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Abstract. The paper contributes to the viewpoint invariant recognition
of planar patterns, especially labels and signs under affine deformations.
By their nature, the information of such ‘eye-catchers’ is not contained
in the outline or frame — they often are affinely equivalent like paralielo-
grams and ellipses — but in the intensity content within. Moment invari-
ants are well suited for their recognition. They need a closed bounding
contour, but this is comparatively easy to provide for the simple shapes
considered. On the other hand, they characterize the intensity patterns
without the need for error prone feature extraction. This paper uses mo-
ments as the basic features, but extends the literature in two respects:
(1) deliberate mixes of different types of moments to keep the order of the
moments (and hence also the sensitivity to noise) low and yet have a suffi-
ciently large number to safeguard discriminant power; and (2) invariance
with respect to photometric changes is incorporated in order to find the
simplest moment invariants that can cope with changing lighting condi-
tions which can hardly be avoided when changing viewpoint. The paper
gives complete classifications of such affine / photometric moment invari-
ants. Experiments are described that illustrate the use of some of them.

1 Introduction

A lot of research has been put into the extraction of invariants for planar shapes
under geometrical deformations [5, 6]. Most work has focused on the shapes’ con-
tours. For certain applications, however, it would be more effective if one could
use invariants derived from the intensity patterns bounded by the contour. For
example, if one is to recognize labels or traffic signs, the contours will typically
contain little information. If afline distortions are considered, many of them will
be affinely equivalent (e.g. all parallelograms or all ellipses). Contour invariants
will be difficult to apply to many of the patterns and therefore moment invariants
are considered. Affine distortions are the most general type of geometric trans-
formations that can be considered in this case, because expressions of moments
that are projectively invariant do not exist [12]. Note the natural complemen-
tarity: with complex outlines contour invariants can be used and it would be
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difficult to extract closed contours as required by the moments; in the case of
non-discriminant outlines of the forementioned, simple parametric types closed
contours can be fitted rather easily for the calculation of the moments, whereas
contour invariants are of little use.

The goal being invariant characterisation of the intensity patterns, care has
to be taken of photometric changes as well. When the camera changes its po-
sition relative to the pattern, its intensities will in general change. This paper
contains a complete and systematic classification of invariants for the combined
effect of affine deformations and photometric changes. A second concern is to
keep the order of the moments low, since high orders introduce more noise. To
that effect, the mixing of different kinds of moments and the combination of
coplanar patterns are considered. Different kinds of moments have been defined
(geometric, Legendre, Zernike, rotational, etc.). The reported work is based on
the traditional “geometric” moments and only moments up to the second order
are considered. These choices are in keeping with the results of noise sensitivity
tests [L1].

Of course, the paper adds to a large body of literature on moments and
moment invariants. It is impossible to give a complete overview here (for a
partial review, see Prokop and Reeves [8]). Nevertheless, there are a number
of contributions which are directly related to the presented work. Maitra [4]
and Abo-Zaid et al. [1] discussed variations of Hu’s metric and scaling moment
invariants [3] that are also invariant under global scaling of the intensity. Another
strand of research has concentrated on deriving moment invariants under affine
transformations {2, 9, 10]. Reiss [9] combined affine and photometric invariance
and his work comes closest to that reported. Nevertheless, most of the moment
invariants that are given here are novel.

The paper 1s organized as follows: first, notation and terminology is estab-
lished in Section 2. In Section 3 the affine / photometric invariants are system-
atically classified according to the highest order of the moments involved. For
each case, invariants under affine transformations, photometric invariants, as well
as combined affine / photometric invariants are given. Section 4 then reports on
ongoing experiments with these moment invariants. Section 5 summarizes the
results.

2 Affine / Photometric Transformations

2.1 Definitions and Notations

If # and y stand for the row and column coordinates of an image with intensities
i(z,y) and a planar object’s closed contour € circumscribes the region {2 in the
image, then

M Se¢pq :// ePyldedy and MIcpg :// i(z, y)e? yldedy
7 0

are the shape (p, ¢)-moment and intensity (p, q)-moment resp.. Both are said to
be of order p + ¢. For brevity, in the sequel “nth-order moments” stand for the
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set of moments up to and including the nth-order moments. If M, rather than
M Scpq or M I, is specified, this is to mean that the corresponding expression
can be used with either of them. Notation often will be simplified to M S,, and
M I,4 if there is only one contour involved.

The moment invarianis discussed in the paper are deliberately made function
of both shape moments and intensity moments. This mix lowers the required
order of the moments and thus contributes to their robustness. With “nth-order
moment invariants” will be meant moment invariants that combine moments
up to order n.

2.2 Geometric and Photometric Changes

The geometric deformations considered are afline transformations

z aiy a1z x by
= 1
()= () () () 0
with |A| = a11a92 — aj2az; # 0. This implies that the camera is relatively far

from the object.
Two kinds of photometric changes are considered: pure scaling

I'(z,y) = sl(z,y) ;

and scaling combined with an offset
I'(z,y) = sl(z,y) +o .

The assumptions that the camera is relatively far from the object and that the
object is planar can greatly simplify the analysis of the photometric changes.
Typically light sources are far from the objects as well. The geometry of light
reflection is the same for all points in that case, i.e. they share the same angles
of light incidence and camera viewing direction. Also for the more sophisticated
models of diffuse reflection the change in camera or light position will in that
case result in an overall scaling of intensity [7]. The offset allows to better model
the combined effect of diffuse and specular reflection [14} and has been found to
give better performance [9].

The actions of the photometric and affine changes on the moments come out
to commute. Hence, one might first normalize against one type of transformation
and then against the other. Alternatively, one may normalize against one and
switch to the use of invariants for the other. To some extent, this latter strategy
typically is what has happened in the literature. The photometric offset can
e.g. be eliminated through the use of intensity minus average intensity and the
photometric scale parameter can be eliminated by normalizing the resulting
intensity’s variance [9]. After these normalisations one then has to deal with
affine deformations exclusively. The resulting affine invariants may look simpler
than the ones given here, but the inherent complexity is at least comparable.
However, the normalisation steps are quite expensive computationally, since they
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require a pixel-wise modification. Not normalising means that one has to deal
with larger numbers (original intensities and coordinates instead of deviations
from average values), but this is outweighed by far by only using lower order
moments.

2.3 Geometric and Photometric Effects on Moments

As already mentioned before, only moments up to 2nd order will be consid-
ered. How do these transformations affect the value of the moments? The affine
transformation (1) changes the vector

m’ = ( Mag M11 Moz Mig Moy Moo)

of second-order moments as

/ v
m =T,m (2)
where
2 2 . . 2
a 2ay1a12 ais 2a11by 2a12b1 b1
11021 G11022 + 12021 Q12022 a11b2 + az1by ajzbs + az2by bibs
2 2 . 2
_ az 2az1a22 az, 2az1 by 2a3,by b3
T = |A]
0 0 0 a1l 12 bl
0 0 0 a2y Aoz b,
0 0 0 0 0 1

with |A| = a@11a22 — ay2021 as before. As can be seen from the transformation
matrix, the Oth-order moment Moo, as well as the lst-order moments (includ-
ing Mgp) can also be considered in isolation. Observe that shape and intensity
moments transform in exactly the same way under affine transformations.

If the model of the photometric changes is restricted to pure scaling, then

MI:-J- = sMI;; and M S;j = MS;;

The shape moments are trivially invariant, because they do not involve intensi-
ties. To obtain photometric intensity moment invariants, it suffices to take the
ratio of two intensity moment invariants. Shape and intensity moments can thus
be used separately.

If the intensity changes by a scale factor s and an offset o, then

/ ) /
M”j = SM[,‘J' + OMSij and MSij = Mgij .

The result is a 2-dimensional group of transformations acting on the vectors
(MIU,MAS'U)T. Again the shape moments are trivially invariant. However, the
intensity moments can no longer be used in isolation. Observe that the pho-
tometric changes act identically on all intensity morments, irrespective of their
order.

The actions of the photometric and the geometric transformations commute.
As a consequence, the overall group of afline / photometric transformations is a
direct product of the affine group and the group of iutensity transformations.
This implies that combined affine / photometric invariants exist if the number
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of moments surpasses the sum of the orbit dimensions of both actions taken
separately, and that the invariants are found as common expressions in the sets
of affine and photometric moment invariants separately. A Lie group theoret-
ical strategy was used to classify all independent affine / photometric moment
invariants up to the second order. This classification is given in the next section.
Space restrictions do not allow to discuss the generation of these invariants. The
interested reader is referred to [13] for details on the classification strategy.

3 Affine / Photometric Moment Invariants

This section classifies the independent moment invariants up to the second
order. For each order, affine, photometric (for both models), and combined
affine / photometric invariants are given, which are mixtures of both shape and
intensity moments. If the invariants only involve shape moments, combinations
of different patterns (different bounding contours) are considered, until an invari-
ant involving an intensity moment is found, because the assumption is that the
useful information is contained in the intensity pattern. In practice, additional
contours can be generated by making an invariant subdivision of the pattern
under consideration. Two examples are given in Fig. 1. An elliptical pattern can
be divided into the original ellipse and an ellipse with the same center of gravity,
orientation and eccentricity, but having half the size along each axis. Similarly,
a parallelogram shaped pattern can be subdivided into e.g. the whole pattern
and the pattern inside the diamond that emerges by connecting the midpoints
on each side.

Fig. 1. Invariant subdivisions of an ellipse and a parallelogram.

3.1 Zeroth-order Moment Invariants

Affine Invariants : M oo / M Soo

Photometric Invariants.

Photometric scaling : M Scoo; M Spoo and M Icoe/M Ipoo
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Photometric scaling + offset : M Scoo; M Spoo; M SEoo,

and MIcooMSpog—MIpooMScag
MIcooMSgoo~MIgooM Scoo

Affine / Photometric Invariants.
Photometric scaling : M Icoo/M Ipoo and M Scoo/M Spoo

Photometric scaling + offset : M Sco0/M Spoo; M Scoo/M Sgoo,

and MIcgoMSpog—MIpoMScog
MIcoaM Sgoa—~MIgweM Scon

3.2 First-order Moment Invariants

Affine Invariants : Moo / M Scoo; M Spoo / M Scoo,

1 M}c:w - %5010 M?‘:m _ 11\"415[119
M S Ml S ‘
and Vo | MIEE _ mMSCR MIESR | MSEY (3)
PG00 ) Moo MScoo MIcoo M Spao

Photometric Invariants.
Photometric scaling : M Iyo/M Ioo, M Io1 /M oo, M S10, M So1, M Suo

. . . - . MIoMSgg~MIggMS
. ) 10MSeo 0o M S1g
Photometric scaling + offset : M Syp, M Sp1, M Spg, and SR PR YT VO P

Affine / Photometric Invariants.
Photometric scaling :

3 shape moments : MSCQ()/MSDQQ, and M;g(j()()/M;SvE()Q

1 intensity + 2 shape moments : M Scoo/M Spog, and (3)

2 intensity + 1 shape moments :

1 Ml MSe MIcio — MliIpyg

Ml MSe: Ml MI
MlIcoo/MIpoo  and  —rem— 08 WSO ML MIn
2000 M 00 MSca0 MIcoo MIpoo

3 intensity moments : M Iooa/M Ipoo, and M I¢oo/M Iggo

2 intensity + 2 shape moments : M Icoo/M Ipoo, M Scoo/M Spoo, (3),
(3) with the roles of (! and D reversed, and

MIca  MSeio MIp  MSci MIsy, _ MScig MSpio  MSerg
Mg MSco0 MIpgo MScoo | . | MIcoo MSc00 MSpoo MScao
[I(','g] o MS;‘:Q] MI[)QI — MS(,'Q] " MIg'Q] - MS(_’:UI MS[)Q_l - MS(','U]
MlIcoo MScoo MIpoo MScoo Moo MScoo MSpoo M Scon

Photometric scaling + offset : M Scoo/M Spoo,
MI Mlcio _ MScjo MScio . MSpio
C00 Moo M Sco0 MScoo M Spoo (4)

MIcooM Spoo — MIpeoM Scee) | Mlco _ MScoy MSeny _ MSna
( ¢oo Doy Dboo ('00) Moo MSco0 MScoo M Spoo

(4) with the réles of " and D reversed, and
MlIgig  MScna MIpio - MSpig

MIcooM IpoeM Spoo MIcon — MSeve MIboo ~ MSpoo
. B 71 Mg MScgy MI MS
~ —_ ~ Micoy _ AM2c¢o) MIpol  ML2Doy
( M](,OOMLSDOO MID()oM.S(,OO ) MICOU MS(.'700 MIpoo MS[)QU
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3.3 Second-order Moment Invariants
Affine Invariants :
2nd order moments of [ type only :

(Mao Moo — M2)(Moz Moo — M3,) — (M1 Moy — Mo Moy )? %)
Mg, ‘

2nd order moments + Oth order moment of other type : M Iyg/M Sgo, and (5)

2nd order intensity moments + 1th order shape moments :
M Ioo/ M Soo, (5) for intensity moments, and

Be? —dabe + 62

M, ©)
where
o= (MI 1My~ MI1oMlIy) 6 = (MSooMIio — MS1oMIgo)
,[3 = (M]goM]oo e Mllzo) s € = (MSQ()M](H - MS(]IM[()Q) s

Y = (MIOQMloo - Mlgl)

2nd order intensity moments + 2nd order shape moments :
M Igo/M Soo, (5) for intensity moments, (5) for shape moments,
(6), (6) with the roles of intensity and shape moments reversed, and

(@A —vB)? + (aA — BC)? + 2(BA ~ aB)(vA — () 7
M3, M55, (

where

A= (MS“MSOQ _ MSl()MS(n) 5 B = (MSzoMS()() - Mb'lzg) )
and C= (MSOQMSOO - MSgl) .

Photometric Invariants.

Photometric scaling N M[10/Moo, M[Ql/Moo, MIZ()/M()(]) M]ll/MQQ, M]OZ/MOO

Photometric scaling + offset : PI{00,10,01), PI{00, 10, 20), P1(00,10,11),
P1(00,10,02), PI(10,01,20), PI(10,01,11), PI(10,01,02), PI(01,20,11),
PI(01,20,02), and P1(20,11,02), where

Myi; My
Msij Msy

Mri; Mimn

PI{ij, kl,mn) = : Msy; M

Affine / Photometric Invariants.
Photometric scaling :
2nd order intensity moments + Oth order shape moment :

(M]goM]oo - M]%O)(MIOQMIOO — Mlgl) - (M]UMIO() — M[10M101)2 ( )
MTEMSE,
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2nd order intensity moments + 1th order shape moment : (8}, and

Be? — 2a8¢ + 482 9)
T,

with the same notations as in (6).

2nd order intensity moments + 2nd order shape moment : (8), (9),
(5) for shape moments, (9) with the roles of intensity and shape moments
reversed, and

(@A —yB)? + (@A ~ BC)* + 2(BA — aB)(vA — a(’)
MI§,M S§,

with the same notations as in (7).
Photometric scaling + offset : the simplest (of the 4 existing) invariant(s) is
M S3, (B€* — 2ade +462)
(@A —~~4B)? 4 (@A — BC)2 + 2(BA — aB) {54 — aC)

with A, B, (" as defined earlier for eq. (7) and

a = (]\/1110]\45'00 — A/[SloM[oo)(Mlolevog - MAS'mM]oo) ,
B = (MIioMSoo — MS1oMIp)> &= MSoo(MI1oMSpe — MS1oM o)
‘3/ = (A/[IO]AJS()() - A4,S’()1MI[)())2 € = MS[)()(AJIOIMSOD - ]\4:3'(]1]\/[]0())

4 Experiments

Due to space restrictions, only one experiment will be discussed here. Other
experiments are given in [13]. The goal of this experiment is to test the discrim-
inatory power of invariant {(4). To this end, its value is computed for images
of posteards. Fig. 2 shows four of the postcards used in the test. To test the
invariance of the expression, each of the images is transformed mathematically
for several combinations of affine transfomations as well as photometric scaling
and offset. The original image and three of its transformed versions are shown in
Fig. 3. The intensity pattern of the postcard is delineated by an parallellogram
fitting program. In the experiment, the invariant (4) is calculated for the original
image and its transformed versions. Since this invariant peeds two contours ¢’
and D, the postcards’s outline is taken as one contour and a parallellogram cor-
responding to one half of the postcards is used for the second contour. As there
are 4 possible choices for this second part, which cannot be distinguished in an
aftine context. Therefore, (4) is computed for each of the four possibilities and
their values are summed. The results of this computation are given in Table 1
for the four postcards shown in Fig. 2 and their corresponding transformed ver-
sions as the one shown in Fig. 3. Clearly, the values of this symmetric invariant
expression are quite stable over the different transformations, whereas the value
1s significantly different for the different postcards.
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Fig. 3. The original and three transformed versions of the first postcard in Fig. 2.

5 Conclusions

The central theme of the paper is the generation and classification of simple and
robust moment invariants by (1) the deliberate mixing of intensity and shape
moments, and (2) the provision for joint invariance under geometric (affine)
deformations and photometric changes,

The mixing of intensity and shape moments has a number of advantages.
First, it is a necessary condition for the use of intensity moments in combination
with offsets in the photometric changes, a fact that does not seem to have been
made explicit in the literature. Without the shape moments no group action
would result. Second, mixing both moment types as a deliberate strategy leads
to their optimal use and simpler moment invariants, whereas their occasional
mixing in the past seems to have been rather ad hoc and thereby not exploited
to the full.

Table 1. Values of the invariant (4) for the postcards in Fig. 2 and their transformed
verstons as in Fig. 3.

original transform 1 transform 2 transform 3

postcard 1 0.224 0.230 0.225 0.210
postcard 2 | -1.818 -1.814 -1.850 -1.840
postcard 3 | 0.590 0.587 0.592 0.560

postcard 4 | 0.125 0.130 0.121 0.133
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[t has been observed that the more discriminating moment invariants may

be of higher order than the second. Thus, there is a conflict between robustness
against noise and discriminant power. As the experiments have shown, the lower
order invariants proposed here are effective, especially since there are more of
them available now.
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