(B,D).

can_follow(A,B,C.D,E,F) ~--
precedes_suit{B.D).
not Iower_rank(A.C).

3 . 3 L e a r n i n g i l l e g a l p o s i t i o n s i n a c h e s s e n d g a m e

The domain of this learning task, described in Muggleton et al. (1989) and Quinlan
(1990), is the chess endgame White King and Rook versus Black King. The target

277

relation ilIegaI(A.B.C,D.E.F) states whether the position in which the White King is at
{A.B), the White Rook at {C.D} and the Black King at (E,F} is not a legal White-to-move
position. In FOIL, the domain knowledge is represented by the two relations adjacent(X.Y)
and less_than(X.V) indicating that rank/file X is adjacent to rank/file Y and rank/file X is
less than rank/file Y, respectively.

LINUS uses the following utility predicates: adjacent.rank(X.Y), adjacentJile(X.Y),
less_rank(X.Y), less.file{X.Y) and equality X=Y. Their arguments are of type rank (with values
1 to 8) and file (with values a to h), respectively.

The training and testing sets used in our experiments were the ones used by
Muggleton et al. (1989). There are altogether ten sets of positions (examples), five
of 100 examples each and five of 1000 examples each. Each of the sets was used as a
training set for the three systems FOIL, LINUS using ASSISTANT, and LINUS using
NEWGEM. The sets of clauses were then tested as described in Muggleton et al. (1989).
The clauses obtained from a small set were tested on the 5000 examples from the large
sets and the clauses obtained from each large set were tested on the remaining 4500
examples.

100 training instances 1000 training instances
System Accuracy Time Accuracy Time

CIGOL
DUCE
FOIL on different sets
FOIL
LINUS using ASSISTANT
LINUS using NEWGEM

77.2%
33.7%
92.5% sd 3.6%
90.8% sd 1.7%
98.1% sd 1.1%
88.4% sd 4.0%

21.5 hr
2 hr

1.5 sec
31.6 sec
55.0 sec
30.0 sec

N/A
37.7%
99.4% sd 0.1%
99.7% sd 0.1%
99.7% sd 0.1%
99.7% sd 0.1%

N/A
10 hr

20.8 sec
4.0 min
9.6 min
4.3 rain

Table 1: Results on the chess endgame tasks

Table 1 gives the results in the chess endgame task. The classification accuracy
is given by the percentage of correctly classified testing instances and by the standard
deviation (sd), averaged over 5 experiments. The first two rows are taken from Muggle-
ton et al. (1989), the third is from Quinlan (1990) and the last three rows present the
results of our experiments. Note that the results reported by Quinlan (1990) were not
obtained from the same training and testing sets. The times in the first two rows are
for a Sun 3/60, in the third for a DECStation 3100, in the fourth for a Sun 3/50 and
in the last two rows CPU times are given for a VAX-8650 mainframe. The times given
for LINUS include transformation to attribute-value form, learning and transformation

into DHDB clauses.

In brief, on the small training sets LINUS using ASSISTANT with post-processing
outperformed FOIL. According to the T-test for dependent samples, this result is signif-
icant at the 0.5% level. Although LINUS using NEWGEM was sligtly worse than FOIL,
this result is not significant (even at the 20% level). The clauses obtained with LINUS

278

are as short and understandable (transparent) as FOIL's. On the large training sets
both systems performed equally well. Although LINUS is slower than FOIL, it is much
faster than DUCE and CIGOL. LINUS is slowed down mainly by the parts implemented
in Prolog, that is the DHDB interface and especially the post-processor. More efficient
implementations would significantly improve LINUS' speed. For illustration, for the
small training sets, the average time spent on transforming to attribute-value form,
learning and transforming to DHDB form was 16, 6 and 36 seconds for ASSISTANT,
and 16, 11 and 3 seconds for NEWGEM, respectively.

Our latest measurements on noisy data indicate that for large and noisy training
sets FOIL is much slower than LINUS. Namely, on the training set consisting of the
5000 examples with artificially added noise (30%), it took LINUS less than 20 minutes
of VAX 8650 CPU time to generate the hypothesis while FOIL on Sun 3/50 did not
complete the induction in 24 hours.

As an example, the clauses induced by LINUS using ASSISTANT (with post-
processing) from one of the sets of 100 examples are:

illegaI(A.B.C.D.E.F) ¢ - C=E.
illeEaI(A.B,C.D.E,F) *-- D=F.

illegaI(A,B.C.D,E,F} *-- adjacent_file(A.E). B=F.
illegaI{A.B.C.D,E.F) *-- adjacent_file(A.E), adjacent_rank(B.F).
illegaI(A,B.C.D.E.F) ~-- A=E. adjacent_rank(B.F).

illegaI(A.B.C.D.E.F) *-- A=E, B=F.

These may be paraphrased as: a position is illegal if the Black King is on the same
rank or file as (i.e., is attacked by) the Rook, or the White King and the Black King
are next to each other, or the White King and the Black King are on the same square.
Although these clauses are neither consistent nor complete, they correctly classify 98.5%
of the 5000 unseen cases.

4 Summary and discussion

Compared to attribute-value]earning, our approach has a number of advantages. It
allows for relational descriptions; use of compound terms; compact description of con-
cepts; use of utility predicate definitions and utility functions (background knowledge)
in concept descriptions; and inclusion of existing successful attribute-value learning pro-
grams into the logic programming environment. LINUS can be used both for learning
definitions of relations and for inducing descriptions of individual classes (possibly con-
sidering more than one decision variable). In LINUS, we use attribute-value learning
programs that embody years of research work, that are known to perform well and that
were tested and evaluated on a number of real-life domains. We add to their advanta-
geous features (e.g., mechanisms for handling noisy data in ASSISTANT) the ability of
learning logical definitions of relations in a more expressive first-order representational
formalism.

279

For the sake of efficiency, all systems that learn in first-order logic restrict the
hypotheses language. For example, FOIL uses function-free and CIGOL negation-free
Horn clause logic. LINUS uses an even more restricted language, i.e., the deductive
hierarchical database formalism. All variables in the body of a DHDB clause must
appear in its head. This is the main reason why LINUS can not learn recursive defi-
nitions of relations, while FOIL and CIGOL can. On the other hand, the efficiency of
attribute-value learning algorithms is preserved which is extremely important in large
real-life domains.

In this paper we have shown that LINUS can induce concept descriptions similar
to the ones obtained with other systems that learn definitions of relations in first-order
logic. The results of the experiments in learning nonrecursive definitions are equal to
or better than the ones obtained with FOIL. The descriptions generated by LINUS
are more general and more accurately represent the intended relations. In the 'arches'
domain less training examples were needed and the generation of negative examples in
the closed-world assumption mode was unnecessary. In the task of learning rules that
govern card sequences, in layout 3 LINUS, unlike FOIL, induced the intended (correct)
definition, and in the first layout it induced a more general definition. In the chess
endgame, LINUS using ASSISTANT achieved better classification accuracy than FOIL.
LINUS using NEWGEM achieved comparable results. LINUS and FOIL were both
much better than CIGOL.

To summarize, in our experiments, LINUS performed slightly better than FOIL.
Having parts implemented in Prolog, LINUS was slightly slower than FOIL, imple-
mented in C. However, both LINUS and FOIL were substantially more efficient than
DUCE and CIGOL. Our latest measurements on noisy data indicate that for large and
noisy training sets FOIL is much slower than LINUS.

Acknowledgements

This research was supported by the Slovene Research Council and is part of the ESPRIT
II Basic Research Action No. 3059, Project ECOLES. We are grateful to Ross Quinlan
for making available his system FOIL and the data used in the experiments, and Michael
Bain for the chess endgame data. We wish to thank Igor Mozeti~ for his contribution in
the development of LINUS, Dunja Mladeni~ for the implementation of ASSISTANT in
the VAX/VMS environment, and Ivan Bratko and Igor Kononenko for their comments
on an earlier draft of the paper.

References

Bratko, I., Mozeti£, I. & Lavra~, N. (1989) KARDIO: A study in deep and qualitative
knowledge for expert systems. Boston, MA: The MIT Press.

Cestnik, B. & Bratko, I. (1988) Learning redundant rules in noisy domains. Proc.
European Conference on Artificial Intelligence, ECAI-88, Muenchen, Germany.

280

Cestnik, B., Kononenko, I. & Bratko, I. (1987) ASSISTANT 86: A knowledge-elicitation
tool for sophisticated users. In: Bratko, I. & Lavra~, N. (eds.) Progress in machine
learning. Wilmslow: Sigma Press.

Clark, P. & Niblett, T. (1989) The CN2 induction algorithm. Machine Learning 1 (3),
261-284. Kluwer Academic Publishers.

Dietterich, T.G. & Michalski, R.S. (1986) Learning to predict sequences. In: Michal-
ski, R.S., Carbonell, J.G. & Mitchell, T.M. (eds.) Machine learning: An artificial
intelligence approach (Volume 2). Los Altos: Morgan Kaufmann.

Gains, M. (1989) New measurements highlight the importance of redundant knowl-
edge. Proc. European Working Session on Learning, EWSL 89. Montpellier, France:
Pitman.

Lavra~, N. (1990) Principles of knowledge acquisition in expert systems. PhD Thesis,
Maribor University, Yugoslavia.

Lavra~, N., D~eroski, S. & Grobelnik, M. (1990) Experiments in learning nonrecur-
sive definitions of relations with LINUS. Report IJS-DP-5863, Joker Stefan Institute,
Ljubljana, Yugoslavia.

Lavra~, N. & Mozeti~, I. (1988) Experiments with inductive learning programs NEW-
GEM and ASSISTANT in the DHDB environment. Report IJS-DP-5029, Joker Stefan
Institute, Ljubljana, Yugoslavia.

Lloyd, J.W. (1987) Foundations of logic programming (Second edition). Springer-
Verlag.

Michalski, R.S., Mozeti~, I., Hong, J. & Lavra~, N. (1986) The multi-purpose incremen-
tal learning system AQ15 and its testing application on three medical domains. Proc.
National Conference on Artificial Intelligence, AAAI-86. Philadelphia, PA: Morgan
Kaufmann.

Mozeti~, I. (1985) NEWGEM: Program for learning from examples - Technical doc-
umentation and user's guide. Report, University of Illinois at Urbana-Champaign,
Department of Computer Science. Also: Report IJS-DP-4390, Jo~fef Stefan Institute,
Ljubljana, Yugoslavia.

Mozeti~, I. (1987) Learning of qualitative models. In: Bratko, I. & Lavra~i, N. (eds.)
Progress in machine learning. Wilmslow: Sigma Press.

Mozeti~, I. & Lavra~, N. (1988) Incremental learning from examples in a logic-based
formalism. Proc. Int. Workshop on Machine Learning, Meta-reasoning and Logic,
Sesimbra, Portugal.

Muggleton, S.H. & Buntine, W. (1988) Machine invention of first-order predicates by
inverting resolution. Proc. Machine Learning Conference, Ann Arbor, Michigan.

Muggleton, S.H., Bain, M., Hayes-Michie, J. & Michie, D. (1989) An experimental
comparison of human and machine learning formalisms. Proc. Sixth International
Workshop on Machine Learning. Ithaca, NY: Morgan Kaufmann.

281

Muggleton, S.H. & Feng, C. (1990) Efficient induction of logic programs. Proc. First
Conference on Algorithmic Learning Theory. Tokyo: Ohmsha.

Quinlan, J.R. (1986) Induction of decision trees. Machine Learning 1 (1), 81-106.
Kluwer Academic Publishers.

Quinlan, J.R. (1987) Generating production rules from decision trees. Proc. Int. Joint
Conference on Artificial Intelligence, IJCAI 87. Milano, Italy: Morgan Kaufman.

Quinlan, J.R. (1989) Learning relations: Comparison of a symbolic and a connectionist
approach. Technical Report 346, Basser Dept. Comp. Sc., University of Sydney,
Sydney, Australia.

Quinlan, J.R. (1990) Learning logical definitions from relations. To appear in Machine
Learning. Kluwer Academic Publishers.

Winston, P.H. (1975) Learning structural descriptions from examples. In: Winston,
P.H. (ed.) The psychology of computer vision. New York: McGraw-Hill.

