
A Method for Inductive
Cost Optimization

Floor Verdenius

R/KS, Postbus 463, 6200 AL Maastricht, The Netherlands*

Abstract

In this paper we present a Method for Inductive Cost Optimization (MICO), as an example of induc-

tion biased by using background knowledge. The method produces a decision tree that identifies

those set'points that enable the process to produce in as cost-efficient a manner as possible. We report

on two examples, one idealised and one real-world. Some problems concerning MICO are reported.

Keywords: Machine Learning, Biased Inductive Learning, Cost Optimization, Decision Trees

1. Introduction

Inductive learning, deriving knowledge from a real-world dataset, has been the subject of much work

in artificial intelligence. Top Down Induction of Decision Trees (TDIDT) is a well known class of in-

duction algorithms. Algorithms in this class recursively partition a dataset, forming a tree that de-

scribes decision points; a typical example being ID3 (Quinlan 19861.1333 generates decision trees for

nominal valued data-records. The resulting tree gives a representation that can be used to classify new

instances. One of the derivatives of ID3 is NPPA (Talmon, 1986) which generates binary decision

trees for real-valued data. Both ID3 and NPPA use information gain as the criterion to find the best

partition. In this paper we will use NPPA as our standard induction algorithm.

TDIDT techniques originally are developed as tools for automatic knowledge acquisition. They are

also used as a tool for data-analysis in research and industry, for example Cosemans & Samyn

(1990) used induction to identify the most significant parameters in several industrial production

processes. They showed that induction can achieve good practical results, where statistical techniques

are very time-consuming, and sometimes unable to identify all the determining parameters.

* Now at: SMR, Jacob van Lennepkade 334 m, 1053 NJ Amsterdam, The Netherlands

180

It has been reported (e.g. Shapiro, 1987; Nunez, 1988; Tan & Schlimmer, 1989; Bergadano et. al.,

1990) that the applicability of induction is improved by using background knowledge. Particularly, it

results in more realistic decision trees that provide appropriate answers to specific questions. In this

paper we discuss one application of background knowledge in induction: optimization of production

costs in industrial environments. The structure of this text is as follows: section 2 introduces the use

of background knowledge as an instrument to improve induction and survey existing literature on this

topic. In section 3 we introduce cost optimization as one example of the use of background knowl-

edge in induction. In section 4 an application of this algorithm is discussed. We end with conclusions

and plans for further research.

2. Context

Let us start with an example of a company, mass-producing some product in a batch production pro-

cess. Two process parameters, the percentage P1 of some chemical element in a raw material and the

temperature P2 in an oven are measured. Both these values can be controlled. At the end of the pro-

cess the products are labeled relative to their quality. They are either saleable or unsaleable. The un-

saleable product is considered to be waste, and has no economic value. The relation between the pa-

rameter-values and the labels is unknown.

Given this situation, different departments in this company typically require answers to different

questions. For example:

(a) the research department: what are the the optimal setpoints for P1 and P2 from the point of view

of quality control?

(b) the technical department: how can we diagnose a production failure as soon as possible, if we

know the values of P1 and P2?

(c) the technical department again: and how can we diagnose a production failure as cheap as possi-

ble, including the costs of measuring P1 and P2?

(d) the production department: we have some heuristics about how P1 and P2 determine the quality

label of our product. I f we assume these heuristics to be correct, what additional knowledge can

we derive from a dataset?

(e) the financial department: what setpoints for P1 and P2 should be used to produce with the lowest

cost price and what is this cost price?

An important point to note is that in establishing this relationships no one analysis is sufficient for all

requirements. Induction may answer the questions (a) and (b) (e.g. Cosemans & Samyn, 1990). It

establishes relationships between input and output, e.g. between attributes and (quality) labels. By

using background knowledge to bias induction, the questions (c) and (d) can be answered as showed

181

by Nunez (1988) and Bergadano et. al. (1990) respectively. As we will show in this paper, by using

background knowledge on production costs in induction, we can answer questions such as (e).

TDIDT programs search in the space of all possible decision trees that describe a given dataset. An

algorithm chooses one specific tree out of this set. Utgoff (1986) shows that several factors influence

the selection of the decision tree, e.g. the formalism or language in which hypothesis are described

and the problem space considered. All influencing factors constitute the total bias of induction. These

biasing factors can't be avoided, but they can be influenced. It is well known that information gain

has a specific bias: it favours attributes with many different values above attributes with only a few

different values. Criteria that are closely related to information gain, such as covariability (Cosemans

& Samyn, 1990) or geometric distance (e.g. Spangler et. al., 1989) select trees that may be close to

the one that is found using information gain. We must use the appropriate bias to be able to answer

specific questions.

The decision trees that are constructed using information gain are very efficient, but they lack logical

structure for experts (Arbab & Michie, 1985). Shapiro (1987) and Buntine & Stirling (1988) show

how expert background knowledge can be used to bias the induction, producing trees that are easier

to understand for humans. These methods, however, need the presence of an expert during the pro-

cess of induction, and may be time consuming. Nunez (1988) automated the use of knowledge on di-

agnosis cost in the induction, and showed that by using this knowledge the constructed trees are

easier to understand. We think, in accordance with the other authors mentioned, that the use of back-

ground knowledge in induction may enable us to answer the questions mentioned above and that it

may produce trees with a structure that is close(r) to the way an expert reasons.

3. Cost Optimization

3.1 Why Cost Optimization

Several authors report the application of induction to data from industrial processes (e.g. Cosemans

& Samyn, 1990; Bergadano et. al., 1990). Most examples are concerned with quality control. As we

showed in section 2 however, not all questions that may be asked in industry can yet be answered by

means of induction. We use induction to answer question (e) (the one that asks for the cheapest

products). The reason for choosing to deal with this particular problem is threefold. Firstly, this

question may be interesting for industry. Identifying the optimal setpoints from a cost price point of

182

view enables industry to optimize profit. Second, background knowledge on cost optimization (in the

way we use it) can be represented formally. Such a representation may not be available for some

other types of background knowledge. Finally, it is a clear example of how the use of background

knowledge may influence the partition criterion.

Our main goal was to develop an algorithm that was able to find a tuning of the process delivering

cheap end products, by means of induction. This implied three changes in the process of induction.

Decision trees on real valued parameters, as produced by TDIDT algorithms, contain choice points of

the form: either make Px < P, or Px > P. Most process controllers work differently. A process set-

point can be set, being the mean value to be reached in the process, and the controller has a specific

accuracy, being the (standard) deviation of the values in the process. We adopt this process control

method of representing choice points. In addition the partition criteria considers cost gain instead of

information gain, and the produced tree contains an optimal path.

3.2 Assumptions

In accordance with other induction algorithms we assume that:

• the dataset is representative for the problem space

• the noise is kept within reasonable norms

• the dataset contains no missing values

• all quality determining parameters are represented in the dataset

In addition we assume that:

• all parameters in the dataset can be controlled

• controlling a parameter consists of controlling both the mean value and standard deviation

• the costs involved in controlling a parameter Pi can be represented in two functions, P-Pi and ~Pi,

for controlling the mean value and the standard deviation of Pi respectively. These functions, which

represent the functional relation between costs and setpoints, form the background knowledge to be

used in the partition criterion.

3.3 Cost Gain as a Partition Criterion

To start with, we need the following data for optimizing the costs:

• A set of parameters P : { pl, p2, p3 }.

183

• Mean and standard deviation cost functions p.Pi(l.to, I.tn) and evPi(¢~o, evn), one of them for each pa-

rameter Pi. These functions indicate how the cost of one single end-product is influenced when the

mean value and standard deviation of parameter Pi are changed from go to Ix, and 6o to eva respec-

tively.

• A set of data-records D : { dl,d2,d3 }. Each data-record dx consists of: {k x, Vlx, V2x Ix},

with kx a key for dx, Vjx being the value of parameter j for record dx, and lx being the label of record

dx. The label is a member of a set L : { saleable, unsaleable }. An unsaleable product represents

waste.

• The initial costs of one individual product IC, as it is derived for the entire dataset.

The result of the algorithm should be a cost decision tree (CDT). In a CDT a path from the root to a

leaf node represents a tuning of the production process fin this paper, for ease of understanding only

the tuning of the most optimal path is shown). Such a tuning consists of a set of parame-

ter/setpoint/accuracy combinations. Also attached to each tuning is a cost price Ci of a saleable prod-

uct.

Our aim is to minimize Ci. Let us first calculate C i for a certain node i. We assume that this node

contains x saleable and y unsaleable products. Then Ci is defined as follows:
(x+y) * (IC + Co)

(1) Ci . ,
x

where Cc are the accumulated control costs of each node from the root of the tree down to the current

node. To calculate Cc we have to calculate the control costs generated by a branching node, Cci. We

assumed before that there are costs related to controlling the mean value and standard deviation of a

parameter. If Pi is a parameter, then P-Pi(go,go) is the function that gives the total costs of controlling

Pi from the old setpoint go to the new setpoint tin. Accordingly, evPi(co,Cn) gives the costs resulting

from changing the control accuracy from evo to evn. The control costs in a node i can now be expressed

as:

(2) Cei = I-tPi(IXo,~tn) + cPi(ao,an)

Our aim, minimizing the unit product costs for a saleable product can be reformulated as maximizing

the cost gain. If Ci is the cost at branching node i, by partitioning this node for Px = P, we can calcu-

late the new cost price for the child nodes: Cleft and Cright. The costgain then becomes:

(3) CG (Px = P) = Ci - Min (Cleft, Cright)

Our algorithm now should find a parameter Px and related value p such that CG is maximized.

Once a CDT has been derived, we have to find the optimal leaf. This of course is very simple: the

path from the root to the leaf with the minimal cost price indicates the. most optimal group of set-

points. In the branching points the setpoints are available, both as border values (as is the case in

ID3/NPPA) and as mean and sigma values.

184

3.4 An Example

To illustrate the algorithm we generated a simplified two-dimensional space belonging to the example

of section 2. Both the variables P1 and P2 take values from 0 to 9. The labels were attached: saleable

(+) and unsaleable (-). The initial cost of a product, IC, was set to 11. This resulted in a cost price of

a good product for the entire dataset, Ci to be 14.86. A representation of the instance space is pre-

sented as a 10xl0 grid (Figure 1). Figure la shows the areas that were recognized by NPPA. The

region with the minimal cost price (region 1) has a cost price of 13.52, about 9 % cheaper than the

cost price of the initial dataset.

Table 1 shows the cost functions for mean and standard deviation. The functions may stand for a

process where the costs are inversely proportional to the standard deviation of the parameter values,

and quadratic/linearly dependent on the mean value of the parameters (in real-world situations these

functions may be far more complicated!). The partitioning MICO finds for this situation is shown in

Figure lb. A part of the related CDT can be found in Figure 2. MICO finds a partitioning in which

only one unsaleable product is represented. The final cost price is 11.88, about 20 % cheaper than the

original result, and 11% cheaper than the solution NPPA comes up with.

By varying cost functions and fixed product-costs, which are the background knowledge, the parti-

tioning can be influenced. As might be expected induction biased this way follows certain rules: when

the initial costs IC of one produced entity are relatively high, MICO seeks for an area with as little

'bad' products as possible (as in region 1 of Figure lb). Lower IC leads to less partitioning: more

'bad' products are tolerated (as in region 1 of Figure lc). This however also decreases the realative

cost price reduction achieved by the partitioning (5% in Figure lc). This may be illustrated by the

following example: when producing airplanes (high IC), you want to be very sure that at the end of

your process, a good plane is delivered, and so you are prepared to invest in process control. When

you are producing chewing gum (low IC) you can afford to throw away some of your end products.

The initial costs IC thus weights the importance of the unsaleable instances related to the saleable.

Though the same effect can be reached in other ways, e.g. by duplicating the saleable and unsaleable

instances so that their ratio is according to some weight, using the initial costs IC seems a better solu-

tion.

The cost functions weigh the preference for controlling certain parameters. If we vary the cost

functions, we influence these weights. In Figure ld we can see what happens when the cost

functions for parameter P1 of Figure lb are changed. The functions IJ-P! and cP1 are changed so that

the effect of changing the setpoint and the standard deviation of P1 is 10 and 5 times as influential as

in Figure lb.

1 8 5

0 1 2

0 1 . 4 . . 4 . - I .

1 + +
2 4- 4- 4-

- I - + 4 -

P 1 4 - 4 - ~

7 4-
8
9

P 2

3 4 5 6 7 8 9
3 4

4- .4- .4- .4- q"

4- 4- 4- + .4-

4- 4- .4- 4- 4-

4- .4- "b 4- 4- -

4- 4- 4- 4- 4-,

4- 4- 4- 4- 4- 54-i' 4-i

_ 4- 4- 4- 4- 4-I 4-j

4- .4- - + -~ + 1 + !
4- 4- 4- 4- 4- 4-14-1
4- .4- 4- 4- 4- .4.1-

a. As partitioned by NPPA

• P 1

P 2

0 1 2 3 4 5 6 7

0 1 4 - 4- ' 4-

1 _ + J +

2 4 - 4 - i .
3 .4. 4-i4-

4- @ 4-

5 % - ~ +

6 5 . _ ! _

7 . . . I .
8 4 _ - I -
9 . . I .

~] lgMIml m |
I H m m n l l
• l H m m l |
PJHIlHIm mm
~ l ~ R t ~ l N [i l l
.nJlNIHIn l |
hum mLull mR LnJ m i c l l

a n n u n a w
.nJ EIN IP] IH ENIP]|
l m l l U l l

) . As partitioned by MICO (IC = 11)

P 1

P 2

0 1 2 3 4 5 6 7 8

0 1 4 - 4- 4- 4- 4- 4- 4- 4 - 3

- "l- + + .4- .4- 4- 4-

4- 4- 4- .4- .4- .4- ..it- .4-

4- 4 . 4 . -4- 4- 4- 4- .4- -

• 4- 4- @ 4- -4- .4- 4- 4- _

"l- q- 4- @ 4- -t" .4- 4- @

2 _ . 4- 4- .4- 4- 4- 4-

4- 4- 4- 4- 4- 4 - ' 4-

8 [4 - 4- 4 . 4- 4- 4- 4-

9 i -,- 4- -,- - , - - , - 4 - -

e. As partitioned by MICO (IC = 2)

P 2

0 1 2 3 4 5 6 7

0 4- 4-1 4- i 4- 4- 4- 4-1 -4- 5

1 .4- @J .4- + .4- "4-1 .4-

2 4- .4. 4 - 4 - 4- .4- 4- i .4.

3 + 4- 4 - ! + 4- ÷ ÷1.4.
P 1 4 + 4- . .14- 4- 4- 4-!4- 6

5 4- 4- .1. .t. .1. 4- 4- 4- 4-

~ ' z 4. 4- -~ 4-1 4- 4- 4-
7 a . 4- .4-4- .4- 4- 4- 4-

8 3_ _ 4- 4- 4- 4 1 4 - 4- 4-
9 - -L. 4- -L -t. ..[. 4- -

d. As partitioned by MICO
0.1P1 and cP1 changed)

Figure 1. A graphical representation of the examples mentioned in the text

3.5 Informat ion Gain versus Cost Gain

The performance of information gain and cost gain in some of the above examples can be seen in

table 2. We see that the results MICO comes up with are at least as beneficial as the results of NPPA.

This holds for all examples we have considered. The partitioning of the instance space as made by

NPPA may differ significantly from the one found by MICO (see Figure 1).

186

P1_<5 /

Par'ae : p2
M 3.50 5 2.32

Labal : sileable IPar'a~: pl
c o s t : 11.93]M 4.so s o.s9

P ~ ~ 4

Label : unsalable I [Label : slleable

I J Cost: Cost: II'IF 69.85

I
PaPam: pt ~ !
I'! 2.50 S 1.72

IParo": I

Par'am: pl I M 6.50 S 0.55

Figure 2. Part of the CDT belonging to Figure ld (M = Mean value, S = standard deviation). In the
branching nodes, the mean value and standard deviation that are needed to reach the descendant node
with the minimum Ci are shown. The setpoints for the other branch are available in the program, and

can be accessed through the interface

Function type

Parameter

P1

P2

Mean value cost

function

IXPx (oFt, n~t)

0.01 (nl~2 - o~ 2)

0.3 (% - %)

i

Standard deviation

cost function

~Px (o~, na)

l /ha- 1/o~

10 (l/ha - 1/oc)

Table 1. The mean and standard deviation functions of the example

CDT's produced according to MICO differ from the decision trees as produced by other TDIDT al-

gorithms on several points. The first difference is that a CDT reflects a search space, where an opti-

mal path can be found. The optimal path indicates the optimal tuning of the process. A decision tree

on the other hand gives a classification of all instances in the dataset; it makes no sense to talk about

an optimum here. When a CDT is used as a classification tree, it behaves as a probabilistic classifier

(Quinlan 1987).

Another difference between CDT's and classical decision trees is the information provided by the

branching points. In the branching points of NPPA-like decision trees conditions are stored in the

form of an inequality on attribute values. In CDT's the branching points store a setpoint and a devia-

tion.

187

Used version Initial Cost price of NPPA

costprice the NPPA versus

solution initial

IC = 11 (fig lb) 14.86 13.52 9.0%

IC = 2 (fi~ lc) 2.70 4.14 -53.3%

u-Pl 10 times higher 14.86 12.41 16.49%

Cost pr ice MICO

of the MICO versus

solution initial

11.88 ' 20.0%

2.54 5.9%

11.83 20.4%

Table 2. A comparison of the NPPA and MICO in the examples of Figure 1

3.6 N-class Labeling

In section 3.4 we presented all requirements for the 2-class datasets, where one of the classes was

waste. We will now sketch how the algorithm can be generalized to N-class situations and to situa-

tions where all products have some value, e.g. as scrap, or as a second class product. For the 2-class

problems with one of the classes being waste, we can concentrate on costs. When we want to

optimize the problem for more classes, with different values, costs are not sufficient. We have to find

another way to compare two situations. This is solved by the introduction of a function representing

the value of a product:

* Income-function I(Kv, 1); given a class-distribution Kv and a specific label 1, this function gives the

total income for products of that label.

The partitioning criterion now becomes the maximization of the average benefits of a product. As ar-

gued before this does not change the basic algorithm. An extra calculation however is needed. Instead

of minimizing the costs of a good product, we are now interested in maximizing the profit of a prod-

uct. We now have to maximize the benefit gain:

(4) BG (Px = P) = Max (Bleft, Bright) - Bi

(with Bi the benefit in the parent node, and Bleft and Bright the benefit for the child nodes). If we find

a distribution of [Xl, x2, ... Xn] in a leaf node, the average benefit gain BG on a product can be calcu-

lated with the formula:

n n

(~ xi*I([Xl, x2 .. Xn], xi)) - (~- xi) * (IC + Co)
i=l i=l

(5) B G . .
n

Z xi
i=l

188

The benefit of one product thus is calculated by taking the difference between total benefit and total

cost, divided by the number of products. This extension is straightforward and introduces no new

concepts. In many industrial cases 2-class labeling is sufficient.

4. Empirical Results

We have applied the algorithm to data gathered in an industrial company with a mass-production pro-

cess. We received a small dataset from the factory, containing 52 records of 10 parameters. All pa-

rameters are real-valued. The initial costs, valid for the entire dataset, are 170. Given the distribution

between saleable and unsaleable products in the dataset of 29 and 23 respectively, this resulted in a

cost-price for the saleable products of 304.83. Good cost functions were not directly available. We

therefore constructed cost functions on the basis of a factory-model we received from the company

and on the basis of expert interviews.

We applied both NPPA and MICO on this dataset. The results are shown in table 3. Using the NPPA

algorithm, we constructed a decision tree. The derived ruleset consists of 7 rules. The cheapest solu-

tion NPPA came up with was 174.98, which was valid for 6 examples. All examples in this rule

were classified correctly. The CDT produced by MICO was larger, containing 10 rules. It contained a

partition on a parameter that was not identified as quality determining by NPPA. Most of the rules

were valid for a few examples, and thus were not very reliable. The cheapest set of setpoints reduced

the total cost price from 304.83 to 171.46 (this rule incorporated 10 examples).

Feature Initial NPPA MICO

Number of rules 7 10

Lowest cost 304.83 174.98 171.46

55% Labeling accuracy (over all)

Labeling accuracy (bes0

86.5%

100% 55%

78 %

100%

Table 3. Comparison between the initial dataset, NPPA and MICO on real world data

5. Conclusions

5.1. M I C O

MICO is an algorithm that performs well in minimizing the costs and optimizing the benefits of a pro-

duction process. The solutions it finds are at least as good as the ones NPPA finds, at least in two

189

points: they represent production tunings for products with a low cost price, and they are understand-

able for operators of the production process, because they make choices that make sense.

If we try to understand how the information gain criterion works for these cases we see a reduction in

uncertainty on the class label. In NPPA partitioning continues until no significant information gain

can be reached. The way our cost optimizing algorithm works is very similar. MICO does not make

use of information gain as its partitioning principle. The pragmatic condition of information gain,

which is used in NPPA, is replaced by a well-defined one in MICO: the cost functions exactly

quantify this criteria.

Algorithms like NPPA control the partitioning of the dataset by calculating some statistical feature of

the information gain, e.g. the significance of the reached information gain. These control strategies

are highly pragmatic. In MICO the control strategy is meaningful: as long as the cost price decreases,

the process continues. The way the cost functions for standard deviation value of a parameter are for-

mulated should guarantee that a partitioning up to individual records should not happen. Another

view here is that the cost functions and the initial IC are the parameters controlling the partitioning. In

other words this method of biasing induction uses a well-defined meaning in the real-world instead of

a pragmatic measure.

5.2 Induction Biased by Background Knowledge

We have presented an algorithm that uses one specific form of background knowledge. Several other

ways of using background knowledge however must be distinguished. The cost example uses back-

ground knowledge to partition the dataset.

One way of biasing induction is by manipulating the hypothesis space. The approach Utgoff (1986)

took with STABB enlarges the space of hypothesis by weakening the bias. In TDIDT this use of

weakening the bias can be found in Spangler et. al. (1989). Our approach of biasing induction

doesn't weaken the bias, but shifts the bias to another part of the hypothesis space, thereby making it

possible for other questions to be answered.

5.3 Acquiring Cost Functions

Applying MICO clearly creates a new problem: the acquisition of cost functions. As we explained in

section 3.2 cost functions relate a change in parameter tuning with a change in the production costs of

one product. In the industrial environments we visited, there were no such cost functions available, at

least not formulated explicitly. However, there are very clear heuristics about them. For example,

190

when talking about controlling a temperature gradient, a typical statement was: 'controlling this is

very expensive, maybe it is cheaper to try influencing the temperature'.

This type of remarks was made very frequently. From that, we searched for formalization of the

weights of the parameters. We found it to be hard for operators and engineers in industry to formulate

the cost functions we needed in MICO. Our approach in acquiring the functions was to analyse the

process on the basis of experts-interviews and to extract cost functions from this analysis. This

resulted in cost functions of a type close to the heuristics of process experts.

6. Further research

We will continue developing the MICO algorithm. An interesting question is the effect of the depen-

dency of parameters that appear in the cost functions. More experience is needed in constructing cost

functions for real factory situations and we would like to compare MICO more extensively with exist-

ing methods for cost optimization as defined in the cost price analysis, and in engineering sciences.

We should also search for better ways to represent cost functions. As we explained earlier, we

adopted a representation for cost functions which is as close as possible to the heuristics that process

experts use. This representation differs from the one used in business economics, where costs are

considered to have a fixed and variable part. In this form, cost functions may be formulated more

naturally, and better explicit formulation may take place. Other topics of research will be the signifi-

cance of the cost optimizations as derived by MICO, and the possibilities for post-processing the pro-

duced trees (as in Payne & Meisel, 1977). This may enable us to further improve the solutions, of

both optimality of costs and classification.

The main subject of our project is to develop appropriate strategies for applying background knowl-

edge in induction. We find that this may enlarge the possibilities for using inductive learning tech-

niques in practical situations, both in knowledge acquisition and in data analysis applications.

Acknowledgements

I am indebted to Jan Talmon for making his NPPA version available for me, and to Hilde Thijsen for

building the generic interface for my induction programs. I thank Jan Paredis, Jan Talmon and Gerry

KeUeher for the useful suggestions and comments on earlier versions of this paper.

191

References

Arbab & Michie 1985 Arbab, B., and Michie, D., Generating Rules from Examples, in:
Proceedings of IJCAI-85, pp. 631-633, Los Angeles, CA, 1985

Bergadano et. al. 1990 Bergadano, F., Giordana, A. and Saitta, L., Biasing Induction by
Using a Domain Theory: An Experimental Evaluation, in: Proceedings of
ECAI-90, pp. 84-89, 1990

Buntine & Stirling 1988 Buntine, W., and Stirling, D., Interactive Induction, in: Proceedings
of the Fourth IEEE Conference on Artificial Intelligence Applications, pp.
320-326, San Diego, 1988

Cosemans & Samyn 1990 Cosemans, G., and Samyn, J., Inductive Analysis of Datasets,
paper presented at BeneLearn-90, Leuven 1990

Nunez 1988 Nunez, M., Economic Induction: A Case Study, in:, Proceedings of
EWSL-88, pp. 139-146, Glasgow, Scotland 1988

Payne & Meisel 1977 Payne, H.J., and Meisel, W.S., An Algorithm for Constructing
Optimal Binary Decision Trees, in: IEEE Transactions on computers, vol
26, pp. 905-916, 1977

Quinlan 1986 Quinlan, J.R., Induction of Decision Trees, in: Machine learning, Vol.
1, No 1, pp. 81-106, 1986

Quinlan 1987 Quinlan, J.R., Decision Trees as Probabilistic Classifiers, in:
Proceedings of the 4th International Machine I~arning Workshop, pp. 31-
37, University of California, Irvine, 1987

Shapiro 1987 Shapiro, A.,Structured Induction in Expert Systems, Turing Institute,
Glasgow, Scotland, 1987

Spangler et. al. 1989 Spangler, S., Fayyad, U.M., and Uthurusamy, R., Induction of
Decision Trees from Inconclusive Data, in: Proceedings of the 6th
International Workshop on Machine Learning, pp. 146-150, Ithaca, NY,
1989

Talmon 1986 Talmon, J.L., A Multiclass Nonparametric Partitioning Algorithm, in:
Pattern recognition letters Vol. 4, pg 31-38, 1986

Tan & Schlimmer 1989 Tan, M. and Schlimmer, J.C., Cost-Sensitive Concept Learning of
Sensor Use in Approach and Recognition,in: Proceedings of the 6th
International Workshop on Machine Learning, pp. 392-395, Ithaca, NY,
1989

Utgoff 1986 Utgoff, P.E., Shift of Bias for Inductive Concept Learning, in: Machine
Learning, An Artificial Intelligence Approach, Volume II, R.S. Michalski,,
J.G. Carbonell and T.M. Mitchell (eds), Morgan Kaufman, Los Altos,
California 1986

