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Abstract 

Many successful inductive learning systems use a propositional attribute-value language 
to represent both training examples and induced hypotheses. Recent developments are 
concerned with systems that induce concept descriptions in first-order logic. The deduc- 
tive hierarchical database (DHDB) formalism is a restricted form of Horn clause logic in 
which nonrecursive logical definitions of relations can be expressed. Having variables, 
compound terms and predicates, the DHDB formalism allows for more compact de- 
scriptions of concepts than an attribute-value language. Our inductive learning system 
LINUS uses the DHDB formalism to represent concepts as definitions of relations. The 
paper gives a description of LINUS and presents the results of its successful applica- 
tion to several inductive learning tasks taken from the machine learning literature. A 
comparison with the results of other first-order learning systems is given as well. 

1 I n t r o d u c t i o n  

The general framework for machine learning can be stated as follows. Given a set of 
positive training examples JET, a (possibly empty) set of negative training examples EF, 
and background knowledge B, find an hypothesis or concept description H such that 
B, H ~" JET and B, H ~ E~. 

The development of inductive learning systems can focus on different problems, 
such as restricted representation language, inability to make use of background knowl- 
edge, noise in training examples, and bias of vocabulary. Our work deals with the first 
three problems. Our system LINUS can effectively use background knowledge (B) in 
inducing hypotheses (H). Hypotheses have the form of DHDB (deductive hierarchical 
database) clauses, i.e., typed nonrecursive Horn clauses with negation, and represent 
logical definitions of relations. 
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Many successful inductive learning systems use a propositional attribute-value 
language to represent training examples and concept descriptions, for example, the 
members of the AQ (e.g., Michalski et al. 1986) and TDIDT (top-down induction 
of decision trees, e.g., Quinlan 1986) families of inductive learning programs. Recent 
developments are concerned with systems that induce concept descriptions in first- 
order logic. Very promising approaches are used in CIGOL (Muggleton & Buntine 
I988), GOLEM (Muggleton & Feng 1990) and FOIL (Quinlan 1989, 1990), which induce 
descriptions of complex relations in Horn clause logic. 

Our approach can b e  best compared to FOIL, since both systems are based on 
ideas that have proved effective in attribute-value learning programs. Each extends 
these ideas to a more expressive first-order logical formalism in its own way. The idea 
in LINUS is to incorporate existing attribute-value learning programs into the DHDB 
environment. LINUS now incorporates ASSISTANT (Cestnik, Kononenko & Bratko 
1987), a member of the TDIDT family, and NEWGEM (Mozeti~ 1985), a member of the 
AQ family, which are used in learning attribute-value descriptions. The incorporation 
into the DHDB environment is done by a special interface implemented in Prolog. The 
DHDB formalism is used to enhance the expressiveness of the propositional attribute- 
value languages used in ASSISTANT and NEWGEM. In DHDB, a typed language is 
used; the increase in expressiveness is due to universally quantified variables, compound 
terms, and utility predicates and functions, which can be used in the induced hypothe- 
ses. Despite the fact that recursively defined predicates and infinite terms (i.e., terms 
which can take a value from an infinite set) are not allowed in concept descriptions, the 
formalism is appropriate for a large scale of real-life problems. 

An initial algorithm for learning in the DHDB formalism is a part of QuMAS 
(Qualitative Model Acquisition System, Mozeti~ 1987). Its further development is de- 
scribed in (Mozeti~ & Lavra~ 1988, Lavra~ & Mozeti~ 1988). The algorithm was first 
used to learn functions of components of a qualitative model of the heart in the KAR- 
DIO system (Bratko, Mozeti~ & Lavra~ 1989). A detailed description of its successor 
LINUS and results of a number of other experiments can be found in (Lavra~ 1990). 

The aim of this paper is to show how LINUS can be used to learn nonrecursive 
logical definitions of relations. Section 2 introduces the DHDB formalism, gives an 
overview of the system, and describes the learning algorithm. Section 3 gives results 
of the successful application of LINUS to several inductive learning tasks taken from 
machine learning literature. Our results are compared to the results obtained by FOIL 
(Quinlan 1989, 1990). In the chess endgame domain, we compare the classification 
accuracy and efficiency with FOIL, DUCE and CIGOL (Muggleton et al. 1989). 

2 Learning  in t h e  D H D B  formal i sm 

2 . 1  T h e  D H D B  f o r m a l i s m  

A deductive database is a finite set of typed Horn clauses with negation of the form: 

A ~-- L o , . . . , L n  
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where A is an atom (predicate symbol applied to terms) and each Li is a literal (positive 
or negative atom). 

A deductive database is called hierarchical if its predicates can be partitioned into 
levels so that the bodies of the clauses in the definitions of higher level predicates contain 
only lower level predicates (Lloyd 1987). Consequently, recursive predicate definitions 
are not allowed in deductive hierarchical databases (DHDB). 

In deductive databases a typed language is used. Types provide a natural way 
of specifying the domain of a database. We emphasize that, in contrast to the usual 
restriction in deductive databases, in our formalism compound terms are allowed to 
appear as arguments of predicates in a database and in queries. However, only hier- 
archical (nonreeursive) types are allowed. This restriction bans recursive data types, 
which means that there are only a finite number of ground (non-variable) terms of each 
type, and consequently, that each query can only have a finite number of answers (Lloyd 
1987). A comparison of DHDB to other logical formalisms is given in (Mozeti~ & Lavra~ 
1988). 

2 . 2  L e a r n i n g  i n  L I N U S  

In attribute-value learning, given is a set of training instances {given as n-tuples of 
values of a fixed collection of attributes), each belonging to exactly one of the possible 
classes. Classes are values of the decision or dependent variable and attributes are called 
independent variables. The learning task is to find a rule, called a hypothesis or a concept 
description, that can be used to predict the class of an unseen object as a function of 
its attribute values. 

In DHDB, a set of training instances is given as a set of ground facts specifying 
a relation between n domain entities. By analogy with an object's class, each ground 
fact is labeled ~ or O to indicate whether or not it is in the relation, i.e., whether it is 
to be treated as a positive or as a negative instance for learning. 

In LINUS, hypothesis H (i.e., the description of the target relation to be learned), 
has the form of a predicate definition (a set of typed nonrecursive Horn clauses with 
negation, having the same predicate in the head); positive examples ET are given ground 
facts; negative examples EF are either given or generated ground facts; and background 
knowledge B consists of predicate definitions in the form of typed (possibly recursive) 
Horn clauses with negation. 

The main idea in LINUS is to incorporate existing attribute-value learning pro- 
grams into a more powerful DHDB environment. This is done by a special DHDB 
interface, consisting of over 2000 lines of Prolog code. The structure of the system is 
shown in Figure 1. The DHDB interface transforms positive instances (given facts) and 
negative instances (possibly generated by the DHDB interface) from the DHDB form 
into attribute-value tuples and vice versa, from induced if-then rules into the DHDB 
form. The most important feature of this interface is that, by taking into account type 
theory, utility predicates and functions are considered as possible new attributes for 
learning by an attribute-value learning program. 
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Currently LINUS incorporates two attribute-value learning programs, ASSIS- 
TANT and NEWGEM. In our environment it is easy to incorporate other learning 
algorithms, e.g., GINESYS (Gams 1989) and CN2 (Clark & Niblett 1989), which were 
already used in some of our experiments. Having different systems in the same DHDB 
environment, the idea (promoted in GINESYS and LOGART (Cestnik & Bratko 1988)) 
that multiple knowledge can increase system performance can naturally be further ex- 
ploited. 

[ positivel I generation _I negative ~atility predicate~ 
[ and functions [ ( facts [ of negative 7 facts ! 

\ [ facts J 
applic~a ion of utility predicates and functions, 

t r a n s f o r m ~ t o  a I t r i b ~ e  tuples 

training 
I examples 

decision ... [ VLlrules tree [ 

t~r  nscription int~rule form j ~  

transformation to DHDB form 
LINUS 

I DHDB clauses I 

Figure 1: An overview of the LINUS system 

2.3 Training examples and domain knowledge 

We briefly describe the input to LINUS and illustrate it on a simple example. 

Given are training instances in the form of ground facts determining a relation 
between n domain entities. Suppose that relation r(a.b.c) is defined by the following 
three ground facts labeled ~: 
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dal,bl.bl}. 
r(al,b2.b2). 
r(a2,b1.52). 

Facts labeled 8 ,  not belonging to the relation, may also be provided. Associated with 
relation r{a.b.¢) is the declaration of the names and the types of its arguments, stating 
that the first argument of relation r named a is of type_a, and the other two arguments 
named b and c are of type_b. Each type has an associated set of possible values, e.g., 
{al.a2} for type_a, and {bl,b2} for type_b. In general, values are constants or compound 
terms with constant arguments. The use of compound terms allows for the descrip- 
tion of compound or structured objects. Values can be nominal, linear, continuous, or 
structured (hierarchical). The type boolean is defined by default. 

Background knowledge consists of predicate definitions specifying relations be- 
tween domain entities. These predicate definitions can be recursive. We distinguish 
between what we call utility predicates and utility functions. Utility functions are predi- 
cates with an annotation which determines the input and output arguments, while utility 
predicates only have input arguments. This is similar to mode declarations in GOLEM 
(Muggleton & Feng 1990). Utility predicates can be declared symmetric in certain pairs 
of arguments of the same type. For example, a binary predicate q(X, Y) is symmetric in 
X and Y if they are both of type T and q(X, Y) -- q(Y, X) for every value of X and Y. 
A built-in symmetric utility predicate equality (=/2} is defined by default on arguments 
of the same type. 

For each relation, utility predicate and utility function there is a definition of the 
types of arguments. In our example, a binary utility predicate p is defined on arguments 
of type_a and type_b, respectively. 

p(al,bl). 
p(al.b2). 
p(a2.b2). 

The form of examples to be used in learning is determined by the so-called de- 
pendence relation. We may select any subset of the n arguments of the given relation 
for learning the target relation. Apart from the kArg selected arguments, we can also 
select kv,z utility predicates and functions as interesting for the given learning task. 
In this way we have k = kAro + kvtll selected arguments. In our example, the depen- 
dence relation states that all arguments (a. b and c) are selected, and that the possible 
applications of the utility predicates p and equality {=]2) should be considered as new 
attributes for learning (k = 3 + 2 = 5). 

Having selected the k arguments, some of them can be treated as dependent vari- 
ables (analogous to class variables) and the others as independent variables (analogous 
to attributes in attribute-value learning). This distinction is important since LINUS 
can be used both for learning definitions of relations (relation learning mode) and for 
inducing descriptions of particular classes (class learning mode). In class learning mode, 
dependent variables are not used for learning, but are only used to determine the dif- 
ferent classes, where a class is a combination of values of the dependent variables. In 
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relation learning mode, on the other hand, the two classes to be learned are ~ and @, 
denoting whether the arguments do or do not satisfy the target relation. When generat- 
ing negative examples (see Section 2.4) we also need to distinguish between dependent 
and independent variables. In the paper we restrict our scope only to relation learning. 

2.4 The learning algorithm 

The outermost level of the LINUS learning algorithm consists of the following steps: 

• establish the set of positive and negative facts, 
• transform facts from the DHDB form into attribute-value tuples, 
• induce a concept description by an attribute-value learning program, 
• transform the induced if-then rules into the form of DHDB clauses. 

Below is a short description of the individual steps illustrated by an example. 

In the first  s tep,  the sets of positive and negative facts are determined. Positive 
facts are always given explicitly, while negative facts may be either given explicitly, or 
generated automatically. In class learning mode, where examples from different classes 
are provided, no negative examples are needed. On the other hand, in relation learning 
mode, where there are only two classes (~ and e ) ,  negative examples are necessary. 
Consequently, if they are not given explicitly, they have to be generated. The generation 
of negative facts takes into account the type theory. In LINUS, there are several options 
for generating negative examples. 

• When generating negative facts under the closed-world assumption (cwa mode), 
all possible combinations of values of kAr¢ arguments of the target relation are 
generated. 

• In partial closed-world assumption (pcwa) mode, for a given combination of val- 
ues of the kArgI,d independent variables all combinations of values of the k~trgD,p 
dependent variables are generated. 

• In near_misses mode, facts are generated by varying only the value of one of the 
kArg variables at a time, where kArg = kA, gO,p + kA~gX,d. 

The generated facts are used as negative instances of the target relation, except 
for those given as positive. In our example, negative facts are generated under the 
closed-world assumption. The following facts labeled @ are generated: 

r(al.bl.b2}. 
r(al.b2.bl). 
r(a2.bl.bl}. 
r(a2.b2.bl}. 
r(a2.b2.b2). 

In the second s tep  of the algorithm, positive and negative facts are transformed 
into an attribute-value form. The algorithm first checks which are the possible appli- 
cations of the utility predicates and functions on the arguments of the target relation. 
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Next, attribute-value tuples are generated by assigning values to the enlarged set of 
attributes. Values true or false are assigned to each application of a utility predicate 
on the argument values of the target relation. Similar computation is performed for 
utility functions, except that values of all output arguments of a function are computed 
(instead of only assigning values true or false). 

In our simple example, the possible applications of predicate p are p(a.b} and p(a.c}; 
for the equality predicate the only possible application is b=c on arguments of the same 
type type.b. Positive tuples of the form ( a. b. c. (b=c). p(a.b), p(a.¢} ) are then generated. 

( al, bl, bl. true, true. true ) 
al, b2. b2. true. true, true ) 

( a2. bl, b2. false, false, true ) 

A similar computation is performed for the negative facts. 

To show the complexity of the so obtained learning task, let us consider the 
number of attributes to be used for learning. The total number of attributes kAur 
equals: 

kUti! 

where kArg iS the number of arguments of the target relation, and kNetO,po iS the number 
of new attributes, resulting from the possible (with regard to given types) applications 
of one of the kwlz utility predicates/functions p, on the arguments of the target relation. 

Suppose that the arguments of a n-ary utility predicate po are of types T~, i = 
1 , . . . ,  u. ktc~,p, is then equal to the product of the numbers of variations (with repeti- 
tion) of the numbers of arguments of the same type: 

i=1 

where kargT: is the number of arguments of type T~ in the target relation, ni is the 
number of arguments of type T~ in the utility predicate, and u is the number of different 
types of arguments in the utility predicate (n = ~=x  n~). Since a relation where two 
arguments are identical can be represented by a relation of a smaller arlty, we could 
restrict the arguments of a utility predicate to be different. In this case the following 
formula would hold: 

~=I\ ni / 

Utility predicates can be declared as symmetri~ in certain pairs of arguments. In 
case that p~ is symmetric in all pairs of arguments, the number of variations (without 
repetition) in (1) is replaced by the number of combinations: 

kNetu,p : f i  (kAr'T'~ 
~=i\  ni / 



272 

For example, the number of possible applications of the built-in symmetric utility pred- 
icate equality {=]2} equals to: 

i=1  i=1  

where kAraT ~ denotes the number of arguments of the same type Ti, and r is the number 
of different types in the target relation. Similar formulas hold for utility functions. 

The th i rd  s tep of the algorithm is the induction of the concept description 
which depends on the choice of the learning algorithm. Training examples in the form 
of tuples are transformed into the appropriate input form for learning by ASSISTANT 
or NEWGEM, learning by the chosen attribute-value algorithm is invoked and the 
obtained concept description (in the form of a decision tree or VL1 rules) is transcribed 
into the form of if-then rules. 

In the f o u r t h  step,  the induced if-then rules are transformed into DHDB form. 
Before this transformation is performed, a special post-processor checks whether rules 
can be made more compact by eliminating irrelevant literals and by discarding redun- 
dant clauses. A literal in a clause is irrelevant if, after it has been eliminated, the clause 
does not cover any new negative examples. A clause is redundant if it is covered by some 
more general clause. Post-processing is especially effective when transforming decision 
trees into rules (Quinlan 1987). 

In our example, the if-then rules induced by NEWGEM are the following: 

class = ~ i f  a = a l  /~ (b=c)  = true. 

class = ~) if c=b2 A p(a,b) = false. 

The DHDB interface transforms these rules into the DHDB clauses below. 

r(A.B.C} +-- A=a l .  B=C. 
r(A.B.C} +-  C=b2. not p(A,B). 

For comparison, the description induced by 'LINUS using NEWGEM without 
background relations p and equality (which is equivalent to NEWGEM itself) was exactly 
the same as the set of ground facts given as positive examples. 

3 Experimental  results and comparison with 
other approaches 

This section discusses the performance of LINUS on three learning tasks taken from the 
machine learning literature. The descriptions of the domains are taken from Quinlan 
(1989,1990) and our results are compared to the ones obtained by his system FOIL. 

LINUS was used in relation learning mode to learn definitions of relations from 
examples of the relation and background relations given as utility predicates. No pred- 
icates of the form Attribute -- Value for binding a variable to a constant were allowed 
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in concept descriptions; this was achieved by selecting only applications of background 
relations as independent variables for learning (kAttr = z~=lV'ku'~z klCew,p,, kAro = 0). 

The arguments of the background relations used in FOIL are not typed and 
the same relations are sometimes used for different types of arguments which can be 
confusing. In LINUS, each such relation was replaced by several relations, one for each 
combination of types, e.g., the precedes relation in the Eleusis example was replaced by 
the two relations precedes_rank and precedes_suit. 

Using two algorithms ASSISTANT and NEWGEM, we typically got slightly dif- 
ferent results on the same domain; they were all comparable to the results obtained by 
FOIL. In the chess endgame domain we were able to compare the classification accu- 
racy and efficiency. Our res.ults are also compared to the ones obtained by DUCE and 
CIGOL (Muggleton et al. 1989). 

3.1 Learning  the  concept  of  an arch 

In this example, taken from Winston (1975) and described by Quinlan (1990), four 
objects are given. Two of them are arches and two are not, as shown in Figure 2. 

Figure 2: Arches and near misses, from Winston (1975) and Quinlan (1990) 

For the target relation arch(A.B.C), stating that A. B and C form an arch with 
columns B and C and lintel A, the following background relations were used: supports(X.Y}. 
left_of(X,Y}, touches(X.Y), brick(X), wedge(X) and parallelepiped(X). 

LINUS was first run with explicitly given (two) negative examples, and then with 
negative examples generated in the closed-world assumption mode. Results of LINUS 
and FOIL are listed below. 

% LINUS 
negative examples: explicitly 

arch(A.B.C} ~-- 
supports(B.A). 
not touches(B,C}. 

negative examples: cwa 
arch(A.B.C} ~- 

left_or(B.c). 
supports(B,A). 
not touches(B,C). 

% FOIL 
negative examples: explicitly 
no clauses generated because 
of encoding length restriction 

negative examples: cwa 
arch(A,B.C) ~- 

left_of(B.c). 
supports{B.A). 
not touches(B,C). 
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The definition induced with explicitly given negative examples can be para- 
phrased as follows: "A, B and ¢ form an arch if B supports A and B does not touch 
C". Note that this definition is more general than the one obtained in cwa mode; the 
latter has an additional condition stating that B must be left of C. 

With explicitly given negative instances FOIL was unable to learn the concept 
description because of the encoding length restriction. Namely, a heuristic used in 
FOIL restricts the total length of the concept description to the number of bits needed 
to enumerate the training instances explicitly. Our result in cwa mode is the same as 
the  one  by FOIL. 

On an enlarged set of training instances containing two more negative examples 
(Lavra~, D~.eroski & Grobelnik 1990) the result using both ASSISTANT and NEWGEM 
was essentially the same as reported by Winston (1975): 

arch(A,B.C} <--- supports(B,A}, supports(C.A}, not touches(B.C}. 

3 .2  E l e u s i s  - L e a r n i n g  r u l e s  t h a t  g o v e r n  c a r d  s e q u e n c e s  

The Eleusis learning problem was originaly attacked by the SPARC/E system (Diet- 
terich & Michalski 1986). The description here is taken from Quinlan (1990). In the 
Eleusis card game, the dealer invents a secret rule specifying a condition under which 
a card can be added to a sequence of cards. The players attempt to add a card to 
the current sequence. If a card is a legal successor it is placed to the right of the last 
card, otherwise it is placed under the last card. The horizontal main line represents the 
sequence as developed so far, while the vertical side lines show incorrect plays. Three 
layouts, reproduced from Quinlan (1990), are given in Figure 3. 

Each card other than the first in the sequence provides an example for learning 
the target relation can_follow. The example is labeled @ if the card appears in the main 
line, and O if it is in a side llne. The target relation can_follow(A.B.C.D.E.F) states that 
a card of rank A and suit B can follow a sequence ending with: a card of rank C and 
suit D; E consecutive cards of suit D; and F consecutive cards of the same color. Back- 
ground relations that can be used in induced rules are the following: precedes_rank(X,Y). 
precedes_suit(X,Y), Iower_rank(X,Y), face(X), same_color(X,Y), odd_rank(X), and odd_num(X). 

In the first layout, the intended dealer's rule was: "Completed color sequences 

must be odd and a male card may not appear next to a female card". Neither FOIL nor 

LINUS could discover the intended rule, because no information on the sex of cards was 
encoded in the background relations. LINUS using ASSISTANT with post-processing 

induced the clauses given below. 

can_follow{A.B.C.D,E.F) <-- same_color(B.D). 
can.follow(A,B,C,D,E,F} ~ odd.num(F}, not precedes_suit(D.B). 
can_follow(A,B,C,D,E,F} ',-- odd_num(F), not precedes_rank(C,A). 

While the clauses induced by LINUS using both ASSISTANT and NEWGEM cover 
all positive examples, the ones induced by FOIL are not complete: they do not cover 
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side lines 

main (ctd) 
side (ctd) 

main line 
side lines 

main (ctd) 
mainline 
side line 

h(3 75 

lO& K5 
Q(3 

A(> 

65 95 10(3 7(3 10(> J& A(> 4(3 8(> 75 95 
K(> 55 Q(> 35 9(3 
J(3 6(3 

25 lO5 J& 

J& 45 Q(3 
K& 55 

75 

45 K(> 65 

35 QO 9(3 Q$ 7(3 Q(> 9(> Q& 3(3 K(3 
45 10(> 

J(> 8~ J(3 75 J(> 7(3 J(3 6(3 K(> 
4(3 5(> 8& J 5  
75 65 K& A(3 
J(3 7(3 3(3 K(> 
4& 25 q 5  

105 75 
8(3 6(> 

A(> 6(3 
2(> 45 

2& 55 A& 55 10(3 
65 A5  

Figure 3: Three Eleusis layouts, from Dietterich and Michalski 
(1986) and Quinlan (1990) 

the positive example can_follow(10.heart.9.spade.l.3). This is due to the encoding restriction, 
which prevents further search for clauses. Although this might be useful when dealing 
with noisy data, it is unsuitable for exact domains. The application of the encoding 
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restriction could be controlled by a parameter: it should be applied if the domain is 
noisy or inexact, but should not be applied to exact domains with no noise, such as 
the domains presented in this paper. Here are the clauses induced by LINUS using 
NEWGEM, and by FOIL: 

% layout 1 
% negative examples: explicitly 

LINUS using NEWGEM 
ca n.follow (A.B.C.D.E.F) ~-- 

same.color(B.D). 
ca n_folIow(A,B,C.D.E.F) #-- 

odd_num(F), 
odd.rank(A). 

can_follow(A,B.C.D.E.F) *-- 
not face(A). 
Iower.rank(C.A). 

% negative examples: explicitly 
% FOIL 
ca n_follow (A.B.C.D.E,F) *-- 

same_color(B.D). 
can_follow (A.B.C,D.E.F) * -  

odd.hum(F), 
odd_rank(A). 
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In layout 2 both LINUS using NEWGEM and FOIL correctly induced the in- 
tended rule: "Play alternate face and non-face cards". ASSISTANT's rule set contains 
a superfluous clause which was not removed in post-processing. 

layout 2 
% LINUS using NEWGEM % FOIL 
can_follow(A.B,C.D.E.F) ~-  can_follow(A,B,C.D,E.F} +-  

face(A), face(A}, 
not face(C), not face(C). 

can_follow(A.B.C.D,E,F) *-- can_follow(A.B.C.D,E.F) ~-- 
face(C), face(C). 
not face{A), not face(A). 

% LINUS using ASSISTANT (after post-processing) 
can_follow(A.B.C.D.E.F) ~-- face(C), not face{A). 
can_follow(A,B,C.D.E,F) +-- face(A), not face(C). 
can_follow(A.B,C.D,E,F) ~-- not odd_num(E). 

In layout 3 the intended rule was: "Play a higher card in the suit preceding that 
of the last card; or, play a lower card in the suit following that of the last card". FOIL 
discovered only one clause, approximately describing the first part of the rule. LINUS 
using ASSISTANT discovered an approximation of the whole rule: "Play a higher or 
equal card in the suit preceding that of the last card; or, play a lower card in the suit 
following that of the last card". The DHDB clauses are given below. 

can_follow(A,B,C.D,E,F} *-- Iower_rank(A.C}, precedes_suit{D.B). 
can_follow(A,B.C.D,E,F) +-  precedes_suit(B.D}, not Iower_rank(A,C). 

Again, the descriptions induced by LINUS are complete, while FOIL's is not. 
Using NEWGEM, LINUS generated exactly the intended dealer's rule. 

layout 3 
% LINUS using NEWGEM % FOIL 
ca n Jollow (A.B,C.D.E,F) *-- 

Iower_rank(A,C). 
precedes_suit(D.B}. 

can_follow (A,B,C.D,E.F) *-- 
Iower_rank(C.A). 
precedes_suit(B,D). 

can_follow(A,B,C.D,E,F) ~-- 
precedes_suit{B.D). 
not Iower_rank(A.C). 

3 . 3  L e a r n i n g  i l l e g a l  p o s i t i o n s  i n  a c h e s s  e n d g a m e  

The domain of this learning task, described in Muggleton et al. (1989) and Quinlan 
(1990), is the chess endgame White King and Rook versus Black King. The target 
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relation ilIegaI(A.B.C,D.E.F) states whether the position in which the White King is at 
{A.B), the White Rook at {C.D} and the Black King at (E,F} is not a legal White-to-move 
position. In FOIL, the domain knowledge is represented by the two relations adjacent(X.Y) 
and less_than(X.V) indicating that rank/file X is adjacent to rank/file Y and rank/file X is 
less than rank/file Y, respectively. 

LINUS uses the following utility predicates: adjacent.rank(X.Y), adjacentJile(X.Y), 
less_rank(X.Y), less.file{X.Y) and equality X=Y. Their arguments are of type rank (with values 
1 to 8) and file (with values a to h), respectively. 

The training and testing sets used in our experiments were the ones used by 
Muggleton et al. (1989). There are altogether ten sets of positions (examples), five 
of 100 examples each and five of 1000 examples each. Each of the sets was used as a 
training set for the three systems FOIL, LINUS using ASSISTANT, and LINUS using 
NEWGEM. The sets of clauses were then tested as described in Muggleton et al. (1989). 
The clauses obtained from a small set were tested on the 5000 examples from the large 
sets and the clauses obtained from each large set were tested on the remaining 4500 
examples. 

100 training instances 1000 training instances 
System Accuracy Time Accuracy Time 

CIGOL 
DUCE 
FOIL on different sets 
FOIL 
LINUS using ASSISTANT 
LINUS using NEWGEM 

77.2% 
33.7% 
92.5% sd 3.6% 
90.8% sd 1.7% 
98.1% sd 1.1% 
88.4% sd 4.0% 

21.5 hr 
2 hr 

1.5 sec 
31.6 sec 
55.0 sec 
30.0 sec 

N/A 
37.7% 
99.4% sd 0.1% 
99.7% sd 0.1% 
99.7% sd 0.1% 
99.7% sd 0.1% 

N/A 
10 hr 

20.8 sec 
4.0 min 
9.6 min 
4.3 rain 

Table 1: Results on the chess endgame tasks 

Table 1 gives the results in the chess endgame task. The classification accuracy 
is given by the percentage of correctly classified testing instances and by the standard 
deviation (sd), averaged over 5 experiments. The first two rows are taken from Muggle- 
ton et al. (1989), the third is from Quinlan (1990) and the last three rows present the 
results of our experiments. Note that the results reported by Quinlan (1990) were not 
obtained from the same training and testing sets. The times in the first two rows are 
for a Sun 3/60, in the third for a DECStation 3100, in the fourth for a Sun 3/50 and 
in the last two rows CPU times are given for a VAX-8650 mainframe. The times given 
for LINUS include transformation to attribute-value form, learning and transformation 

into DHDB clauses. 

In brief, on the small training sets LINUS using ASSISTANT with post-processing 
outperformed FOIL. According to the T-test for dependent samples, this result is signif- 
icant at the 0.5% level. Although LINUS using NEWGEM was sligtly worse than FOIL, 
this result is not significant (even at the 20% level). The clauses obtained with LINUS 
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are as short and understandable (transparent) as FOIL's. On the large training sets 
both systems performed equally well. Although LINUS is slower than FOIL, it is much 
faster than DUCE and CIGOL. LINUS is slowed down mainly by the parts implemented 
in Prolog, that is the DHDB interface and especially the post-processor. More efficient 
implementations would significantly improve LINUS' speed. For illustration, for the 
small training sets, the average time spent on transforming to attribute-value form, 
learning and transforming to DHDB form was 16, 6 and 36 seconds for ASSISTANT, 
and 16, 11 and 3 seconds for NEWGEM, respectively. 

Our latest measurements on noisy data indicate that for large and noisy training 
sets FOIL is much slower than LINUS. Namely, on the training set consisting of the 
5000 examples with artificially added noise (30%), it took LINUS less than 20 minutes 
of VAX 8650 CPU time to generate the hypothesis while FOIL on Sun 3/50 did not 
complete the induction in 24 hours. 

As an example, the clauses induced by LINUS using ASSISTANT (with post- 
processing) from one of the sets of 100 examples are: 

illegaI(A.B.C.D.E.F) ¢ -  C=E. 
illeEaI(A.B,C.D.E,F) *-- D=F.  

illegaI(A,B.C.D,E,F} *-- adjacent_file(A.E). B=F. 
illegaI{A.B.C.D,E.F) *-- adjacent_file(A.E), adjacent_rank(B.F). 
illegaI(A,B.C.D.E.F) ~-- A=E. adjacent_rank(B.F). 

illegaI(A.B.C.D.E.F) *--  A=E,  B=F.  

These may be paraphrased as: a position is illegal if the Black King is on the same 
rank or file as (i.e., is attacked by) the Rook, or the White King and the Black King 
are next to each other, or the White King and the Black King are on the same square. 
Although these clauses are neither consistent nor complete, they correctly classify 98.5% 
of the 5000 unseen cases. 

4 Summary  and discussion 

Compared to attribute-value ]earning, our approach has a number of advantages. It 
allows for relational descriptions; use of compound terms; compact description of con- 
cepts; use of utility predicate definitions and utility functions (background knowledge) 
in concept descriptions; and inclusion of existing successful attribute-value learning pro- 
grams into the logic programming environment. LINUS can be used both for learning 
definitions of relations and for inducing descriptions of individual classes (possibly con- 
sidering more than one decision variable). In LINUS, we use attribute-value learning 
programs that embody years of research work, that are known to perform well and that 
were tested and evaluated on a number of real-life domains. We add to their advanta- 
geous features (e.g., mechanisms for handling noisy data in ASSISTANT) the ability of 
learning logical definitions of relations in a more expressive first-order representational 
formalism. 
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For the sake of efficiency, all systems that learn in first-order logic restrict the 
hypotheses language. For example, FOIL uses function-free and CIGOL negation-free 
Horn clause logic. LINUS uses an even more restricted language, i.e., the deductive 
hierarchical database formalism. All variables in the body of a DHDB clause must 
appear in its head. This is the main reason why LINUS can not learn recursive defi- 
nitions of relations, while FOIL and CIGOL can. On the other hand, the efficiency of 
attribute-value learning algorithms is preserved which is extremely important in large 
real-life domains. 

In this paper we have shown that LINUS can induce concept descriptions similar 
to the ones obtained with other systems that learn definitions of relations in first-order 
logic. The results of the experiments in learning nonrecursive definitions are equal to 
or better than the ones obtained with FOIL. The descriptions generated by LINUS 
are more general and more accurately represent the intended relations. In the 'arches' 
domain less training examples were needed and the generation of negative examples in 
the closed-world assumption mode was unnecessary. In the task of learning rules that 
govern card sequences, in layout 3 LINUS, unlike FOIL, induced the intended (correct) 
definition, and in the first layout it induced a more general definition. In the chess 
endgame, LINUS using ASSISTANT achieved better classification accuracy than FOIL. 
LINUS using NEWGEM achieved comparable results. LINUS and FOIL were both 
much better than CIGOL. 

To summarize, in our experiments, LINUS performed slightly better than FOIL. 
Having parts implemented in Prolog, LINUS was slightly slower than FOIL, imple- 
mented in C. However, both LINUS and FOIL were substantially more efficient than 
DUCE and CIGOL. Our latest measurements on noisy data indicate that for large and 
noisy training sets FOIL is much slower than LINUS. 
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