
Complexi ty  of Indexing: Efficient and 
Learnable Large Database Indexing * 

Michael Werman  and D a p h n a  Weinshall  

Institute of Computer Science, The Hebrew University of Jerusalem 
91904, Jerusalem, Israel 

{werman,daphna} @cs.huji.ac.il 

A b s t r a c t .  Object recognition starts from a set of image measurements 
(including locations of points, lines, surfaces, color, and shading), which 
provides access into a database where representations of objects are 
stored. We describe a complexity theory of indexing, a meta-analysis 
which identifies the best set of measurements (up to algebraic transfor- 
mations) such that: (1) the representation of objects are linear subspaces 
and thus easy to learn;  (2) direct indexing is efficient since the linear 
subspaces are of minimal rank. The index complexity is determined via a 
simple process, equivalent to computing the rank of a matrix. We readily 
re-derive the index complexity of the few previously analyzed cases. We 
then compute the best index for new cases: 6 points in one perspective 
image, and 6 directions in one para-perspective image; the most efficient 
representation of a color is a plane in 3D space. For future applications 
with any vision problem where the relations between shape and image 
measurements can be written down in an algebraic form, we give an 
automatic process to construct the most efficient database that can be 
directly obtained by learning from examples. 

1 I n t r o d u c t i o n  

Any recognition system starts with a finite list of n measurements  computed  on 
the image. The vector of n measurements  defines the indexing space T~ n, and 
each image corresponds to a point  in 7~ ~. Since objects appear  in m a n y  different 
forms in different images (due to changes in viewing position, i l lumination, etc), 
each object is m a p p e d  to a collection of points. This collection, the set of all 
points corresponding to a feasible image of  the object,  is the object ' s  picture 
manifold in the indexing space. 

The part icular  form of an object ' s  picture manifold is very impor tan t  for 
object recognition, whether index-based or search-based: 

D i r e c t  i n d e x i n g :  in the simplest approach each object ' s  picture manifold is 
stored in the database.  Now given a set of  measurements  computed  f rom an 
image, which is a point  in 7~ n, we use the point  as an index into a table, 
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pointing to a cell where the identity of the observed object is written (e.g., 
geometric hashing [4]). 

Sea rch :  If we have parametric representations of the picture manifolds, we can 
efficiently store those representations. Given a set of measurements computed 
from an image, we search the database to find the picture manifold which 
covers the measurements point in 7~ ~ (e.g., alignment [2]). 

The first approach is the most time-efficient since no search is required. How- 
ever, clearly the form of the picture manifold is critical here: if it is too complex, 
it may not be feasible to represent this picture manifold in memory. On the 
other extreme, the second approach is space-efficient since only a parametric 
representation of the picture manifold is stored. However, recognition requires 
search, and may therefore take too long to be useful. 

For an optimal system we probably need to consider a hybrid of the 2 ap- 
proaches to object recognition. In order to do that,  we need to better understand 
the form of objects' picture manifold. Finally and most importantly,  we need to 
be able to manipulate the measurements defining the indexing space, optimizing 
for simplicity and efficiency of the picture manifold at the same time. That  is, 
we seek a transformation of the measurements such that:  

S imp l i c i t y -  the picture manifold is a linear subspace, a manifold which is both 
easy to represent and easy to learn from examples. 

Eff ic iency-  the picture manifold is of a low rank. 

Indexing spaces where objects' picture manifolds are both simple and low di- 
mensional can be used in recognition systems which are based on either one of 
the approaches described above. Defining and computing good indexing spaces 
is the subject of the present paper. 

1.1 P r e v i o u s  work :  

The concepts we study here are closely related to the concept of invariants, which 
is a subject of much interest in computer vision and pattern recognition. To 
analyze the picture manifold, we need to start with a relation between the vector 
of measurements and the object. This relation should not depend on variables 
of the imaging process, such as the camera orientation (viewing position) or 
the color of the illumination source; thus we need an invariant relation between 
image measurement and objects. 

Invariant relations were divided in the literature into 2 types: 

M o d e l - f r e e  i nva r i an t :  there exist image measurements which identify the ob- 
ject uniquely, so that their value is completely determined by the object re- 
gardless of the details of the imaging process. This is what is usually called 
an invariant in the literature. Such invariant relations do not exist for 2D 
images of general 3D objects, but for special classes of objects, such as planar 
or symmetrical objects, invariant relations may be found [6, 8]. 

M o d e l - b a s e d  i nva r i an t :  a relation which includes mixed terms, representing 
image measurements or model parameters. Model-based invariant relations 
exist for many interesting vision problems [9J. 
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If a model-flee invariant is used to construct the database (the indexing 
space), then the picture manifold of an object is a point. For example, geometric 
hashing [4] uses the class of planar objects composed of features, where model- 
free invariants exist and therefore the picture manifolds are points. If on the other 
hand a model-based invariant is used, the picture manifold may be a complex 
hypersurface in the indexing space. For example, Murase & Nayar [7] use a very 
general class of objects and illumination conditions, and therefore they have to 
represent picture manifolds which take on rather complex shapes. 

Clearly, for object recognition using either direct indexing or search, it is 
better to use an indexing space where the picture manifolds are as simple as 
possible (for example, hyperplanes rather than quadrics), and have as low a 
rank as possible. Jacobs [1, 3] defined the concept of indexing space, and studied 
the complexity of picture manifolds. However, Jacobs did not address the ma- 
nipulation of the indexing space. Achieving this goal, obtaining linear manifolds 
that are easy to learn from examples while maintaining low rank (efficiency), is 
a major contribution of our present study. 

1.2 D e s c r i p t i o n  o f  o u r  a p p r o a c h :  

We start from a general vision problem, with one or more cameras, where the im- 
age measurements include points, lines, or surfaces, graylevels, color and texture. 
For each such problem we find an optimal set of transformed measurements, to 
define an indexing space where the picture manifolds are linear (hyperplanes) 
and of the lowest possible rank (among all linear picture manifolds). The low- 
est rank of the picture manifold is called the i n d e x  c o m p l e x i t y  of the vision 
problem. 

At the end we get the best linear relation between objects and image mea- 
surements. Objects are then represented by low rank hyperplanes. We advocate 
the use of linear representations of objects even at a modest cost of space effi- 
ciency for the following reasons: (1) Hyperplanes can be learned (or interpolated) 
robustly and efficiently from a small number of examples; this is NOT the case 
for general manifolds. Moreover, parametric representations of general manifolds 
may not even be computable (cf. [7]). (2) Using noisy measurements, it is easy 
to find the distance of a measurement point fl'om a hyperplane (unlike general 
manifolds), which is the problem that  an object recognition algorithm needs to 
solve. 

Our approach allows us to find class constraints, on the permitted set of 
objects, such that  the index efficiency is increased (and the rank of the picture 
manifold is decreased). With sufficient class constraints we can reduce the rank 
of the picture manifold to 0, achieving the most efficient indexing possible via 
model-free invariants. This was the goal of a few studies [6, 8]; these studies gave 
examples of class constraints but did not offer a general way to generate them, 
like we do here. 

The rest of this paper is organizes as follows: In Section 2 we define the 
concept of index complexity, which is the rank of the object 's picture manifold 
in the indexing space. VVe show how to compute the lowest complexity given a 



663 

particular vision problem. The lowest complexity of an index is simply the rank 
of a matrix, which we define and call the complexity-matrix. Many examples 
are discussed in Section 3. In Section 4 the addition of class constraints, for the 
purpose of reducing index complexity, is explained. 

2 Complexity of indexing 

A vision problem, describing a set of images, is defined by 3 types of variables: 

1. T denotes the set of parameters describing the unknown i m a g i n g  va r i ab l e s ,  
including camera transformation and color of illumination. 

2. S denotes the set of parameters describing the o b j e c t  shape ,  where shape 
denotes both geometrical and physical features (including color and shading). 

3. D denotes the data - a set of i m a g e  m e a s u r e m e n t s .  

Each image provides a nmnber of relations between these variables, of the 
form F ( T ,  S, D) = 0; for example, an image of 1 point provides 2 such relations, 
one for the x coordinate and one for the y. The vision problem is fully described 
by the equations, relating these variables over the given images: 

l; = {FdT,  S, D) = o}/M=I 

2.1 D a t a b a s e  i ndex ing :  

Each vision problem F produces an ideal Z, which is the set; of all the algebraic 
relations between the image measurables and the model shape. E is generated 
by a set of relations, obtained from the relations in 12 by eliminating the imaging 
variables T. Thus: 

/- = {fl(S, D ) =  0}L=I 

L < M. The ideal I includes precisely all true relationships between tile model 
parameters S and the image measurements D. The polynomials in //: do not 
include the imaging variables T. We will often not distinguish between the ideal 
and its set of generators. The ideal is the smallest set including the generators 
closed under addition and multiplication by polynomials in S and D. 

[11] describes a general elimination method to obtain the set of model-image 
relations from the vision problem using Grgbner bases (which is equivalent to 
Gauss elimination in linear systems). 

2.2 C o m p l e x i t y  o f  i ndex ing :  

We start by analyzing the simple case where the set of possible model-image 
relations ]7 of our vision problem F includes a single relation I : f (S ,  D) = O. 
The number of relations is often chosen to be one, as this requires the smallest 
number of constraints in the vision problem so that the imaging variables can 
be eliminated. Moreover, taking a larger set of equations can result in a com- 
binatorial blowup. We define the complexity of I, a measure of the space and 
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t ime needed to implement the database index obtained from it. As explained 
in the introduction, the complexity of an index reflects the size of the small- 
est hyperplane that  needs to be stored in the database, so that  the object can 
be retrieved by the index. In the appendix we define and compute joint index 
complexity when multiple indices are available. 

To begin with, we rewrite the invariant relation I in the following compact 
way, explicitly separating image variables D from shape variables 8: 

r-{-1 

f (S ,  D) ---- E gk(S) �9 hk(D) = 0 (1) 
k = l  

where g~ and hk are polynomial functions of the shape S and the image D 
respectively. We call (1) the canonical representation of f (S ,  D). Note that if 
f (S ,  D) is algebraic, as we assume here, this decomposition always exists. 

D e f i n i t i o n  I I n d e x .  The index, which includes all the image measurables in 
the invariant relation (1), is the r-dimensional vector: 

h i (D)  h r ( e )  . n r  �9 (2) 

The indexing space is therefore 7~ r. The manifold of all the possible images of 
h,(D) g,(S) = - - 1  object S is the hyperplane of rank (r - 1) defined by ~ hr+l(D) gr+,(S) 

In the simplest case where r = 1, we have: 

h i (D)  g~(S) 
f (S ,  D) -- h l (D)g l (S)  + h2(D)g2(S) = 0 ::~ 

h2(D) gl(S) 

This means that  the object S has a model-free invariant: the database is a 
1-dimensional table, where each object is represented by a point (cell) in the 
table, and the cell's value is -g2(S)/gl(S). The image provides a direct access 
to the table via hl(D)/h2(D). 

More generally, the index given in (2) is an element of 7~ r. If r = 1 it is a 
model-free invariant; if r > 1 it is a model-based invariant as defined in [9]. The 
database now is an r-dimensional table, and a pointer to object S is stored in 
all the cells of the table that satisfy (1). In order to achieve efficient recognition, 
we would like to find a representation of the form (1) with the smallest r. 

D e f i n i t i o n  2 I n d e x  C o m p l e x i t y .  The index complexity C of a relation f (S ,  D) 
is the rank of the smallest hyperplane that the relation defines. Thus if r is the 
smallest number of terms such that: 

r-{-1 

f ( S , D )  = E g k ( S ) .  hk(D) = 0 (3) 
k-=l  

then C = r -  1. 
When the index ideal I of a vision problem has a single relation in it, C is also 
the index complexity of the vision problem. 
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2.3 C o m p u t i n g  i n d e x  c o m p l e x i t y :  

We can always write the algebraic expression f (S ,  D) = 0 as a sum of multipli- 
cations; let 

f ( S , D )  = E ~ m i j s i d j  = s .  M .  d T = 0 (4) 
i = 1  j = l  

where si and dj are distinct products of element of S and D respectively, s = 
[S l , . . . , sn ] ,  d = [d l , . . . ,d ,~] ,  and M is the n x m mat r ix  whose elements are 
m i j  . 

D e f i n i t i o n 3 .  M is the c o m p l e x i t y - m a t r l x  of a relation f (S ,  D) = 0. 

r-I-1 
T h e o r e m 4 .  The minimal representation of f ( S , D )  = E gk(S) * hk(D) has 

k = l  
r + 1 terms where r + 1 is equal to the rank of the complexity-matrix M.  

Proof. The theorem follows from (4), the fact that  elementary operations on the 
rows and columns of a matr ix  are algebraic operations, and that  the rank of 
a matr ix  is the minimal number of outer products of vectors that  sum to the 
matr ix.  

A l g o r i t h m  to compute the complexity C and the corresponding index: 

1. Compute  the SVD decomposition of M = u ~ v T ;  the rank of M is equal to 
the lmmber of non-0 elements in the diagonal matr ix  X, and the complexity 
is C = rank(M) - 2. 

2. Since by construction f ( S , D )  = s U Z V T d  T = g ( S ) .  h T ( D )  where g(S)  = 
[g l (S ) , . . . , g ,+ l (S ) ] ,  h ( D ) = [ h l ( D ) , . . . , h r + l ( D ) ]  

s h a p e  p a r a m e t e r i z a t i o n  - g(S)  = s U x / ~  

m o s t  e f f ic ient  i n d e x  - h (D)  = d V x / ~  

3 E x a m p l e s  

3.1 R e f o r m u l a t i o n  o f  k n o w n  r e s u l t s  

We first reformulate the following known results: 

1. The index complexity of an affine or perspective image of symmetr ical  points 
is -1, namely, the most  efficient index does not depend on the model - it only 
verifies symmet ry  in the image. 

2. The index complexity of a perspective image of 5 coplanar points is 0, in 
other words, there is a model-fi'ee invariant. 

3. The index complexity of 5 points, projected with an affine camera,  is 1. 
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3.2 N e w  r e s u l t s  

(3 = 3 6 p o i n t s  a n d  a p e r s p e c t i v e  c a m e r a :  

We work out this example in detail because it shows the power and relative sim- 
plicity of our method. We start by using homogeneous coordinates to represent 
the 3D coordinates of the 6 points. Since we are working in p3,  5 points define a 
basis; we select the first 5 points to be a particularly convenient projective basis, 
leading to the following representation of the 3D shape of the points: 

(i) (i) /i) (i) (i) P~= P2-- P ~ =  P4= P~= P ~ =  
(xl) 

Z1 
W1 

Similarly we use homogeneous coordinates to represent the projected 2D 
coord ina tes  of the 6 points. Since we are working in 7 )2, 4 points define a basis; 
we select the first 4 points to be the projective basis, leading to the following 
representation of the image of the points: (!) (!) (0) (1) (a0) 

Pl = P2 = Pa = 0 P4 = 1 p5 = b0 p6 = bl 
1 1 co cl 

Given any image of the 6 points, we can always compute the 2D projective 
transformation which will transform the points to the representation given above. 

With this choice of coordinates, the relation between the 3D shape and the 
image measurements is the following: 

1 0 0 ] g l  1 0 0 1 ao al 

- 6  fl - 6  0 1 0 1 Z1 1 0 1 bo bl 

cr fl 7 1 1 1 1 W1 0 1 1 co cl 

Using the terminology of Section 2: 

1. T denotes the set of 4 variables a, fl, 7, ~, which represent the camera 
unknowns that we would like to eliminate. 

2. S denotes the set of 4 variables X ~ ,  Y1, Z~, W1,  - the 3D projective coordi- 
nates of the 6th point. 

3. D denotes the set of 6 variables a0, b0, co, al ,  bl, cl; these are the image 
measurements - the projective coordinates of the points. 

Using elimination we get 1 constraint in / : :  

f ( S , D )  = aoblZl"Y1 q- VlY12bo - cl X12 ao - aoal Z12 q- aobl Z12 - bl y12bo + coal Z12 - 

cobl Z12 - b o a l  Z12 q-bobl Z12 q-al X12 ao - a l  Yl aoX1 q-al Yl aoZ1 q-Cl Yl bo Z1 - Yla l  ZlCO q- 

coa~Z~X1 - cobl Zi  Y~ - boalZ1X1 - al YlboZ1 - c lX1Ylbo + X l b l  Ylbo + clX1Ylao if" 

X l  aobl Z1 - Cl X l  ao Z1 + coXl  bl Z1 - X l  bobl Z1 + cl X l  ao W1 - c o a l Z 1 W 1  + cobl Z1W1 + 

aoal Z 1 W l  - aobl Z 1 W l  + bl Yl bo W l  + boal Z l  l/Vl - bobl Zz W1 - Cl Yl bo W1 - al X l  ao W1 - 

2 X l b l  Ylao + 2al YlboX1 = 0 
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Representing f (S ,  D)  as a sum of mult ipl icat ion as required in (4), we see tha t  
= = X 2 there are 10 shape monomials  si, thus n 10 and s [ 1, X1Y1, X1Z1,  X1W1,  

Y ~ , Y t Z I , Y 1 W 1 ,  Z~, ZIW1,  W~]. There are 9 image monomia ls  dj, thus m = 9 
and d = [aoal , aobx , aocl , boal , bob1, hoe1, coax, cobx , cocl ]. 

We can now construct  the 10 x 9 complexi ty mat r ix  M.  We use Gaussian 
el iminat ion to decompose M as M = U W ,  where U is 10 x 5, and W is 5 x 9. 
Many matr ices U satisfy these conditions, and we choose the "simplest":  

i --i 0 --i 0 I 0 --I l 0 ~ 

0 --2 i 0 0 I 0 1 --I 0 

--i i --i i 0 0 0 0 0 0 

0 2 --i 0 0 --I 0 --I I 0 

o 1 - - 1  0 - - 1  0 1 1 - - 1  0 

0 - - 1  0 0 1 1 - - 1  0 0 0  

0 0 1 0 0 - - 1  0 1 - - 1 0  

0 0 1 0 0 - - 1  o - - 1  1 O 

0 0 0 0 0 0 0 0 O 0 

I i 1./2 o o -1./2- 
0 i --i 0 1/2 

- - 1  - - 1 / 2  ] 0 0 

--i i 0 --i/2 

= -~i~ , ~ ~/~ 
1 / 2  0 - -1  0 

0 0 --i 0 I/2 

0 0 --i o - - 1 / 2  

0 0 0 0 0 

iio0 .... 000i] --2 0 0 0 200 0 

0 --i 0 0 100 0 

0 0 0 --I 0 I 0 0 

0 0 0 0 002--2 

Since the rank of M is 5, the complexity of the index is 3. Froln the above 
decomposi t ion we get 

s h a p e  p a r a m e t e r i z a t i o n :  g ( S ) =  s-U = [ X ~ - X l l / V 1 , - 2 X ~ Y l + 2 Y 1 Z 1 , - X I Z I +  
~qz~, - v ?  + ~ql,v~, 2 z  2, - 2z~wl] 

m o s t  e f f i c i en t  i n d e x :  h ( D )  = d -  V = [alao - clao, 0.5alao + aobl - 0 . 5 c l a o  - 

boa1 - 0.5bob1 + 0 .5boc l , - aob l  + cxao + boa1 + bob1 - coax - cobl,bobl - 
bocl ,-O.5axao + 0.5aobl - 0.5boal + 0.5bob1 + 0.5coal - 0.5cobl] 

It  is interesting to compare  this result with the literature, aacobs [3] showed 
recently tha t  for 6 points in a single perspective image, the lowest rank picture 
manifold is a non-linear manifold of rank 3 in 7~ 4. We obta ined the same rank 3, 
while using a different 4-dimensional measurement  vector (a different, indexing 
space). In this t ransformed space, the picture manifold is of the same low rank 
of 3 (provenly the lowest rank possible), and yet it is linear with all the benefits 
tha t  come f rom linearity. In addit ion,  our result was obta ined  au tomat ica l ly  and 
relatively effortlessly, as we are using general and not problem-specific tools. 

C = 3 : 4  p o i n t s  a n d  a w e a k  p e r s p e c t i v e  c a m e r a :  

The vision problem is a single image of 4 points, obtained by a weak perspec- 
tive camera.  The  index complexity is 3. Thus  the mos t  efficient linear picture 
manifold is a 3D hyperplane in g4 .  

C = 3 6 l i ne s  a n d  a p a r a - p e r s p e c t i v e  c a m e r a :  

We took a vision problem of 6 lines projected para-perspect ively (using an affine 
camera  model) to a single image. We wrote down the equat ions relat ing the 6 
unknown camera  parameters ,  the 24 unknown parameters  of the lines, and the 6 
known projected directions in the image. Using el iminat ion we obtained a single 
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index f (S ,  D).  The rank of the complexity matr ix  of the index is 5, thus the 
index complexity is 3. 

For convenience of notation, we define the function O(a, b, c, d, e, f )  as: 

O ( a , b , c , d , e , f ) =  d - e d c 

f e l f  

Using the analysis described above we computed the most  efficient index: 

h(D) = [O(sla, sl2, sl3, sl4, sls, sle), O(sl~, s4,  sl3, sls, sl4, sly), O(sll, sl3, sls, 

where sli is the projected slope of the i-th line. 

C = ~: T h e  co lo r  a t  a point: 

Using the linear combination color model [5], the color of an object or a light 
source can be described as a linear combination of a set of basis color functions 
of wavelength A. It has been argued that  3 basis functions can approximate  
well the color of natural  objects and light sources. We use a model where the 
color spaces of objects and light sources are approximated by the span of 3 basis 
functions each. Our camera model has 4 different color sensors. Thus we have 4 
measurements at each point (the output  of the 4 sensors), and 6 unknowns - the 
3 coefficients of the object color space and the 3 coefficients of the illuminant 
color space. With 4 equations we can eliminate the 3 illumination parameters,  
leaving us with a relationship between the measured colors (the sensors' output) 
and the reflectance properties (the color coefficients) of the object at a given 
point. 

The index complexity of this relationship is 2, meaning that  all the possible 
measured colors of a point (regardless of illumination color) sit in a plane in a 3- 
dimensional color space. The analysis also gives that  there is no smaller subspace 
of the colors, which is insensitive to the illuminant color. 

4 Adding  class constraints  

Once it has been shown that  model-free invariants do not exist for unconstrained 
objects, at tention had turned to characterizing the constraints (or classes of ob- 
jects) which would lead to model-free invariants [6, 8], or in our language, lead 
to index complexity 0. The present analysis allows us to do so directly, as part  
of a more general question: what class constraints on objects reduce the index 
complexity (and thus make their recognition more eff• We determine suf- 
ficient and necessary conditions on class constraints to reduce index complexity, 
in particular to reduce it to 0 (implying the existence of model-free invariants). 

We start  from a relation in the indices set 

d + 2  

f ( S , D )  = ~ g k ( S ) *  h k ( D )  = 0 
k----1 
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where gk(S) and hk(D) are polynomial functions of the shape and image mea- 
surements respectively. Every class constraint of the form A(S) = 0, where A(S) 
divides some ~ aigk(S), reduces the dimension of the best index by at least 1. 
Thus: 

T h e o r e m  5 class c o n s t r a i n t s : .  To reduce the index complexity of a vision prob- 
lem from C to p < C, the class constraints should provide at most (C-p)  indepen- 
dent constraints of the form hi(S) = 0, where each )~i(S) divides some ~ o~igk 
modulo the ..~j(S), j < i. 

Clearly there is a trade off between index complexity, which is higher for more 
general (and less constrained) classes, and the density of the database, which is 
smaller for more general classes (as there are fewer types of such general objects). 

E x a m p l e :  given 6 points and a perspective camera, we showed in Section 3.2 
that the index complexity is 3, and we computed g(S) and h(D) .  It immediately 
follows that: 

- If any of the parameters of the 6th point X1, Yz, Z1 equals 0, the complexity 
goes down from 3 to 1; if any 2 of these parameters are equal, the complexity 
also goes down from 3 to 1. Thus i f4  of the 6 points are coplanar, the index 
complexity of the system is 1. 

- If X1 = Y1 = W1, the complexity is 0, namely, there is a model-free invariant. 

A p p e n d i x :  H a n d l i n g  m u l t i p l e  i n d i c e s  

Up to now we considered the case where the ideal of indices I ,  obtained via elim- 
ination from the vision problem 12, has a single index function in it. Typically, 
however, the rank of the ideal is L > 1, namely, L independent indices can be 
computed from the image. We can compute the rank complexity of each index 
independently; thus object representation and recognition will require using L 
different (but minimal) indexing tables. Instead, we look for a single transfor- 
mation of the measurement space into R 4, where each of the L relations defines 
a hyperplane of rank ~ - 1. Now the index complexity (or the rank of the object 
manifold) is C = ~ - L. Even if C is larger than the individual index complexity 
of each of the L relations, we see two advantages to the joint approach: 

- The table is sparser and therefore indexing into it is more robust. 
- Object representation and recognition requires a single table. 

We propose the following algorithm to compute the joint index complexity. 

1. Obtain the j o i n t  c o m p l e x i t y  m a t r i x .  
- Write the L relations as sums of multiplications, as in (4), with nz distinct 

products of elements of S (shape) and ml distinct products of elements 
of D (image measurements), for 1 < 1 < L. 

- Let sl denote all the distinct products of elements of S (shape), which 

appear in any of the L relations, i = 0..N and N < E L nl. 
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- For each relation, rewrite (4) using si (we can always do this by adding 
terms whose coefficients are 0). 
Construct the individual complexity matrix Ml for each relation. The 
size of M~, the complexity matrix of the l-th relation, is N x ml. 

- Concatenate the L matrices Ml from left to right, giving us the joint 
complexity matrix M of size N x E L ml. 

Note the asymmetrical role of rows and columns here: the row variables 
define the elements of the joint indexing table, and thus should be the same 
for all indices; the column variables define the elements of the index, and 
thus can (and should) vary for different indices. 

2. Compute the SVD decomposition of the joint complexity matrix M = U Z V  T. 
Let �9 denote the rank of M, then ~ -  L is the joint complexity of the indices. 

3. The shape parametrization is g(S) = w where ~ = [ s l , . . . ,  8N]. 
4. Because of the way M was constructed, we can find a matrix Vl such that 

the individual complexity matrix of the / - th  relation can be decomposed as 
Mz = UZVT.  The most efficient index is hi(D) = dlVlvf-~. 

The result of using this algorithm on 7 points in a perspective image can be 
seen in this volume [10]. 
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