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A b s t r a c t .  The paper contributes to the viewpoint invariant recognition 
of planar patterns, especially labels and signs under affine deformations. 
By their nature, the information of such 'eye-catchers' is not contained 
in the outfine or frame - -  they often are affinely equivalent like parallelo- 
grams and ellipses - -  but in the intensity content within. Moment invari- 
ants are well suited for their recognition. They need a closed bounding 
contour, but this is comparatively easy to provide for the simple shapes 
considered. On the other hand, they characterize the intensity patterns 
without the need for error prone feature extraction. This paper uses lno- 
ments as the basic features, but extends the literature in two respects: 
(1) deliberate mixes of different types of moments to keep the order of the 
moments (and hence also the sensitivity to noise) low and yet have a suffi- 
ciently large number to safeguard discriminant power; and (2) invariance 
with respect to photometric changes is incorporated in order to find the 
simplest moment invariants that  can cope with changing lighting condi- 
tions which can hardly be avoided when changing viewpoint. The paper 
gives complete classifications of such affine / photometric moment invari- 
ants. Experiments are described that illustrate the use of some of them. 

1 I n t r o d u c t i o n  

A lot  of research has been pu t  into the ex t rac t ion  of invar ian ts  for p l ana r  shapes  
under  geomet r ica l  de fo rmat ions  [5, 6]. Most  work has focused on the shapes '  con- 
tours .  For cer ta in  appl ica t ions ,  however,  it  would be more  effective if one could 
use invar ian ts  der ived f rom the in tens i ty  p a t t e r n s  bounded  by the contour .  For 
example ,  if one is to recognize labels  or traffic signs, the contours  will typ ica l ly  
conta in  l i t t l e  in fo rmat ion .  If  affine d i s to r t ions  are considered,  m a n y  of t hem will 
be affinely equivalent  (e.g. all pa ra l l e log rams  or all ellipses).  C, on tour  invar ian ts  
will be difficult  to app ly  to m a n y  of the p a t t e r n s  and therefore m o m e n t  invar ian ts  
are considered.  Afl:ine d i s to r t ions  are the mos t  general  type  of  geomet r i c  t rans-  
fo rma t ions  tha t  can be considered in this  case, because  expressions of m o m e n t s  
t ha t  are p ro jec t ive ly  invar iant  do not  exist  [12]. Note  the  n a t u r a l  complemen-  
t a r i ty :  wi th  complex  out l ines  contour  invar ian t s  can be used and  it would be 
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difficult to extract closed contours as required by the moments;  in the case of 
non-discriminant outlines of the forementioned, simple parametr ic  types closed 
contours can be fitted rather easily for the calculation of the moments ,  whereas 
contour invariants are of little use. 

The goal being invariant characterisation of the intensity patterns,  care has 
to be taken of photometric changes as well. When the camera changes its po- 
sition relative to the pattern,  its intensities will in general change. This paper  
contains a complete and systematic classification of invariants for the combined 
effect of affine deformations and photometric  changes. A second concern is to 
keep the order of the moments  low, since high orders introduce more noise. To 
that  effect, the mixing of different kinds of moments  and the combination of 
coplanar pat terns are considered. Different kinds of moments  have been defined 
(geometric, Legendre, Zernike, rotational, etc.). The reported work is based on 
the traditional "geometric" moments  and only moments  up to the second order 
are considered. These choices are in keeping with the results of noise sensitivity 
tests t11]. 

Of course, the paper adds to a large body of literature on moments  and 
moment  invariants. It is impossible to give a complete overview here (for a 
partial review, see Prokop and Reeves [8]). Nevertheless, there are a number 
of contributions which are directly related to the presented work. Maitra [4] 
and Abo-Zaid et al. [1] discussed variations of Hu's metric and scaling moment  
invariants [3] that  are also invariant under global scaling of the intensity. Another 
strand of research has concentrated on deriving moment  invariants under afline 
transformations [2, 9, 10]. Reiss [9] combined M-fine and photometric  invariance 
and his work comes closest to that reported. Nevertheless, most of the moment  
invariants that  are given here are novel. 

The paper is organized as follows: first, notation and terminology is estab- 
lished in Section 2. In Section 3 the a t t lne /pho tomet r ic  invariants are system- 
atically classified according to the highest order of the moments  involved. For 
each case, invariants under affine transformations,  photometric  invariants, as well 
as combined af f ine /photometr ic  invariants are given. Section 4 then reports on 
ongoing experiments with these moment  invariants. Section 5 summarizes the 
results. 

2 A f f i n e  / P h o t o m e t r i c  T r a n s f o r m a t i o n s  

2.1 Definitions and Notations 

If x and y stand for the row and column coordinates of an image with intensities 
i(~:, y) and a planar object 's  closed contour (7 circumscribes the region ~'~ in the 
image, then 

=/~2 :cPyqd~:dY and M Ic'pq = / ~  i(x,y)xYyqd~a:dy MSCpq 

are the shape (p~ q)-moment and intensity (p, q)-moment resp.. Both are said to 
be of order p + q. For brevity, in the sequel "nth-order moments" stand for the 
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set of moments  up to and including the nth-order moments.  If Mcvq rather than 
M,5'Cp q or  MIcpq is specified, this is to mean that  the corresponding expression 
can be used with either of them. Notation often will be simplified to  M,5'pq and 
Mlpq if there is only one contour involved. 

The moment  invariants discussed in the paper  are deliberately made function 
of both shape moments  and intensity moments.  This mix lowers the required 
order of the moments  and thus contributes to their robustness. With "nth-order 
momen t  invariants" will be meant  moment  invariants that  combine moments  
up to order n. 

2.2 G e o m e t r i c  a n d  P h o t o m e t r i c  C h a n g e s  

The geometric deformations considered are afllne transformations 

(xt) : (all a12) ( ; )  + (bl) 
y'  \a21 a2~ b2 (1) 

with IA[ = alia22 - a12a21 # O. This implies that  the camera  is relatively far 
from the object. 

Two kinds of photometric  changes are considered: pure scaling 

I'(x,  v) = s I (x ,  v) ; 

and scaling combined with an offset 

l ' ( x , y )  = s I ( x , y )  + o . 

The assumptions that  the camera is relatively far from the object and that the 
object is planar can greatly simplify the analysis of the photometr ic  changes. 
Typically light sources are far from the objects as well. The geometry of light 
reflection is the same for all points in that  case, i.e. they share the same angles 
of light incidence and camera viewing directio 9. Also for the more sophisticated 
models of diffuse reflection the change in camera or light position will in that  
case result in an overall scaling of intensity [7]. The offset allows to bet ter  model 
the combined effect of diffuse and specular reflection [14] and has been found to 
give better performance [9]. 

The actions of the photometric  and affine changes on the moments  come out 
to commute.  Hence, one might first normalize against one type of transformation 
and then against the other. Alternatively, one may normalize against one and 
switch to the use of invariants for the other. To some extent, this latter strategy 
typically is what has happened in the literature. The photometric  offset can 
e.g. be eliminated through the use of intensity minus average intensity and the 
photometric scale parameter  can be eliminated by normalizing the resulting 
intensity's variance [9]. After these normalisations one then has to deal with 
affine deformations exclusively. The resulting affine invariants may look simpler 
than the ones given here, but the inherent complexity is at least comparable.  
However, the normalisation steps are quite expensive computationally,  since they 
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require a pixel-wise modification. Not normalising means that  one has to deal 
with larger numbers (original intensities and coordinates instead of deviations 
from average values), but this is outweighed by far by only using lower order 
moments .  

2.3 G e o m e t r i c  a n d  P h o t o m e t r i c  Ef fec t s  on  M o m e n t s  

As Mready mentioned before, only moments  up to 2nd order will be consid- 
ered. How do these transformations affect the value of the moments?  The affine 
t ransformation (1) changes the vector 

m t = (M.,0 Mll  Moo M10 M01 Moo) 

of second-order moments  as 
m '  = T r a m  (2) 

alia21 alia92 q-a12a21 a12a~,2 allb2 +a; lb l  a12b2 +a2261 bib2 
T,n = IA[ ] a~ 1 2a21a22 ct~2 2a21b2 2a22b2 b~ 

( 0 0 a11 a12 bl 
0 0 a21 a22 b2 
0 0 0 0 1 

with [A] = a11a22 - a12a21 as before. As can be seen from the transformation 
matr ix,  the 0th-order moment  Moo, as well as the lst-order moments  (incited- 
ing Moo) can also be considered in isolation. Observe that  shape and intensity 
moments  transform in exactly the same way tender afline transformations.  

If the model of the photometric changes is restricted to pure scaling, then 

M l~j = s M lid and M,q~j = M,b'ij - 

The shape moments  are trivially invariant, because they do not involve intensi- 
ties. To obtain photometric  intensity moment  invariants, it suffices to take the 
ratio of two intensity moment  invariants. Shape and intensity moments  can thus 
be used separately. 

If the intensity changes by a scale fac tor  s and an offset o, then 

Mliij  ~- s M l i j  q - o M s i j  and M~.ij = M s i j  . 

The result is a 2-dimensional group of transformations acting on the vectors 
( M I i j ,  M,5'ij) r .  Again the shape moments  are trivially invariant. However, the 
intensity rnoments can no longer be used in isolation. Observe that  the pho- 
tometric changes act identically on all intensity moments,  irrespective of their 
order. 

The actions of the photometric and the geometric t ransformations commute.  
As a consequence, the overall group of atfine / photometric  t ransformations is a 
direct product of the affine group and the group of intensity transformations.  
This implies that  combined Mfine/photometr ic  invariants exist if the number 

where 
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of moments surpasses the sum of the orbit dimensions of both actions taken 
separately, and that the invariants are found as common expressions in the sets 
of afl:ine and photometric moment invariants separately. A Lie group theoret- 
ical strategy was used to classify all independent a t t ine /photometr ic  moment 
invariants up to the second order. This classification is given in the next section. 
Space restrictions do not allow to discuss the generation of these invariants. The 
interested reader is referred to [13] for details on the classification strategy. 

3 Af l : i ne  / P h o t o m e t r i c  M o m e n t  I n v a r i a n t s  

This section classifies the independent moment invariants up to the second 
order. For each order, affine, photometric (for both models), and combined 
atI ine/photometr ic  invariants are given, which are mixtures of both shape and 
intensity moments. If the invariants only involve shape moments, combinations 
of different patterns (different bounding contours) are considered, until an invari- 
ant involving an intensity moment is found, because the assumption is that  the 
useful information is contained in the intensity pattern. In practice, additional 
contours can be generated by making an invariant subdivision of the pattern 
under consideration. Two examples are given in Fig. 1. An elliptical pattern can 
be divided into the original ellipse and an ellipse with the same center of gravity, 
orientation and eccentricity, but having half the size along each axis. Similarly, 
a parallelogram shaped pattern can be subdivided into e.g. the whole pattern 
and the pattern inside the diamond that emerges by connecting the midpoints 
on each side. 

Fig. 1. lnvariant subdivisions o] an ellipse and a parallelogram. 

3.1 Z e r o t h - o r d e r  M o m e n t  I n v a r i a n t s  

Afl lne  I n v a r i a n t s  : MIoo / M,5'00 

P h o t o m e t r i c  I n v a r i a n t  s. 

Photometric scaling : M,5'c00; M,5'D00 and M lcoo/MIDoo 
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Photometric scaling + offset : MScoo;  MS'BOO; M,5'~o• 
and M I c : o o M S D o o - M I D o o M S c : o o  

M I c o o M  S ~oo - M I E o o M  S coo  

Afl'ine / P h o t o m e t r i c  I n v a r i a n t s .  

Photometric scaling : M ICoo/M IDoo and MS'coo/MS'bOO 

Photometric scaling + offset : M S c : o o / M S D o o ;  M S c o o / M S E o o ,  

aIld M l c o o M S D o a - M I D o o M S , _ : o o  
M I< :ooM S Eoo-- M I ~ a o M  S( :oo 

3.2 F i r s t - o r d e r  M o I n e n t  I n v a r i a n t s  

A t l l n e  I n v a r i a n t s  : M lcoo / M,5'coo; M,5'DOO / M,5'coo, 

and 1 MI~:~o _ M S C 1 0  MIc :~o  _.  M S r n o  
M I c : o o  M S c o o  M I c o o  MSDOO 
M I c : m  M S U o  1 m l c o l  M S D o l  

M"%"c~176 M L : o o  - -  MSc:oo  M/coo ~MSDOO 

P h o t o m e t r i c  I n v a r i a n t s .  

Photometric scaling : MIlo/MI• MIol /MIoo,  MHlo, Ms Ms 

Photometric sealing + offset : MS'lo, M,~'ol, Ms and MIl~176176176176176 
' M l o l M S o o - M I o o M S o l  

A f l l n e  / P h o t o i n e t r i c  I n v a r i a n t s .  

Photometric scaling : 

3 shape moments  : M,5'coo/M,5'voo, and MS,'coo/Ms 

1 intensity + 2 shape moments  : M,ffcoo/Ms220 and (3) 

2 intensity + 1 shape mornents " 

1 M l ( : l o  _ M S c ~ o  M l g : k . o _ _  M I D l o  
Mlcoo/MIDoo and MIr  M S ' c o o  M/coo M I D o o  

M L ! : o t  M S ( : o l  MIr  "o* M l r ,  oa 
M,%'CO0 M L : o o  - -  M S (  oo M L : o o  - -  M I D o o  

3 intensity moments  : Mlcoo/MIDoo,  and M l c o o / M l e o o  

2 intensity + 2 shape m o m e n t s  Mlcoo/MIDoo,  MS'coo/MS'DOO, (3), 
(3) with the rgles of C' and D reversed, and 

M l c ~ o  _ MSc:ao  M I D x o  - -  M S c : t o  MI~::~o _ M S c : l o  M S D l o  _ ~4Sc:1o 
M I c o o  M S c o o  M I D o o  MSr  M I c : o o  M S ( : o o  M S D o o  MS~:oo  
M l q : o  1 _ M S c o  1 M I D o l  _ MS~I-:Ol : MI~!o  1 _ M S c : o l  M S D o ~  _ M S q : o l  
M I c : o o  M S c  oo M I D o o  M S c  oo M l c : o o  M S (  oo M S D o o  M S (  oo 

(a) 

Photometric ,scaling + offset : M s S'DOO, 

Mlc:~o MSc: lO M S c : a o  M S D l o  
Mlcoo M I (  oo - -  M S c : o o  M S c o o  - -  M S D o o  

( M IcooMSDoO - M IDooMScoo  ) MI~::OI_ __ M S C O l  M.-%,:O1 __ MSD01 
" M l c ' o o  M S ~ o o  M S c o o  M S D o O  

(4) with the r6les of (7 and D reversed, and 

MI~:IO _ MS(:: lo M I D l o  M S D l o  
MIcooMIDooM,5'DOO M I c : o o  M S c : o o  M I D o o  - -  M S D o o  

( MIcooMS'DOO - MIDooMS'(:oo )2 Mlco, _ MSc, o, Mlr, ol _ MSDo, 
M l ( m o  M S ( .  oo M I D o o  M S D o o  

(4) 
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3.3 S e c o n d - o r d e r  M o m e n t  Inva r i an t s  

Afl ine I n v a r i a n t s  : 

2nd order moments of 1 type only : 

( M2oMoo - M~o)( Mo2 Moo - Mo21) - ( M ,  i Moo - MloMol) 2 
i& 

2nd order moments + 0th order moment of other type : MIoo/Mb'oo,  and (5) 

2nd order intensity moments + l th order shape moments : 
MIoo/M,%o,  (5) for intensity moments, and 

/3~ 2 - 2o~& + 7(f 2 (6) 

where 

a = ( M I l l M I o o  - M I l o M I o l )  , ~ = (M,S'ooMI, o - MS' loMIoo)  , 
fl = ( M  I2oM Ioo - M I~o ) , e = ( M S o o M  Io~ - M,5'o~M Ioo) , 
"/ = ( M I o 2 M I o o -  MI2ol) 

2nd order intensity moments + 2nd order shape moments : 
Mloo/M,b'oo, (5) for intensity moments, (5) for shape moments, 
(6), (6) with the r61es of intensity and shape moments reversed, and 

(c~A - 7B) 2 + (o~A - [3C) 2 + 2(flA - aB)(TA - c~(7) 
-,6 (7) 

M Ioo M b oo 

where 

A = (MS11MS'oo - MSloMb 'o l )  , B = (MS2oMSoo  - MS~o ) , 

and (7 = (M,%~MHoo - M,5'~1) 

P h o t o l n e t r i c  I nva r i an t  s. 

Photometric  scaling : M l lo/Moo,  M lol /Moo,  M I2o/Moo, M I u / M o o ,  M Io2/Moo 

Photometric  scaling + offset : P I(O0, 10, 01), P I(O0, 10, 20), P I(O0, 10, 11), 
PI(00, 10, 02), PI(10, 01,20), PI(10, 01, 11), PI(10, 01,02), P/(01,20,  11), 
PI(01,20,  02), and PI(20, 11,02), where 

P[( i j ,  kl, ran) = MiiJMsij MlklMsm [ 

Affine / P h o t o m e t r i c  Inva r i an t s .  

Photometric  scaling : 

I Mi i j  Mlmn 
: Ms i j  Msmn 

2nd order intensity moments + 0th order shape moment : 

(MI20MIoo - MI~o) (MIo2MIoo  - M I g l )  - ( M Z l l M I o o  - MgloMI01)  2 

M I 4  
~ ~2 (S) 

O0 ~w ' J O 0  
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2nd order intensity moments + l th  order shape moment : (8), and 

fie ~ - 2~5e  + "/5 2 
4 -2 (9) 

M looM,5oo 

with the same notations as in (6). 

2nd order intensity moments + 2nd order shape moment :  (8), (9), 
(5) for shape moments, (9) with the roles of intensity and shape moments 
reversed, and 

M G M , 5 %  

with the same notations as in (7). 

P h o t o m e t r i c  scaling + offset : the simplest (of the 4 existing) invari~nt(s) is 

v,s ,o0 (ae  - + va ) 

- v S ) =  + - + 2 ( ; 3 A  -  U)(5A - 

with A, B, (~ as defined earlier for eq. (7) and 

c, = ( M I~oM,5'oo - M , q l o M  loo)( M Io~ M,b'oo - M,5'o~ M loo) , 

fl = ( M l l o M S o o  - M S l o M I o o )  e ~ = M , % o ( M I ~ o M S o o  - M S ; l o M I o o )  

7 = ( M I o ~ M S o o  - M , % ~ M l o o )  2 g =  M S ; r ) o ( M I o l M S o o  - M S o l M i o o )  

4 E x p e r i m e n t s  

Due to space restrictions, only one experiment will be discussed here. Other 
experiments are given in [13]. The goal of this experiment is to test the discrim- 
inatory power of invariant (4). To this end, it.s value is computed for images 
of postcards. Fig. 2 shows four of the postcards used in the test. To test the 
invariance of tile expression, each of the images is transformed mathematically 
for several combinations of atfine transfomations as well as photometric scMing 
and offset. The original image and three of its transformed versions are shown in 
Fig. 3. The intensity pattern of the postcard is delineated by an parallellogram 
fitting program. In the experiment, the invariant (4) is calculated for the originM 
image and its transformed versions. Since this invariant needs two contours (7 
and D, the postcards's outline is taken as one contour and a parMlellogram cor- 
responding to one half of the postcards is used for the second contour. As there 
are 4 possible choices for this second part, which cannot be distinguished in an 
affine context. Therefore, (4) is computed for each of the four possibilities and 
their values are summed. The results of this computation are given in Table 1 
for the four postcards shown in Fig. 2 and their corresponding transformed ver- 
sions as the one shown in Fig. 3. Clearly, the values of this symmetric invariant 
expression are quite stable over the different transformations, whereas the value 
is significantly different for the different postcards. 
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Fig. 2. Four postcards used in the test. 

Fig. 3. The original and three transformed versions of the first postcard in Fig. 2. 

5 C o n c l u s i o n s  

The central theme of the paper is the generation and classification of simple and 
robust moment invariants by (1) the deliberate mixing of intensity and shape 
moments, and (2) the provision for joint invariance under geometric (affine) 
deformations and photometric changes, 

The mixing of intensity and shape moments has a number of advantages. 
First, it is a necessary condition for the use of intensity moments in combination 
with offsets in the photometric changes, a fact that does not seem to have been 
made explicit in the literature. Without  the shape moments no group action 
would result. Second, mixing both moment types as a deliberate strategy leads 
to their optimal use and simpler moment invariants, whereas their occasional 
mixing in the past seems to have been rather ad hoc and thereby not exploited 
to the full. 

Table 1. Values of the iuvariant (~) for the postcards in Fig. 2 and their transformed 
versions as in Fig. 3. 

original transform 1 transform 2 transform 31 
postcard 1 0.224 0.230 0.225 0.210 
)ostcard 2 -1.818 -1.814 -1.850 -1.840 
postcard 3 0.590 0.587 0.592 0.560 | 
[postcard 4 0.i25 0.130 0.121 0.133 1 
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It has been observed that  the more  discr iminat ing m o m e n t  invariants may  
be of higher order than the second. Thus,  there is a conflict between robustness 
against  noise and discr iminant  power. As the experiments  have shown, the lower 
order invariants proposed here are effective, especially since there are more  of  
them available now. 
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