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ABSTRACT 

There is no doubt that the most fundamental method of knowledge acquisition is dis- 

covery, but the AI subfield of Knowledge Acquisition neither studies nor uses discovery 

methods. We argue that machine discovery is approaching the stage at which it can be 

useful to knowledge acquisition in two ways: as a source of useful techniques, and as 

a model of unified knowledge representation and application. We present the discovery 

system FAHRENHEIT and we discuss its various real-world applications: automated 

experimentation and discovery in a chemistry laboratory, mining databases for useful 

knowledge, and others, demonstrating FAHRENHEIT's potential as a knowledge acqui- 

sition aid. Finally, wc discuss the new developments in the area of discovering basic laws 

and hidden structure, and we note that automation of modeling would close the cycle of 

automated knowledge acquisition and application. 

1 Introduction 

Despite progress, the state of the art in knowledge acquisition is characterized by an amal- 

gamation of incompatible techniques, lack of standards, and narrow applications (Boose 

& Gaines 1989). In our search for a solution to these problems, we should consider the 

best mechanism for knowledge acquisition developed by humanity: modern science and 

engineering. Science and engineering offer us a unifying knowledge organization spanning 

many levels: data, empirical regularities, models, basic laws, and principles. Science and 

engineering offer proven methods of acquiring and verifying knowledge. Although the sci- 

entific metaphor is becoming popular in the field of knowledge acquisition, and although 
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researchers acknowledge that building a knowledge-based system resembles the construc- 

tion of a scientific theory, the scientific method has been used only in a very limited way 

for knowledge acquisition and representation. There are several reasons. First, although 

separate elements of the scientific method have been reconstructed, many important ele- 

ments are still missing. Second, although many attempts have been made at integration 

of various discovery capabilities (IDS: Nordhausen & Langley 1990; BLAGDEN: Slee- 

man, Stacey, Edwards, & Gray 1989; FAHRENHEIT: Zytkow 1987; Langley & Zytkow 

1989), each integration is limited to only a few elements of the scientific method. Third, 

the applications of machine discovery are believed to be still in the research phase. 

We concentrate on the third argument. Although no-one objects to the claim that 

science and the scientific method are worth understanding and automating, the feasi- 

bility of the task raises doubts, in both the short and long run. To show that practi- 

cal results are possible we summarize the FAHRENHEIT project, which is focused on 

multi-dimensional experimentation and data analysis. We demonstrate the breadth and 

importance of real-world applications of FAHRENHEIT. Then, in response to the first 

argument, we summarize progress that has been made in the last few years on automa- 

tion of other elements of scientific method. We concentrating especially on discovery of 

basic laws and discovery of hidden structure. Finally, we consider automation of knowl- 

edge application. Although automated model construction is the key to the acquisition 

of practical knowledge (Morik 1989; Zytkow & Lewenstam 1990), so far little has been 

done in that area and significant progress is needed. 

In a short run, FAHRENHEIT can be viewed as another incompatible technique added 

to the repertoir of knowledge acquisition methods. But from a larger perspective, the 

results in the area of machine discovery fall into a master plan, as gradually reconstructed 

components of a unified method of experimental science. This approach is guaranteed 

to succeed because scientific method and scientific knowledge representation forfn a solid 

and proven theoretical platform for knowledge acquisition. 

We concentrate on automated discovery rather than on user support, exemplified by 

systems such as BLIP (Morik 1989; Wrobel 1989), QuMAS (Mozetic 1987) and DISCI- 

PLE (Kodratoff & Tecuci 1989). 

2 D i s c o v e r y  o f  p a t t e r n s  i n  e m p i r i c a l  d a t a  

In this section we review the research program in machine discovery based on FAHREN- 

HEIT. Because we summarize a large research program and many results, the review will 
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be done at the level of major components and related goals and we will make an unusual 

number of references to our own papers. FAHRENHEIT uses a well-known BACON 

system (Langley et al 1987), so we will use frequent comparisons with BACON. 

2.1 The  task of F A H R E N H E I T  

At the outset, FAHRENHEIT is given N independent variables zl,...,ZN and one de- 

pendent variable y (also indicated as s0), each limited in scope to a set of values 

V,',i = 0,1, ..., N.. The possible values of these variables form a cartesian product of 

N + 1 dimensions. FAHRENHEIT is given experimental control over the values of all 

independent variables and is supposed to find a regularity for the dependent variable y, 

which includes as many independent variables as possible. This has been the task of 

BACON, but while BACON has been able to succeed when there was one regularity in 

the whole block, FAHRENHEIT can discover several multidimensional regularities and 

the scope of each regularity within the block. The scope of each regularity is defined 

by a condition that must be satisfied by independent variables. Figure 1.a shows the 

space of two independent variables and three regularities R1,R2,R3 divided by bound- 

aries B1 and B2. The upper part of Figure 1.a shows the linked structure which is built 

by FAHRENHEIT to represent these regularities and their boundaries. 

In addition to finding multiple regularities in data, FAHRENHEIT can also perform 

many other tasks in data analysis. We will discuss these in the next subsection. 

2.2 Al ternat ives  to regular i ty  finding 

Quantitative discovery systems were traditionally limited to regularity detection, whereas 

scientists are also interested in discovery of "special points" or patterns such as maxima, 

minima, discontinuities, and the like. Sometimes, finding a special point is more im- 

portant than detecting a regularity. The maxima in data can indicate various chemical 

species; the maximum location indicates the type of ion, while the maximum height 

indicates the concentration. Discontinuity may indicate a phase change. 

In addition to BACON's capability for detection of a single regularity for all data, 

FAHRENHEIT is capable of detection and analysis of such "patterns" in data as: 

1. maxima and minima, 

2. inflection points, 

3. discontinuities, 
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4. changes of slope, 

5. zeros and the values of x for which y = a, 

6. boundaries of regularities. 

This leads to a considerable growth of discovery power. 

To understand the modularity of FAHRENHEIT it is important to notice that detec- 

tion of special points is an alternative to regularity finding in formal terms of their inputs 

and outputs. Consider maxima as an example. A maximum is defined as a datapoint 

(z,y) which is higher (has the y value greater) than some points z l  and z2 on both sides 

of x by more than empirical error, and there are no points in between z l  and z2 higher 

than y. The input is a set of datapoints and their errors, in exactly the same format as 

required for the regularity finder. The output is a llst of maxima. Each maximum is de- 

scribed by the location and error for location, and the height and error for the maximum 

height. The description of a regularity is analogous. It includes the values of parameters, 

such as slope and intercept, and the error of each parameter. 

2.3 Goal s t ruc tu re  

FAHRENHEIT combines several searches (7,ytkow 1987). Each search corresponds to a 

particular goal. Our informal presentation is very close to the actual implementation of 

the system. We concentrate on the high level goals and we skip lower level details. 

We will examine the circumstances in which different searches are called, starting from 

the situation in which BACON-3 has successfully completed the search for regularities 

for M independent variables, M < N (N is the total number of independent variables): 

1. Generalize to another dimension (cf. the Ordering search in the space of general- 

izations, Zytkow 1987). The instances of the generalization operator correspond to 

the remaining independent variables z,~+l, ..., zg. They can be ordered by the use 

of the relevance relation between the dependent and independent variables). 

2. Find a new non-investlgated area in the M-dimensional subspace of independent 

variables. The Find-new-area search which is called to solve this problem returns 

several seeds which are M-tuples of independent values for which no regularity has 

yet been found. Each seed can be used to start the BACON-3 experiments in search 

for a new regularity for the given M independent variables and for y. 

In the situation in which the Find-regularity search (BACON-l) for xl or any module 

that detects special points has successfully returned to BACON-3 (Figure 3) the following 

goals can be invoked: 
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1. Generalize the regularity in the dimension x;. Invoke the Boundary search (Zytkow 

1987; Langley & Zytkow 1989) in order to find the scope of the regularity. 

2. Apply Find-regularity to detect a regularity on maxima, or a regularity in the se- 

quence of other special points. 
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BACON-3  and B A C O N - 1  searches in the F A H REN H EIT  system. 
A l l  a d d i t i o n s  to BACON are in the bold face. 

In the case when the Find-regularity has been unsuccessful, FAHRENHEIT can take 

several steps. 

1. Analyse the residuals, that is the differences y - f (~)  between predictions of the 

unsuccessful fit f (~ )  and the actual data  (Figure 2.4). Search for a regular i ty  in 

residuals expands the curve fitting capability of FAHRENHEIT.  The example in 

Figure 2.4 shows that  Find-regularity, which can find a linear fit and a × s in(z  -t- b), 
but not a x x x s in(x  "t- b) + c, can discover the latter function as a result of the 

analysis of residuals. 

2. Parti t ion the data into several subsets and call Find-regularity on each. Figures 

1.b and I.c illustrate the Partit ion search in a situation in which the initial dataset 
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( I  + J + K in Figure 1.b) belongs to three regularities. Find-regularity fails when 

called on the whole dataset. Search for the regularity in residuals also fails, but after 

the partitioning of data into subsets 1, J ,  and K,  three regularities are eventually 

detected (Figure 1.c). 

The maxima, discontinuities, and the llke, can be treated as patterns to be discovered 

in data, but they can be also treated instrumentally as hints for data partitioning. 

To consider all partitions of a large dataset into subsets would be a task of enor- 

mous complexity. The search can be reduced by hints about the likely partition 

points. Figures 1.b and 1.c illustrate our Partition search. Partition summarizes 

information about all types of special points. Each occurrence of a maximum, zero, 

or any other special point is counted as one reason for partitioning. As a result a 

list of likely partitioning points is returned, ordered by the number of reasons for 

partitioning data. In Figure 1.b, pl has the highest number of reasons, P2 is the 

second. FAHRENHEIT partitions data gradually, starting at the points with the 

highest number of reasons. In our example, it uses pl flrst~ and then p2. 

If the entire search for regularities in the given dataset for ~ and y fails, use Find-new- 

area for a: (described earlier) then take a seed and call BACON-3 again. 

2.4 R e c u r s i o n  and  m o d u l a r i t y  in goal  g e n e r a t i o n  

BACON-3 is a recursive mechanism which detects an N-dimensional regularity step after 

step. One independent variable is varied at each step, and the successful search adds 

one dimension to the regularity. FAHRENHEIT expands that  recursive mechanism to 

include new modules for special points detection. As we discussed in section 2.2, all those 

modules are compatible with Find-regularity in terms of their inputs and outputs. Each 

can be substituted in BACON-3 for the call to Find-regularity, as illustrated in Figure 3, 

and the results can be used at higher levels of BACON-3 recursion. This is an important 

theoretical result, because by addition of modules for special points detection we expand 

considerably the discovery power without substantial changes to the control mechanism. 

The recursive mechanism allows one to mix and match various goals in data analysis. 

For instance, FAHRENHEIT can search for the regularities on minima, or for regularity 

on a boundary of a regularity on maxima. The latter could be interpreted as an equation 

for a surface of a phase change. 
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3 Appl icat ions  of F A H R E N H E I T  

Not only the whole FAHRENHEIT system but also individual modules can be applied in 

numerous ways. Before we present various applications of FAHRENHEIT,  let us focus 

on applications of the Find-regularity module, which looks for one or more regularities 

on the values of y as a function of ~. 

3.1 D i f f e r e n t  uses  of  o n e - d i m e n s i o n a l  r e g u l a r i t y  f i nde r  

The applications discussed below appear in the same order as the individual diagrams in 

Figure 2. 

1. R e p e a t a b i l i t y .  The scientific method requires that the repeatability analysis is 

conducted before the data can be used. If an experiment is repeated in the same 

circumstances, we expect the same results of measurements. In the real world, 

however, we cannot control all varlables and some variables are expensive to control. 

We must accept limited repeatability, but it is essential to know the conditions within 

which experiments are approximately repeatable, and the measurement error specific 

to these conditions. We divide the independent variables given to FAHRENHEIT 

into two categories (7,ytkow, Zhu, and Hussam 1990a): independent variables for 

which we want to build a theory and those independent variables which we want to 

abstract away but the values of which can be controlled. FAHRENHEIT starts from 

the repeatability analysis, concentrating on the latter class of variables. It performs 

experiments in which it varies the values of those variables, keeping constant the 

variables in the first category. Then it searches for regularities in data, paying 

particular attention to the constancy of the dependent variables. The scope of 

constancy is used as the range of repeatability. Figure 2.1 shows a considerable 

range of repeatability for all z < s0. If no constant regularity can be discovered in 

a sequence of data for a particular independent variable, the value of that variable 

must be fixed to allow for repeatability. 

2. R e g u l a r i t i e s  for  spec ia l  po in t s .  Find-regularity can take a sequence of numbers 

that  represent, for instance, heights of the maxima in data (plus error for each max- 

imum height) as a function of an independent variable, and search for regularities 

on maxima. 

3. No i se  e s t i m a t e .  The heights of the maxima in Figure 2.3 could represent the 

concentration of several ions, but in order to obtain more precise data about con- 
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centration, we must find the noise and subtract it from the maxima heights. The 

noise can be detected as a regularity or regularities for the data points between 

peaks, indicated by a dashed line in Figure 2.3. 

4. R e g u I a r l t y  for  res idua ls .  Figure 2.4 illustrates the way in which the analysis 

of residuals expands the power of Find-regularity. Details have been described in 

section 2.3. 

5. R e g u l a r i t y  fo r  e r r o r .  As we discussed in item 1, above~ repeatability analysis 

allows FAHKENHEIT to obtain the values of error. Find-regularity can detect a 

regularity on the size of error, such as constant absolute error, constant relative 

error, and the like. However, Find-regularity needs to know the error of error. The 

error of error is provided by the repeatability study as proportional to the error of 

standard deviation. 

3.2 D i s c o v e r y  in a sc ience  l a b o r a t o r y  

In virtually any physics or chemistry laboratory around the world we can find many tasks 

that  can be interpreted as problems for FAHRENHEIT.  All variables manipulated by the 

experimenter can be viewed as independent variables for FAHRENHEIT that  form the N- 

dimensional product discussed in the introduction to section 2. The responses measured 

by the experimenter correspond to dependent variables. 

FAHRENHEIT can be used as an automated system for data acquisition and analysis. 

Each independent variable must be physically interpreted by an output  link to a partic- 

ular manipulator, while each dependent variable by an input link from a sensor. This 

allows our discovery system to autonomously run a complete cycle in which it controls 

the experiments, collects data, and builds theories based on data analysis. Human inter- 

vention is reduced to the preparation of the initial experimental situation and occasional 

assistance. 

We have conducted many experiments in the domain of differential pulse voltammetry, 

charging FAHI~ENHEIT with various tasks (?,ytkow, Zhu, ~ Hussam 1990,1990a). Some 

experiments involved collection of many thousand data points and discovery of many 

regularities. The accuracy has been compatible with the accuracy acl~ieved by human 

researchers. The values of error estimated in our tests are approximately the same as the 

values determined by a chemist and the regularities found by FAHRENHEIT were either 

equivalent to those of the chemist within empirical error or more accurate. In several 

cases our system detected a more complex and precise regularity than the chemist, or 
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found a regularity (linear) in the cases in which the chemist did not look for it, believing 

that the results must be constant. 

FAHRENHEIT returns the results in a much shorter time than human competi- 

tors. We found that what typically required several days of work for research assistants, 

FAHRENHEIT completed in 50 minutes. 

Our results demonstrate that a quantitative discovery system can be used in a chem- 

istry laboratory on an experimental problem of interest to a contemporary chemist and 

that a scientist might not only save enormously on time and effort spent on data analysis 

and derivation of empirical equations, but that the accuracy of results might improve. 

3.3 Discovery of  useful knowledge in databases  

Any table of N attributes in a relational database allows us to define the N-dimensional 

space, which is the cartesian product of sets of values of all attributes. Finding regularities 

in such a block sounds like a typical task for FAHRENHEIT, but data in databases are 

sparse, no experiments can provide more data to allow for focussing on particularly 

interesting areas, and regularities are typically very poor, so they can be captured by 

contingency tables or weak correlations. Because of these differences, we constructed a 

descendent of FAHRENHEIT (Forty-niner: Zytkow & Baker 1991) and we applied it to 

the task of mining databases for useful Regularities. In a typical business, health-related, 

educational, scientific, or engineering enterprise, a large volume of data is available which 

represents knowledge accumulated over a long interval of time at considerable effort, and 

it is usually organized in a relational format. The data may be mined for useful trends 

and regularities. In a typical database, Forty-niner finds many regularities which are 

statistically significant, but much weaker than functional regularities satisfied within 

small error, which are entertained in physics and chemistry. 

3.4 Exper imen ta l  invest igat ion of computa t iona l  complexi ty  

A computer program can be made available to FAHRENHEIT for the purpose of ex- 

perimental study of computational complexity. Independent variables are the program 

parameters, while the dependent variables are the time or storage required for the com- 

putation. FAHRENHEIT can experiment with a given program in a similar way as it 

experiments with a physical situation, by changing the values of program parameters and 

recording the duration of each computation. Based on these data, FAHRENHEIT builds 

the theory that estimates computational complexity of the program in the same way as 
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in the case of scientific data. The irregular time spent on garbage collection can cause 

problems which require the detection of outliers. 

Phase changes are common in computer programs, similar to phase changes that occur 

in physical systems. Consider a parameter P which influences the program logarithmically 

starting from some threshold value po. For p < p0, C(p)=const; for p > po, C(p) = log(p). 

Both the Partition search in FAHRENHEIT (Figure 1.b, 1.c) and the Find-new-area 

search can handle phase changes in programs. For the worst case analysis, it will first 

find the maxima for time or storage, and then the regularity on maxima. 

3.5 Analysis of abs t rac t  spaces 

As a similar task, FAHRENHEIT can try to empirically analyse the function computed 

by a program. This may be very useful. When we define a particular altitude function 

to be used in hill climbing, the properties of that function relevant to the hill climbing 

search are often unclear. FAHI~ENHEIT can find useful information about the presence 

and distribution of local maxima, about their number and about the useful increment 

for the elementary step in hill climbing. 

3.6 A u t o m a t e d  knowledge acquisit ion by robots  

Manlpulatory skills can be developed as a result of experiments and theory formation. 

We applied FAHRENHEIT in a simulation in which a robot arm learns how to handle 

physical objects (Zytkow & Pachowicz 1989). Many regularities and many special points 

have been found, such as boundaries~ maxima and minima. The center of gravity of 

solid objects has been discovered as a special point common in various experiments. The 

discovered theory can yield the rules which help to improve the efIiclency and quality of 

future manipulations. 

3.7 Discovery of pa t t e rns  in sequences 

Consider a sequence of numbers common to intelligence tests. MS.SPARC is another 

mutant descendent of FAHRENHEIT which handles regularities in sequences (Stefanski 

Zytkow 1989). In order to avoid approximate solutions because they are not considered 

correct, MS.SPARC does not allow for any error in the fit. 
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3.8 Knowledge engineering aid 

All previous applications can support expert knowledge acquisition. They can generate 

calibration curves and performance measurements such as complexity estimation. Rather 
than asking a human expert for his best guess of the values for certainty factors, we may 

apply FAHRENHEIT or Forty-niner on the relevant database to extract the precise values 

of coefficients, and to give a statistically sound estimation of the coefficient errors. 

4 T h e  c y c l e  o f  k n o w l e d g e  d i s c o v e r y  a n d  a p p l i c a t i o n  

Before we discuss our view of the full cycle of knowledge discovery and application, we 

briefly summarize the growth of discovery systems in the last three years. Many new 

systems have been developed, some of which are depicted at the top level in Figure 

4. Several abilities lacking in earlier discovery systems have been introduced, primarily 

the ability to consider the empirical context of a law (IDS: Nordhausen and Langley, 

1990; GALILEO: Zytkow 1990; Sleeman, Stacey, Edwards, and Gray, 1989), the ability 

to design experiments (KEKADA: Kulkarni and Simon, 1987; FAHRENHEIT: Zytkow, 

1987; Langley and Zytkow 1989), the ability to represent objects, states and processes 

(Nordhausen and Langley, 1990; Zytkow 1990), and the ability to reason by analogy 

(Falkenhainer, 1987; Falkenhainer and Rajamoney, 1988). Several systems discover hid- 

den components and their properties (REVOLVER: Rose 1989; GELL-MANN: Fischer 

and Zytkow 1990) or discover hidden properties of observable objects (BR-3: Kocabas 

1991). Sleeman et al. (1989) propose an interesting search in the space of qualitative 

models of a chemical system. Progress has been made in the domain of discovering qual- 

itative regularities (IDS; BLIP: Morik 1989, WrobeI 1989). Significant progress has been 

made also on the important issue of integration. Two systems, both descendents of BA- 

CON, reached a considerable integration: IDS and FAHRENHEIT, the latter augmented 

by the GALILEO system that generalizes knowledge by decomposing empirical equations 
into simpler expressions. 

4.1 Transformat ion of empirical equations into basic laws 

Many discovery systems, including BACON, FAHRENHEIT, and ABACUS (Falken- 

hainer & Michalski 1986), produce algebraic equations that summarize numerical data. 

Hereafter, we will call these BACON-like systems. Algebraic equations discovered by such 
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Figure 4. Overview of scientific discovery systems. 

systems can be interpreted as quantitative laws of different sciences. Each law has been 

discovered by the empirical investigation of a particular situation. Physical situations 

can be varied in countless ways and different situations are usually described by different 

equations. If our discovery capability was limited to BACON-like systems we would 

have to discover the equations for each situation individually. GALILEO (Zytkow 1990) 

is a discovery system that has been developed to address this problem. It transforms 

equations generated by a BACON-like system into a form compatible with the structure 

of physic~ processes described by those equations, so that equations can be decomposed 

into expressions that describe elementary components of the physical structure, such as 
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the expressions for kinetic or potential energy of a body, or energy disengaged during the 

change of phase. This type of analysis led scientists to a relatively small number of basic 

expressions which can be combined in countless ways to build models of new situations. 

4.2 Discovery  of hidden s t ruc tu re  

Basic laws are not sufficient for knowledge application to a particular situation. Scien- 

tists must also know the structure for which to build an adequate model. Discovery of 

structure is the task complementary to finding laws and an autonomous discovery system 

must include both. Directly non-observable, hidden structure causes particular problems. 

Research on the discovery of hidden structure has resulted in many systems, each capable 

of dealing with limited, yet historically important cases in physics and chemistry (Figure 

4). Among the systems that emerged from this research is KEVOLVEP~ (P~ose 1989), 

which constitutes the first attempt at grasping generality in the process. 

In the GELL-MANN system that discovers quarks (Fischer & Zytkow, 1990), hidden 

structure is described by hidden objects and their properties, by a pattern in which 

hidden objects combine to form observable particles, and by a particular combination 

of hidden objects for each observable particle. The earlier discovery systems, such as 

STAHL, DALTON, and REVOLV]~31:~ did not postulate properties of hidden objects and 

have had a limited capability for postulating hidden objects. GELL-MANN finds the 

quark model that is accepted in physics and determines its uniqueness, which is critical 

for the model confirmation. Surprisingly, GELL-MANN has found a model that explains 

meson octet by two quarks and two antiquarks, and when allowed for multiples of 1/3 

as strangeness values, it discovered the second quark model for the hadron octet. Both 

these new models do not, however, allow to reconstruct all particles which are explained 

by the accepted model. 

4.3 Model ing  

Knowledge of basic laws and knowledge of structure allow scientists efficient knowledge 

application in the form of model construction (Figure 4). To achieve substantial progress 

in the domain of a u t o m a t e d  knowledge appllcation~ sharing~ and interchange,  

we must automate scientific modeling. Although modeling plays a major role in different 

areas of AI, applications are fragmented and the essence of scientific modeling is far from 

being understood. On average, scientists spend far more time on model construction than 

on development of basic theories, it is difficult to find a systematic account of modeling. 
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Zytkow (1990) argues that decomposition of knowledge into basic laws and basic struc- 

tural components, and a capability for recombining them into models, will remedy the 

explosion in the size of the knowledge-bases. Moreover, Zytkow and Lewenstam (1990) 

provide a blueprint for automated model construction. Implementation of such a system 

would close the loop of automated knowledge discovery and application. 

5 C o n c l u s i o n s  

It is time to consider seriously machine discovery as a unifying schema for knowledge 

acquisition and representation. We demonstrated that FAHRENHEIT as a whole, and 

individual modules such as equation finder (BACON-l), can be used on many tasks, and 

that they can become tools for e~cient and effective knowledge acquisition, especially 

when used in synergistic collaboration with a human knowledge engineer. 

We noted the significant progress in automation of o~her discovery tasks, and we 

argued that the basic cycle of knowledge generation and application will be dosed when 

we automate model generation. 
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